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1. Introduction

Visual question answering (VQA) [1] is a fundamental
task towards real-world Al applications, e.g. robots that
learn from and respond to human decision making and rea-
soning. To answer a visual question, a human may first
parse it into components, and reason about recognized vi-
sual estimators, their attributes and relations. In contrast,
most previous approaches for algorithmic VQA primarily
rely on deep representation learning [2, 3, 5] to directly enu-
merate answers from common representation spaces, e.g.
by fusing embeddings from CNNs for images and RNNs for
questions, or more recently, through multimodal transform-
ers. While effective when sufficient training data is avail-
able [1, 9, 8], this mechanism is complex, unexplainable,
and entangles multiple procedures from human reasoning.

In addition to lack of interpretability, neural-based mod-
els might suffer in-sufficiency when handling innumerable
visual estimators and question phrasing variants due to large
variability of real-world scenarios. To adapt to any par-
ticular scenario, supervision is required, thus constructing
domain-robust models is challenging and typically requires
extensive annotated data, as [19, 4, 22] show. Some re-
searchers tackle robustness and sample efficiency [10, 14]
on synthetic datasets like CLEVR [9], but applicability to
real-world VQA questions was not demonstrated.

To bridge the gap between existing work on sample-
efficiency in VQA research and real-world VQA data, we
move towards processing question answering as a three-
stage inference structure that fully disentangles vision and
language understanding from reasoning. In particular, we
leverage off-to-shelf image recognition modules to generate
image scene graphs that capture visual estimators and their
spatial and semantic subject-object-predicate relations. We
construct graph representations for questions in terms of ob-
ject attributes and relations, complemented with quantifiers
and logical connectives. We incorporate a graph-symbolic
answering executor that runs novel algorithms on the ques-
tion and image scene graphs to obtain answers. Our pro-
posed framework is fully modular, extensible, and efficient,
with an ability to handle questions not specific to datasets.
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Figure 1. The graph-symbolic framework obtains question an-
swers by traversing nodes on image graph G, guided by algorithm
and question graph Q. The step O to step 2 are visiting trace to
navigate target node that is retrieved to provide question answers

2. Methods

2.1. Image Scene Parser

BASE: we construct image BASE scene graph using off-
the-shelf Mask-RCNN [7] pretrained on the COCO dataset
[13], which returns detected objects (from a vocabulary of
80 objects). Each object is represented as a node on the im-
age graph and has several attributes (e.g. color [17], size
[18], and 3d-coordinates [16]), and graph edges represent
object spatial relations. Moreover, we train CNN-based ac-
tion classifier on Stanford 40 Actions [20] to detects actions
portrayed in images. We use the Places-CNNs [23] to detect
image scenes places in 205 scene categories.

LARGE: we next construct LARGE-vocabulary image
graphs. In particular, we use a Faster-RCNN object detector
[15] trained on the large-scale (600) object detection dataset
Open Images V4 [12]. The construction process follows
BASE. This large-scale detector greatly improves the diver-
sity and extensivility of the image graph by adding more
object nodes as well as node labels.

SCENE: In addition to spatial relations, we represent ob-
ject semantic relations in image graphs. For example, the
relation eating in the phrase girl eating cake is significant
for answering questions what is the girl eating? To cap-
ture such semantic relations, we leverage the Visual Seman-
tic Parsing Network, VSPNet [21] that constructs semantic



graphs by linking object relations with subjects, objects, and
predicates (SOP).
2.2. Question Graph Parser

We formulate the question graph parsing as a sequence-
to-sequence translation problem: we train a neural transla-
tor that can directly translate our textual question to a ques-
tion graph. Inspired by [18], we define fine-grained special
tags to segment question text into several tagged segments,
which are automatically produced through executing se-
mantic programs for questions in the GQA dataset [8]. For
example, the question what type of sign is the same color
as the fire hydrant to the left of can be annotated
as three segments <suj> [1] fire_hydrant
to_the_left_of [0] <obj> [2] sign same_color [1] <que>
name by running semantic programs [8], where numbers
represents node ids, <sel>, <suj>, <obj>, <que> are
tags. Compared to [18], we defined 15 special tags that
are richer, more extensive, and exactly fit for answering
GQA questions. The annotated questions with special tags
paired with original question string serve as training data.
In particular, we train a LSTM-based sequence-to-sequence
model based on Open Neural Machine Translation [ 1] to
convert a question (source) to a sequence of question with
tags (target). Since the target sequence is ordered, we can
easily convert it into a question graph as shown in Fig 1.

