An Introduction to Socket Programming

(by) Reg Quinton <reggers@julian.uwo.ca>
© $Id: socket.html,v 1.8 1997/05/02 20:17:16 reggers Exp $

Contents:

® [ntroduction
O BEWARE
® Existing Services
O Netstat Observations
® Host names and IP numbers
O Programming Calls
® Services and Ports
O Programming Calls
® Socket Addressing
® File Descriptors and Sockets
O File Descriptors
O Sockets
® Client Connect
O Client Communication
O Stdio Buffers
® Server Applications
O Server Bind
O Listen and Accept
® |netd Services
O Inetd Comments
O Whois Daemon
® Running the Daemon
O The Code
O Connecting to the Server
O Whois Client
O Perl Socket Programming
® Final Comments
O Note Well
® Suggested Reading
® Author

Introduction:

These course notes are directed at Unix applicatiogrammers who want to develop client/server
applications in thd CP/IP domain (with some hints for those who want to wdi2P/I P applications).
Since the Berkeley socket interface has become something of a standard these notes will apply
programmers on other platforms.

Fundamental concepts are covered including network addressing, well known services, sockets and
ports. Sample applications are examined with a view to developing similar applications that serve other
contexts. Our goals are

® to develop a function,cpopen(server, servi ce), to connect to service.
® to develop a server that we can connect to.

This course requires amder standing of the C programming language andagpreciation of the
programming environment (ie. compilers, loaders, libraries, Makefiles and the RCS revision control
system). If you want to know about socket programming with perl(1) then see below but you should
read everything first.

Our example is the UWO/ITS whois(1) service -- client and server sources available in:

Network Services: http://www.uwo.ca/its/ftp/pub/unix/network
Look for the whois(1) client and the whoisd(8) server. You'll find extensive documentation on the
UWO/ITS Whois/CSO server -- that's thnoisd(8) server. It also includes some Perl clients which
access the server to provide a gateway service (for the Finding People Web page and for CSO/PH
clients). The Unix whois(1) client will be pretty obvious after you've read these notes.
BEWARE:

If C code scares you, then you’ll get some concepts but you might be in the wrong course.

You need to be a programmer to write programs (of course)isihign Introduction to C
(or Perl)!

Existing Services:

Before starting, let’s look at existing services. On a Unix machine there are usually lots of TCP/IP and
UDP/IP services installed and running:

[1:17pmjulian] netstat -a
Active Internet connections (including servers)
Proto RRQ S-Q Local Address Foreign Address (state)

tcp 0 0 julian.2717 vnet.ibmcomsntp ESTABLI SHED

tcp 0 0O julian.smp uacsc2. al ban. 55049 TI ME WAI T

tcp 0 13 julian.nntp wat servl. wat . 3507 ESTABLI SHED

tep 0 0 julian.nntp gl eep. csd. uw. 3413 ESTABLI SHED

tcp 0 0 julian.tel net uwonet-serve. 55316 ESTABLI SHED

tcp 0 0 julian.login no8sun.csd.u.1023 ESTABLI SHED

tcp 0 O julian.2634 Xstnl5.gaul..6000 ESTABLI SHED
etc...

tcp 0 0 *.printer *,* LI STEN

tcp 0 0 *.smp * ¥ LI STEN

tcp 0 0 *.waisj * % LI STEN

tcp 0 0 *.account *LF LI STEN

tcp 0 0 *.whois *,* LI STEN

tcp 0 0 *.nntp * ¥ LI STEN
etc..

udp 0 0 *.ntp *,x
udp 0 0 *.syslog *,*
udp 0 0 *.xdncp **

Netstat Observations:

Inter Process Communication (or IPC) is betwieest.port pairs (orhost.service if you like). A
processair uses the connection -- there are client and server applications on each end of the IPC
connection.

Note the two protocols on IP T-CP (Transmission Control Protocol) abiDP (User Datagram
Prototocol). There’s a third protodCM P (Internet Control Message Protocol) which we’ll not look at
-- it's what makes IP work in the first place!

We’'ll be looking in more detail at TCP services and will not look at UDP -- but see a sample Access
Control List client/server pair which uses UDP services, you'll find that in:

Access Control Lists: http://www.uwo.ca/its/ftp/pub/unix/security/acl

TCP services are connection orientated (like a stream, a pipe or a tty like connection) while UDP
services are connectionless (more like telegrams or letters).

