Hilbert's 2nd Problem

Big thing about Turing Machine: its computation is local. That is the reason Turing Machine is more oftenly used in our proofs than things like ``Java''.

Hilbert's 2nd Problem: Axiomatize number theory.

Theorem 7   There doesn't exist a finite collection or Axioms $ A$ such that

$\displaystyle \{S\mid A \vdash S\} = \{ S \mid N \models S\}$

$ N$ is the Standard model of natural numbers with $ =,<,\ldots, +, \times, -, / \ldots$.

Proof. Assume to reach a contradiction that such an $ A$ exists. Show how to get an algorithm for $ \mathrm{HALT}$. Intuition: $ \mathrm{HALT}\leq \mathrm{Theoremhood}$.

Consider the program for Halting Problem. Read program $ P$, input $ I$. Here we use $ S = f(P, I)$, so that $ S =\exists w, \alpha(w)$15. If $ S$ is a theorem then output ``$ P$ halts on $ I$''. Else, output ``$ P$ doesn't halt on $ I$''. Since $ A$ exists, to do this, do BFS search on the tree, we can find the proof of $ S$ or $ \neg S$ in finite steps.

Then, come to our implementation of $ f$.

Start: p, q, h=halt symbols: 0, 1, $ \sqcup $

$\displaystyle (p, 0)$ $\displaystyle \rightarrow$ $\displaystyle (q, 0, right)$  
$\displaystyle (p, 1)$ $\displaystyle \rightarrow$ $\displaystyle (p, 1, right)$  
$\displaystyle (q, 0)$ $\displaystyle \rightarrow$ $\displaystyle (p, 0, left)$  
$\displaystyle (q, 1)$ $\displaystyle \rightarrow$ $\displaystyle (p, right)$  
$\displaystyle (p, \sqcup )$ $\displaystyle \rightarrow$ $\displaystyle (h, \sqcup , stay)$  
$\displaystyle (q, \sqcup )$ $\displaystyle \rightarrow$ $\displaystyle (h, \sqcup , stay)$  

Input: $ 0110\sqcup \sqcup \sqcup $

Computation History: $ \char93 p0110\char93 0q110\char93 01p10\char93 011p0\char93 0110q\sqcup \char93 0110h\sqcup \char93 $.

Take $ 0=0,1=1,p=2,q=3,h=4,\sqcup =5,\char93 =6$, treat the whole computation history as a decimal number. The last state in the computation history should be $ h$. That is, $ \exists x, (w \mod 10^x)/10^{x-1} = 4\textrm{ and not }
\exists y, y < x,
(w \...
...xtrm{ or }(w \mod 10^y)/(10^{y-1}) = 2\textrm{ or }(w \mod 10^y)/(10^{y-1}) = 3$. Similarly, other rules can be put here, and $ \alpha$ is to confirm that $ w$ represents a valid computation history.

To conclude, if we can axiomize $ N$, there will be an algorithm solving $ \mathrm{HALT}$, and thus such an axiomization system cannot exist. $ \qedsymbol$

bighead 2008-10-29