2.3. Question Answering

Our novel answering algorithm finds valid assignments
between the image graph (Sec. 2.1) and question graph
(Sec. 2.2) and outputs a question answer. In particular, we
transverse each node in the question graph and call corre-
sponding functions defined in Table 1 to navigate object
nodes in the image graph. For example, The input data
for function gerQuery() is a subgraph Q’, which queries at-
tribute values in image node shown in Fig. 1, and returns a
query result (e.g. the name value of the node).

3. Results

Since we are not aware of previous fully unsupervised
work that extensively evaluates on GQA [8] or VQA-v2 [6],
we propose a basic and advanced models. All methods use
the question parser in Sec. 2.2.

* BASELINE: uses BASE image graph in Sec. 2.1. It is
similar to [18] but we use fine-grained question graphs
with 15 tags, and richer visual estimators, as well as
extensive evaluation on GQA and VQA-v2.

* BASELINE+LARGE: uses the BASE and LARGE im-
age graphs in Sec. 2.1, and merges nodes on two image
graphs using object IoU.

* BASELINE+SCENE: merges BASE and SCENE image
graphs in Sec. 2.1 using object IoU.

* BASELINE+LARGE+SCENE: merges BASE, LARGE,
and SCENE image graphs in Sec. 2.1 using object IoU.

Functions ~ Args. Out. Explanation

getNodes() G/G', N G return image (sub)graph

getQuery() GI/G', N retrieve node attributes (color)

compare() G/G', N compared two nodes (than)

logicConn() b, N run logic connectives (and/or)
Table 1. Function arguments and outputs in answering algorithm;
N denotes node on question graph @, G’ denotes a sub-graph of
image graph G, ¢ is a query result of node M on image graph
GI/G' (e.g. g=table for M ={name:table, color:brown, size:large,
coord:(0.6,0.5,0.3)} in Fig. 1), b denotes boolean outputs for node
M in image graph G/G’ (e.g. yes/no questions).
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GQA
overall yes/no choose  others
BASELINE 32.34 56.43 18.16 19.52
+LARGE 35.01 57.52  24.38 22.55
+SCENE 40.44 5841  40.61 28.97
+LARGE+SCENE  43.66 62.96  42.17 31.65
VQA-v2
overall yes/no number others
BASELINE 31.88 49.12 3543 12.79
+LARGE 32.53 49.64  23.96 14.20
+SCENE 3269 4996 2545 13.98

+LARGE+SCENE 33.25  50.17  20.44 15.31
Table 2. Performance of baseline and our proposed models on
GQA and VQA-v2; best method per column bolded.

The results of our proposed models are shown in Table 2.
The BASELINE model achieves strong performance even if
we do not have any question-answer training; however, each
of our advanced methods bring significant improvements.
In GQA, our BASELINE+LARGE+SCENE models show the
best performance with respect to overall, yes/no, choose,
and other types of questions, which demonstrates the ef-
fectiveness of the integration of LARGE and SCENE image
graphs. Concretely, there is a major improvement due to
BASELINE+SCENE, e.g. improved from 18.16 to 40.61 for
the choose category, which suggests that the additional se-
mantic SOP relations extracted from VSPNet are significant
for answering real-world questions that involve object rela-
tions like (girl, cake, eating). Besides, BASELINE+LARGE
also has significant contribution over the baseline for all
types of questions on GQA.

These observations also found on VQA-v2 dataset, ex-
cept the number questions which require accurate object
detection with respect to its bounding box and labels to
count objects. More complex model, such as BASE-
LINE+LARGE+SCENE that integrates object image graphs
in Sec 2.1 will introduce more variance. This problem
can be ameliorated by optimizing our graph merging algo-
rithm in our future work. In general, BASELINE+LARGE
and BASELINE+SCENE improve baseline, and combin-
ing BASELINE+LARGE+SCENE improves the most in both
GQA and VQA-v2 datasets, which suggests that our frame-
work are independent of and extensible to different datasets.
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