We recognize many of the services -- SMTP (Simple Mail Transfer Protocol as used for E-mail), NNTP
(Network News Transfer Protocol service as used by Usenet News), NTP (Network Time Protocol as
used by xntpd(8)), and SYSLOG is the BSD service implemented by syslogd(1M).

The netstat(1M) display shows many TCP services as ESTABLISHED (there is a connection between
client.port andserver.port) and others in a LISTEN state (a server application is listening at a port for
client connections). You'll often see connections in a CLOSE_WAITE state -- they’re waiting for the
socket to be torn down.

Host names and | P numbers:

Hosts havenames (eg. julian.uwo.ca) but IP addressing isroynber (eg. [129.100.2.12]). In the old
days name/number translations were tabled in /etc/hosts.

[2:38pm julian] page /etc/hosts
/etc/hosts: constructed out of private data and DNS. Sone nachi nes
need to know sone things at boot tine. Qtherw se, rely on DNS.

#
127.0.0.1 | ocal host
129.100. 2. 12 julian.uwo. ca
129.100. 2. 26 backus. ccs. uwo. ca | oghost.its. uwo. ca
129.100. 2. 33 filehost.ccs. uwo. ca
129.100. 2. 14 pant her. uwo. ca
etc...

These days name to number translations are implemented by the Domain Name Service (or DNS) -- see
named(8). and resolv.conf(4).

2:43pm julian] page /etc/resolv.conf

$Aut hor: reggers $

$Date: 1997/05/02 20:17:16 $

$1d: socket.htm,v 1.8 1997/05/02 20:17: 16 reggers Exp $

$Source: /usr/src/usr.local/doc/courses/socket/RCS/ socket.htm ,v $
$Locker: $

The default /etc/resolv.conf for the ITS solaris systens.

HHIFHEHFEHR

nanmeserver 129.100.2.12

naneserver 129.100.2.51

nanmeserver 129. 100. 10. 252

domain its.uwo.ca

search ncsmits.uwo.ca its.uwo.ca uwo. ca

Programming Calls:

Programmers don’t scan /etc/hosts nor do they communicate with the DNS. The C library routines
gethostbyname(3) (and gethostbyaddr(3) on the same page) each return a pointer to an object with the
following structure:

struct host ent {
char *h_narne;
char **h aliases;

[* official name */
/
i nt h_addrtype; /
/
/

alias list */
address type */
address length */
address list */

i nt h_| engt h;
char **h _addr _|ist;

* %k X F %

H
#define h_addr h_addr_Iist[O0]
/* backward compatibility */

The structureéa_addr _I i st is a list of IP numbers (recall that a machine might have several interfaces,
each will have a number).

Good programmers would try to connect to each address listed in turn (eg. some versions of ftp(1) do
that).Lazy programmers (like me) just usé_addr -- the first address listed. But see the acl(1) and
acld(8) example noted earlier -- the client will try each server until it gets an answer or runs out of
servers to ask.

Client applications connect tohast.port (cf. netstat output) for a service provided by the application
found at that address.

Proto RRQ S-Q Local Address Foreign Address (state)
tcp 0 0 julian.2717 vnet.ibmcomsntp ESTABLI SHED
tcp 0 13 julian.nntp wat servl. wat. 3507 ESTABLI SHED

The connection is usually prefaced by translatihgsaname into anlP number (but if you knew the IP
number you could carefully skip that step).

i nt t cpopen(host, service)
char *service, *host;
struct hostent *hp;

etc...

i f ((hp=get host bynane(host)) == NULL) then error..

| say "carefully" because the IP address is a structure of 4 octets. Watch out for byte ordering. An
unsigned long isn’t the same octet sequence on all machines. See byteorder(3N) for host to net
conversions (host format to/from network format).

Services and Ports:

Services haveames (eg. SMTP the Simple Mail Transfer Protocol). Ports hawabers (eg. SMTP is a
service on port 25). The mapping from service names to port numbers is listed in /etc/services.

[1: 22pm jul i an] page /etc/services

$Aut hor:
$Dat e:

#

Network services,

ftp

t el net
smp
whoi s
domai n
domai n
tftp
finger
nnt p
ntp
snnp
xdnep

reggers $

1997/05/02 20:17:16 $

etc...

etc...

