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Abstract
Quantum computing has recently emerged as a promising
computing paradigm for many application domains. How-
ever, the size of quantum circuits that can be run with high
fidelity is constrained by the limited quantity and quality of
physical qubits. Recently proposed schemes, such as wire
cutting and qubit reuse, mitigate the problem but produce
sub-optimal results as they address the problem individu-
ally. In addition, gate cutting, an alternative circuit-cutting
strategy that is suitable for circuits computing expectation
values, has not been fully explored in the field.

In this paper, we propose QRCC, an integrated approach
that exploits qubit reuse and circuit-cutting (including wire
cutting and gate cutting) to run large circuits on small quan-
tum computers. Circuit-cutting techniques introduce non-
negligible post-processing overhead, which increases expo-
nentially with the number of cuts. QRCC exploits qubit reuse
to find better cutting solutions to minimize the cut numbers
and thus the post-processing overhead. Our evaluation re-
sults show that on average we reduce the number of cuts by
29% and additional reduction when considering gate cuts.
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1 Introduction
Quantum computing has recently emerged as a promising
computing paradigm for many application domains, such as
machine learning [7, 28, 47], chemistry simulation [3, 25, 40],
and optimization [31, 34]. The problems from these domains
scale quickly such that they require increasingly larger fault-
tolerant quantum computers. Unfortunately, we are currently
in the NISQ (noisy intermediate-scale quantum) era [15]
where quantum devices suffer from various noises, e.g., short
coherence time and crosstalk among qubits, and small device
sizes, e.g., current quantum devices only have up to 100s of
qubits.
It has become one of the major challenges to run large

quantum circuits in the NISQ era. Large quantum computers,
e.g., IBM 433 osprey, often have limited availability to the
general public. In addition, not all qubits of large quantum
computers exhibit high computational fidelity — some noisy
qubits have to be frozen, i.e., not used, for some computation
tasks [4]. Error mitigation schemes [12, 14, 39, 51] help to
improve computation fidelity [15, 45, 47] but have limited
effectiveness due to the limited availability of physical qubits
on devices. As an alternative to physical quantum execution,
software simulation offers a noise-free execution environ-
ment for quantum circuits. However, the simulation cost
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increases exponentially with the number of qubits [50] and
thus faces intrinsic drawbacks for scalability.
Recently proposed schemes, i.e., wire cutting, qubit reuse,

and gate cutting, help to mitigate the challenge. The wire-
cutting schemes [37, 41, 44] partition a large circuit into
several smaller subcircuits, run subcircuits on quantum de-
vices, and then reconstruct the output of the original circuit
through classical post-processing. That is, they adopt a hy-
brid approach that combines physical quantum execution
and classical software post-processing. Since the classical
post-processing overhead increases exponentially with the
number of wire cuts, minimizing the cut number is the major
design goal. The qubit-reuse technique [16, 21, 35] exploits
the hardware support for Mid-Circuit Measurement and Re-
set (MR) [23] such that the physical qubits that have finished
all their operations can be redeployed as other logical qubits
during circuit execution. Another circuit-cutting approach,
gate cutting [30], was recently proposed for circuits that
compute expectation values, e.g., Hamiltonian simulation
algorithms, where minimization of expectation value is the
main design goal. Gate cutting cuts a two-qubit gate into a
linear sum of single-qubit gates and exploits classical post-
processing to reconstruct the original result. Gate cutting
has not been well-studied at the circuit level, i.e., deciding
the best cut locations for a given large circuit.
Unfortunately, we observe that these schemes are cur-

rently applied individually and tend to produce sub-optimal
results. Qubit reuse can reuse physical qubits only after their
initially assigned operations finish. Its effectiveness dimin-
ishes as the circuits grow larger — only a few qubits can
start their operations after some other qubits have finished.
Wire cutting introduces one extra qubit (initialization qubit
in [44]) after each cut, which may artificially increase the
total number of physical qubits required for partitioning cir-
cuits. Gate cutting has not been well-studied at the circuit
level. In addition, gate cutting, since its post-processing can-
not reconstruct the distribution result, can only be applied
to the quantum circuits that compute expectation values.

In this work, we present QRCC, a framework for evaluat-
ing large quantum circuits on small quantum devices through
integrated Qubit-Reuse and circuit-cutting. QRCC is an end-
to-end approach that models a large quantum circuit using
ILP (integer linear programming), finds a good cutting so-
lution using an ILP solver, maps the decision to subcircuits,
runs the subcircuits on quantum devices, and reconstructs
the original result through classical post-processing.