Programming Calls:

21/ tcp
23/tcp
25/tcp
43/ tcp
53/tcp
53/ udp
69/ udp
79/tcp
119/ tcp
123/ udp
161/ udp
177/ udp

Internet style

mai |

ni cnanme
naneserver
naneserver

readnews untp

xdm

But programmers don’t scan /etc/services, they use library routines. The C library routines
getservbyname(3N) (and getservbyport(3N) on the same page) each return a pointer to an object with
the following structure containing the broken-out fields of a line in /etc/services.

struct
char
char
i nt
char
b

servent {
*sS_nane,

**g al

i ases;

S_port;
*s_proto;

nane of service */
alias list */

port for service */
protocol to use */

Client applications connect to a service port. Usually this is prefaced by translsdingcaname (eg.
SMTP) into theport number (but if you knew the port number you could carefully skip that step).

i nt t cpopen(host, servi ce)
char *service, *host;
{

struct servent

etc...

*sp;

i f ((sp=getservbynane(service,"tcp")) == NULL) then error..

le. to determine the port number for a partictdarser vice. Note that you’d do the same to determine
port numbers for UDP services.

Socket Addressing:

A Socket Address islaost.port pair (communication is betweéiost.port pairs -- one on the server,

the other on the client). We know how to determine host numbers and service numbers so we're well on
our way to filling out a structure were we specify those numbers. The structasg&asidr _i n, which

has the address familyAs_| NET as in this fragment:

i nt t cpopen(host, servi ce)
char *service, *host;
{ i nt unit;
struct sockaddr _in sin;
struct servent *sp;
struct hostent *hp;
etc...
i f ((sp=getservbynanme(service,"tcp"”)) == NULL) then error..
i f ((hp=get hostbynane(host)) == NULL) then error..

bzero((char *)&sin, sizeof(sin));
sin.sin_fam|y=AF_| NET;
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_|length);
sin.sin_port=sp->s_port;

etc...

The code fragment is filling in the IP address typel NET, port number and IP address in the Socket
Address structure -- the address of the rerhoseport where we want to connect to find a service.

There’s a generic Socket Address structusacaaddr , used for communication erbitrary domains.
It has an address family field and an address (or data) field:

/[* from /usr/include/sys/socket.h */

struct sockaddr {
u_short sa_famly; /* address famly */
char sa_data[14]; /* max 14 byte addr */

H
Thesockaddr _i n structure is for Internet Socket Addresses (address familyNET). An instance of
thegeneric socket address.

/* from /usr/include/netinet/in.h */
struct sockaddr _in {

short sin_famly; [* AF_I NET */
u_short sin_port; /* service port */
struct in_addr sin_addr; /* host number */
char sin_zero[8]; /* not used */

}s

The family defines the interpretation of the data. In other domains addressing will be different --
services in the UNIX domain are names (eg. /dev/printer). Iaddteaddr _i n structure we’'ve got

fields to specify a port and a host IP number (and 8 octets that aren’t used at all!). That structure
specifies one end of an IPC connection. Creating that structure and filling in the right numbers has been
pretty easy so far.

File Descriptors and Sockets:
File Descriptors:

File Descriptors are the fundamental 1/0O object. You read(2) and write(2) to file descriptors.

int cc, fd, nbytes;

char *buf;
cc = read(fd, buf, nbytes);
cc = wite(fd, buf, nbytes)

Ther ead attempts to reasbyt es of data from the object referenced by the file descriptonto the
buffer pointed to byuf . The write does a write to the file descriptor from the buffer. Unix I/O is a byte
stream.

File descriptors are numbers used for 1/0O. Usually the result of open(2) and creat(2) calls.

All Unix applications run wittst di n as file descriptor Gt dout as file descriptor 1, ared der r as file
descriptior 3. Bust di n is aFI LE (see stdio(3S)) not a file descriptor. If you want a stdice on a file
descriptor use fdopen(3S).

Sockets:

A Socket is a Unix file descriptor created by the socket(3N) call -- you don’t open(2) or creat(2) a
socket. By way of comparison pipe(2) creates file descriptors too -- you might be familiar with pipes
which predate sockets in the development of the Unix system.

int s, domain, type, protocol

s = socket (domai n, type, protocol);
etc...

cc = read(s, buf, nbytes);

Thedomai n parameter specifies a communications domain (or address family). ForAP_useT but
note thatocket . h lists all sorts of address families. This is to inform the sy$i@man address should
be understood -- on different networks, likeF_DECnet , addressing may be longer than the four octets
of an IP number. We’'re only concerned with IP andathe NET address family.

Thet ype parameter specifies the semantics of communication (sometimes know as a specification of
quality of services). For TCP/IP ussock_STREAM (for UDP/IP usesock_DGRAM). Note thatany address
family might support those service types. Seeket . h for a list of service types that might be

supported.

A SOCK_STREAMIS a sequenced, reliable, two-way connection based byte stream. If a data cannot be
successfully transmitted within a reasonable length of time the connection is considered broken and I/O
calls will indicate an error.

Thepr ot ocol specifies a particular protocol to be used with the socket -- for TCP/IP use 0. Actually
there’s another programmers interface getprotobyname(3N) that provides translates protocol names to
numbers. It's an interface to the data found in /etc/protocols -- compare with the translation of service
names to portnumbers discussed above.

Client Connect:

A client application creates a socket(3N)and then issues a connect(3N) to a service specified in a
sockaddr _i n structure:

i nt t cpopen(host, servi ce)
char *service, *host;
{ i nt unit;
struct sockaddr _in sin;
struct servent *sp;
struct hostent *hp;
i f ((sp=getservbynane(service,"tcp")) == NULL) then error..
i f ((hp=get host bynane(host)) == NULL) then lerror..
bzero((char *)&sin, sizeof(sin))
etc...

if ((unit=socket (AF_I NET, SOCK STREAM 0)) < 0) then error..
if (connect(unit, &sin,sizeof(sin)) < 0) then error..
return(unit);

}

The result returned is a file descriptor which is connected to a server process. A communications
channel on which one can conduct an application specific protocol.

Client Communication:

Having connected a socket to a server to establish a file descriptor communication is with the usual Unix
I/O calls. You have Inter Process Communication (or IPC) to a server.

Many programmers turn file descriptors into stdio(3S) streams so they can use fputs, fgets, fprintf, etc. --
use fdopen(3S).

mai n(argc, ar gv)
i nt argc;
char *argv[];
{
i nt unit,i;
char buf [BUFSI Z] ;
FI LE *socki n, *sockout ;

i f ((unit=tcpopen(WHOHOST, WHOPCRT))
< 0) then error..

socki n=f dopen(unit,"r");
sockout =f dopen(unit,"w');
etc...
fprintf(sockout,"%\n",argv[i]);
etc...
whil e (fgets(buf, BUFSI Z, sockin)) etc..

Stdio Buffers:

Stdio streams have powerful manipulation tools (eg. fscanf is amazing). But beware, streams are
buffered! This means a well placed fflush(3S) is often required to flush a buffer to the peer.

fprintf(sockout,"%\n",argv[i]);
fflush(sockout);

whi |l e (fgets(buf, BUFSI Z, sockin)) etc..

Many client/server protocols are client driven -- the client sends a command and expects an answer. The
server won't see the command if the client doesn’t flush the output. Likewise, the client won't see the
answer if the server doesn’t flush it’s output.

Watch out for client and server blocking -- both waiting for input from the other.

Server Applications:

A system offers a service by having an application running thiatasing at the service port and
willing to accept a connection from a client. If there is no application listening at the service port then
the machine doesn’t offer that service.

The SMTP service is provided by an application listening on port 25. On Unix systems this is usually
the sendmail(1M) application which is started at boot time.

[2:20pmjulian] ps -agx | grep sendnuil
419 ? SW 0:03 /usr/lib/sendmail -bd -qg15m
18438 ?21W 0:01 /usr/lib/sendmail -bd -qgl5m

[2:28pmjulian] netstat -a | grep smp
tcp O O julian.3155 acad3. al ask. sntp SYN_SENT
tcp 0 0 *.sntp * ok LI STEN

In the example we have a procéstening to the smtp port (for inbound mail) and another process
talking to the smtp port oacad3. al aska. edu (ie. sending mail to that system).

So how do we get a process bound behind a port?
Server Bind:

A Server uses bind(3N) to establish the Iduat.port assignment -- ie. so it is the process behind that
port. That’s really only required for servers -- applications which accept(3N) connections to provide a

service.

struct servent *sp;
struct sockaddr_in sin;

if ((sp=getservbynane(service,"tcp”)) == NULL) then error...

sin.sin_fam | y=AF_| NET;
sin.sin_port=sp->s_port;
sin.sin_addr.s_addr=htonl (1 NADDR_ANY) ;

s=socket (AF_I NET, SOCK_STREAM 0)) < 0) then error...

if ((
if (bind(s, &sin, sizeof(sin)) < 0) then error...