Compared with prior schemes, our key observation is that
wire cuts in the circuit enlarge qubit-reuse opportunities,
which in turn helps to eliminate unnecessary cuts in the
circuit. By integrating qubit reuse and circuit-cutting, QRCC
strives to find better cutting solutions with fewer numbers
of cuts, reduced post-processing overhead, and improved
per-circuit computation fidelity. When only the quantum
circuit’s expectation value is required, gate cutting can be

applied to enlarge the cutting possibilities and thus further
decrease the number of required cuts.

We further study in detail, in Section 6.6, the post-processing
overhead with regards to i) the number of cuts, ii) the size
of the quantum circuit, and iii) the reconstruction strategy
for original output construction. We show that the number
of cuts required to partition a circuit is the dominant factor
contributing to the overhead. We further study the impact of
i) circuit and device size, and ii) density of two-qubit gates
when partitioning a quantum circuit on the number of cuts
required. Our data shows the scalability of our circuit-cutting
framework in the NISQ era.

We summarize our contributions as follows.

• We propose QRCC, a framework for evaluating large cir-
cuits on small quantum computers. To the best of our
knowledge, QRCC is the first framework that (i) integrates
wire and gate cuttings; and (ii) exploits qubit reuse to take
advantage of the opportunities from circuit-cutting.

• We formulate the problem as a searching framework us-
ing ILP, which enables the searching for solutions under
different optimization goals. The ILP formulation helps to
achieve efficiency in an enlarged search space, and better
scalability over the state-of-the-art [44].

• We evaluate QRCC using different benchmarks. Our re-
sults show that, on average, we reduce the number of cuts
by 29% when considering wire cutting only and gain addi-
tional reduction when considering wire and gate cutting.
We verify our approach using real device execution and
post-processing.

• We provide a detailed analysis of the post-processing over-
head of our framework. We highlight the key factors con-
tributing to the complexity of circuit cutting with respect
to the circuit and device size, reconstruction strategy, and
cutting strategy.

2 Background
2.1 Quantum Circuits and their Outputs
A quantum program is represented as a quantum circuit
consisting of qubits and quantum gates. Current quantum
hardware supports single-qubit and two-qubit gates, which
are also the gates considered in this paper. A quantum circuit,
represented as a unitary matrixU, takes an initial qubit state
|𝜓 ⟩, usually |0⟩⊗𝑛 , and evolves it to an output state |𝜙⟩.

U|𝜓 ⟩ = |𝜙⟩ (1)

Many quantum algorithms, e.g., Grover’s algorithm for
quantum search [19], compute probability vector |𝜙⟩, which
indicates the probability distribution of measuring each of
the possible 2𝑛 states. Alternatively, other algorithms, such
as Variational Quantum Algorithm (VQA) [32, 39], compute
the expectation value of a Hamiltonian in the computational
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measurement basis M.

E = ⟨𝜙 |𝑀 |𝜙⟩ (2)

2.2 Quantum Circuit Simulation
Quantum circuits can be simulated on classical computers us-
ing state-vector simulation. The classical simulation provides
an ideal noise-free run of quantum circuits and accurately
reproduces the output. However, there is an exponential cost
of simulation, which restricts the simulation of larger quan-
tum circuits. Wu et al. showed that simulating the 61-qubit
Grover search algorithm needed Argonne’s Theta supercom-
puter with 4,096 nodes and 768TB memory [50].

An alternative approach to simulation is to run the circuits
on real quantum computers, using the shots-based model.
That is, the quantum circuit is executed thousands of times,
with each execution referred to as a shot, on the quantum
hardware and the measurement of each qubit from each shot
is summarized as the output probability-vector of the circuit.
The drawbacks of this approach are: (i) many shots are re-
quired, even in an ideal noise-free setting, to reproduce the
output probability vector of the original circuit accurately;
(ii) given that today’s quantum computers are noisy, the
computation fidelity is often low for large circuit execution;
(iii) the available quantum computers have limited numbers
of qubits. The largest quantum computer from IBM has 433
physical qubits [18].

2.3 Circuit-Cutting
Circuit-cutting is a technique for obtaining the result of
a large quantum circuit on small quantum devices. After
cutting the large circuit into two or more smaller subcircuits
using either wire cutting or gate cutting, we can execute
subcircuits on small quantum devices, and generate the result
of the original circuit from the classical post-processing of
the results of subcircuits [37].