—~

htonl(3N) converts a long to the right sequence (given different byte ordering on different machines).
The IP addressNADDR_ANY meansall interfaces. You could, if you wanted, provide a service only on
some interfaces -- eg. if you only provided the service on the loopback interface (127.0.0.1) then the
service would only be available to clients on the same system.

What this code fragment does is specifpal interface and port (into the n structure). The process is
bound to that port -- it's now the process behind the local port.

Client applications usually aren’t concerned about the loastlport assignment (the connect(3N) does
a bind o some random but unused local port on the right interface). But rcp(1) and related programs (like
rlogin(1) andrsh(1)) do connect from reserved port numbers.

I've done the same in some of my programming. See, for example, the version of tcpopen.c used in our
Passwdd/Passwd -- An authentication Daemon/Client. There’s an instance where a client application
connects from a reserved port.

Listen and Accept:

To accept connections, a socket is created with socket(3N), it's bound to a service port with bind(3N), a
gueue for incoming connections is specified with listen(3N) and then the connections are accepted with
accept(3N) as in this fragment:

struct servent *sp;
struct sockaddr _in sin,from

i f ((sp=getservbynane(service,"tcp")) == NULL) then error...
sin.sin_famly=etc...

if ((s=socket (AF_I NET, SOCK STREAM 0)) < 0) then error...

if (bind(s, &sin, sizeof(sin)) < 0) then error...

if (listen(s, QEELEN) < 0) then error...

(g=accept(f,& rom& en)) < 0) then error...
fork()) {

hild handl es request. ..
...and exits
exit(0);

close(Q); /* parent releases file */

This is the programming schema used by utilities like sendmail(1M) and others -- they create their
socket and listen for connections. When connections are made, the process forks off a child to handle
that service request and the parent process continues to listen for and accept further service requests.

But, you really don’t want to use that programming paradigm unless you really haveto. There are lots
of hidden issues (like becoming a detached process and more) that you'd rather avoid.

Fortunately, there’s an easier method.

Inetd Services:

Not all services are started at boot time by running a server application. Eg. you won'’t usually see a
process running for the finger service like you do for the smtp service. Many are handled by the InterNet
Daemon inetd(1M). This is a generic service configured by the file inetd.conf(4).

[2:35pm julian] page /etc/inetd. conf
$Author: reggers $
$Date: 1997/05/02 20:17:16 $

#

Internet server configuration database

ftp streamtcp nowait root lusr/etc/ftpd ftpd

telnet streamtcp nowait root fusr/etc/tel netd tel netd

shel | streamtcp nowait root /usr/etc/rshd rshd

| ogin streamtcp nowait root [fusr/etc/rlogind rl ogi nd

exec streamtcp nowait root /usr/etc/rexecd rexecd

uucpd streamtcp nowait root [usr/etc/uucpd uucpd

finger streamtcp nowait nobody /usr/etc/fingerd fingerd
etc...

whoi s streamtcp nowait nobody /usr/lib/whois/whoisd whoisd
etc...

I netd Comments:

For each service listed in /etc/inetd.conf the inetd(1M) process, and that is a process is started at boot
time, executes the socket(3N), bind(3N), listen(3N) and accept(3N) calls as discussed above. Inetd also
handles many of the daemon issues (signal handling, set process group and controlling tty) which we’ve
studiously avoided.

The inetd(1M) process spawns the appropriate server application (with fork(2) and exec(2)) when a
client connects to the service port. The daemon continues to listen for further connections to the service
while the spawned child process handles the request which just came in.

The server application (ie. the child spawned by inetd(1M)) is startedwdtlh andst dout connected

to the remotéost.port of the client process which made the connection. Any input/output by the server
appliation orst di n/ st dout are sent/received by the client application. You have Inter Process
Communication (or IPC)!

This means, any application written to 4sei n/ st dout can be a server application. Writing a server
application should therefore be fairly simple.

Whois Daemon:

On julian we have an entry in /etc/inetd.conf for the UWO/ITS whois service:

[3:25pm julian] grep whois /etc/inetd.conf
whoi s streamtcp nowait nobody /usr/!lib/whois/whoisd whoi sd

This is our local directory service -- it's implemented on a TCP/IP stream (all whois services are), at the
whoi s port (all whois services should be at that port), it's ran asnasedy (you don’t need to run

servers as usebot), the program to run isusr/ | i b/ whoi s/ whoi sd, and the command line to the

program is jusihoi sd.

This is a standardhois service -- it implements the trivial protocol requiredilbiwhois servers. Any

whois client can use the service. The program conducts an application protecai anst dout

(which is usually connected by a TCP/IP socket to a client application). The protocol is trivial -- server
accepts a one line query, answers back and exits.

Running the Daemon:

You can run the whois daemon (on the server) to see what it does:

[3:27pmjulian] echo reggers | /usr/lib/whois/whoisd
There were 1 matches on your request.

Ful | Narme: Quinton, Reg

Department: Info Tech Svcs
Room NSC 214
Phone: 679-2111x(6026)
I ndex Key: 481800
Machi ne Address: reggers@ ulian.uwo. ca
Directory Addresses: reg.qui nton@wo. ca
: r.quinton@wo. ca

regger s@wo. ca
qui nt on@wo. ca

For nmore information try *whois help’.

The program is command driven -- you give a command (or query strisgjom, it produces results
onst dout, and exits. This is a very simple protocol, compare with fingerd(1M).

Actually the example is a misrepresentation -- our server will only answer questions if it's input is a
socket in theAF_I NET. That's because we want to syslog(3) all transactions -- we want to know where
the connection came from.

The Code:

The server program is easy enough -- read a line, switch on command, and exit.

fgets(string, BUFSI Z,stdin); read from socket. ..

/* for some reason people send the whois phrase */

agai n:
strcpy(verb,""); strcpy(args,"");
sscanf (buf, "% " \t\r\n]%c%~\r\n]", verb, args);
if (!strcasecnp(verb, "whois")) {
strcpy(buf, args);
got o agai n;

sscanf (buf," % \r\n]", buf);

/* switch on comand verbs */
if (!strcasecnp(verb, "help"))

gi vehel p(args); out put sent to stdout..

el se etc..

[* or just display a person */
el se I i stdisplay(l ookbyname(buf));

out put sent to stdout..

fflush(stdout); push output to client

Server programs can be that simple.

Connecting to the Server:

You can make a telnet(1) connection towhei s service on the server.

[3:47pm julian] telnet julian whois

Trying 129.100.2.12 ... Connected to julian.uwo.ca.
Escape character is '"]'.
reggers mnmy conmmand i nput

There were 1 matches on your request.

Ful I Name: Quinton, Reg
Departnment: Info Tech Svcs
Room NSC 214
Phone: 679-2111x(6026)
I ndex Key: 481800
Machi ne Address: reggers@ulian. uwo. ca
Directory Addresses: reg.qui nton@wo. ca
: r.quinton@wo. ca
regger s@wo. ca
qui nt on@wo. ca

For nore information try ’whois help’
Connection cl osed by foreign host.

But we wouldn’t normally use telnet as the client application (although in this case we could).

Whois Client:

The whois(1) client makes a TCP/IP connection to the server (using the tcpopen function we've
developed here) and conducts the kind of protocol that you would type if you where to make a

connection by hand:

[7:30am jul i an] whoi s reggers

There were 1 matches on your request.

Ful I Narme: Quinton, Reg
Department: Info Tech Svcs
Room NSC 214
Phone: 679-2111x(6026)
I ndex Key: 481800
Machi ne Address: reggers@ulian. uwo. ca
Directory Addresses: reg.qui nton@wo. ca
: r.qui nton@wo. ca
regger s@wo. ca
qui nt on@wo. ca

For nmore information try *whois help’

The client sends the commahieggers', the server sends back the answer and the client displays the
answer received to the user. When the server is finished the connection is closed.

If you understand the development of the tcpopen function then the rest of the code for that client should
not be too difficult. See the entire distribution for that application -- there’s only one main program to
complete the Kkit.

Per| Socket Programming:

These days it's not unusal to see socket programming in perl(1) as well as C programs. Assuming you
have been able to follow the notions presented above in the development of a tcpopen function written
in C as used by our whois(1) client the following is for the Perl enthusiast:

sub tcpopen {
use Socket; # need socket interface
ny($server, $service) = @; # args to this function
ny($proto, $port, $iaddr); # local variables
ny($handl e) =" $server\:\: $service"; # localized obscure handle

di e("550: Cannot get protobyname(’tcp’)\r\n")
unl ess ($proto = getprotobynanme(’'tcp’));

di e("550: Cannot get servbyname($service)\r\n")
unl ess ($port = getservbynane($service, "tcp'));

di e("550: Cannot get host bynane($server)\r\n")
unl ess ($i addr = get host bynanme($server));

di e("550: Cannot create socket\r\n")
unl ess socket ($handl e, PF_I NET, SOCK STREAM $proto);

di e("550: Cannot connect ($service://$server)\r\in")
unl ess connect ($handl e, sockaddr _i n($port, $iaddr));

unbuffered I/Oto that service
sel ect ($handle); $| = 1; select(STDOUT); $| = 1;

return($handl e);

}

See whois2ph(8), the whois2ph source, whois2html(8), and the whois2html source -- both are

production gateways in Perl to interface with our whoisd(8) server.

Final Comments:

The whois example uses a line based protocol. The strategy is common but by no means universal. For
example, the Ipd protocols use octets (ie. single characters) for the commands.

Inetd servers are the simplest to implement. However, this may not be optimal. Especially if the server
has to do a lot of work first (eg. loading in a big data base).

Stand alone servers have to deal with many daemon issues -they should ignore most signals, set a uniqu
process group and get rid of the controlling terminal.

Daemons like nntp could (in theory) handle many clients from a single daemon using interrupt driven
I/0. As currently implemented most have an nntp daemon for each client (but INN uses a single daemon
for flooding).

You'll note that Socket programmers use alarm(2), setjmp(2), and signal(2) calls. The intent is to
prevent a process (client or server) from hanging in a wait for 1/O state by setting and trapping on an
alarm.

Note Well:

® The best way to code a client/server program is to reuse code from an existing service. There’s lots
of public domain examples to work from -- nntp, lpd, sendmail, and even our whois service.

® A simple solution that works is much better than a fancy solution that doekegp+ ssimple.

® Presentation issues, ie. the display for the user, should not effect the protocol or server. Again,
protocols have to be simple!

® Don't ever assume the client or server applications are well behaved!

Suggested Reading:
It shoud be clear that we have lots of real world examples you can look at and work from:

® UWO/ITSWhois/CSO server, by Reg Quinton, UWO/ITS, 1992-97

® UWO/ITSWhoisclient, by Reg Quinton, UWO/ITS, 1992-97

® Passwdd/Passwd -- An authentication Daemon/Client, by Reg Quinton, UWO/ITS, 1992-97
® ACL -- Access Control Lists, by Reg Quinton, UWO/ITS, 1995-97

More detailed documentation, should you need it, can be found at:
® [ntroductory 4.3BSD Interprocess Communication, by Stuart Sechrest, (in) UNIX Programmer’s

Supplementary Documents, Vol1, 4.3 Berkeley Software Distribution, PS1:7.
® Advanced 4.3BSD Interprocess Communication, by Samuel J. Leffler et al, (in) UNIX

Programmer’s Supplementary Documents, Voll, 4.3 Berkeley Software Distribution, PS1:8.

® [ntroduction to the Internet Protocols, Computer Science Facilities Group, Rutgers. (See
ftp:/ftp.uwo.ca/nic)

® Networking with BSD-style Sockets, by John Romkey, (in) Unix World, July-Aug. 1989.

® How to Write Unix Daemons, by Dave Lennert, (in) Unix World, Dec. 1988.

® A Socket-Based | nterprocess Communications Tutorial, Chpt. 10 of SunOS Network
Programming Guide.

® An Advanced Socket-Based Inter process Communications Tutorial, Chpt. 11 of SunOS Network
Programming Guide.

Author:
Comments, concerns, questions, etc. about these notes should be directed to the author:

Reg Quinton <reggers@julian.uwo.ca>
(for) The UWO Network Information Centre
Information Technology Services

The University of Western Ontario

London, Ontario N6A 5B7 Canada

+1 519 661-2151x6026

Copyright 1991-97:

These notes are the property of the authorDikiesion of Information Technology Services (ITS), and

the Universityof Western Ontario (UWO), London, Ontario Canada. Permission is granted to freely
copy and distribute provided thidb chargeis applied and due credit is given to the author, I TS and

UWOo.

© $1d: socket.html,v 1.8 1997/05/02 20:17:16 reggers Exp $