2.3.1 Wire Cutting (W-Cut) . Wire cutting (W-Cut) [37,
44] cuts the wire that connects two quantum gates, as shown
in Figure 1(a). Here, U1 and U2 are two generic two-qubit
gates. W-Cut cuts the original circuit into two independent
subcircuits: subcircuit0 and subcircuit1, as shown in the figure.
To obtain the output state |𝜌⟩ of the original circuit, CutQC
[44] runs subcircuit0 with measurements in four bases, and
subcircuit1 with four initializations; and then reconstructs
the output of the original circuit using Equation (3).

𝜌 =
𝐴1 +𝐴2 +𝐴3 +𝐴4

2
(3)

where

𝐴1 = 𝑇𝑟 (𝜌𝐼 ) [|0⟩⟨0| + |1⟩⟨1|]
𝐴2 = 𝑇𝑟 (𝜌𝑍 ) [|0⟩⟨0| − |1⟩⟨1|]
𝐴3 = 𝑇𝑟 (𝜌𝑋 ) [2|+⟩⟨+| − |0⟩⟨0| − |1⟩⟨1|]
𝐴4 = 𝑇𝑟 (𝜌𝑌 ) [2|𝑖⟩⟨𝑖 | − |0⟩⟨0| − |1⟩⟨1|]

Here, Tr() is the trace operator indicating running subcircuit0
physically on quantum devices and measuring the output
in one of the Pauli basis bases (i.e., M ∈{I, X, Y, Z}). Measur-
ing a qubit in either the I or Z basis gives the same circuit.
|𝑥⟩⟨𝑥 | is the density matrix indicating initializing subcircuit1
in one of the eigen states (i.e., I ∈{|0⟩, |1⟩, |+⟩, |𝑖⟩}). From
Equation 3, W-Cut needs four pairs of Kronecker products
between the subcircuit results to reconstruct the result of
the original circuit. If it takes 𝑘 (𝑘>0) cuts to partition a large
circuit into multiple independent subcircuits, the classical
post-processing overhead of result reconstruction is O(4𝑘 ).
Applying W-Cut at the circuit level is an optimization

problem that finds the wires to be cut in a given large cir-
cuit such that the cutting has the smallest 𝑘 and ensures
the execution of each subcircuit on small quantum devices.
CutQC formulates the problem as an MIP (mixed integer
programming) model and exploits an MIP solver to search
for the best solution.

2.3.2 Gate Cutting (G-Cut) . Gate cutting (G-Cut) cuts a
two-qubit quantum gate, e.g.,𝑈 3 in Figure 1(b), into a linear
sum of single-qubit gates 𝑈3.𝑇 and 𝑈3.𝐵 . According to the
theory of gate cutting [30], if G-Cut cuts a two-qubit gate of
the form 𝑒𝑖𝜃𝐴1⊗𝐴2 (e.g., CNOT, CZ, and ZZ gates) where A2

1
= A2

2 = I, the expectation value E of the original circuit can
be reproduced based on the output state |𝜙𝑖⟩ of subcircuits,
using Equation (4). G-Cut differs from W-Cut in that G-Cut
cannot reproduce the original circuit state-vector, but rather
only the expectation value.

E[𝜙] =
6∑︁

𝑖=1
𝑐𝑖𝐸 [𝜙𝑖 ] (4)

where,
𝜙1 = S(𝐼 ⊗ 𝐼 ) 𝑐1 = 𝑐𝑜𝑠2 (𝜃 )
𝜙2 = S(𝐴1 ⊗ 𝐴2) 𝑐2 = 𝑠𝑖𝑛2 (𝜃 )
𝜙3 = 𝛽M𝐴1,𝛽 ⊗ S(𝑒𝑖𝜋𝐴2/4) 𝑐3 = 𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛(𝜃 )
𝜙4 = 𝛽M𝐴1,𝛽 ⊗ S(𝑒−𝑖𝜋𝐴2/4) 𝑐4 = −𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛(𝜃 )
𝜙5 = S(𝑒𝑖𝜋𝐴1/4) ⊗ 𝛽M𝐴2,𝛽 𝑐5 = 𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛(𝜃 )
𝜙6 = S(𝑒−𝑖𝜋𝐴1/4) ⊗ 𝛽M𝐴2,𝛽 𝑐6 = −𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛(𝜃 )

G-Cut produces six subcircuit instances, i.e., 𝜙1 to 𝜙6. Each
𝜙𝑖 is an independent instance, from which during its execu-
tion, we remove the two-qubit gate that has been cut from
the original circuit, and replace it with single-qubit gates of
the respective instance. The M𝐴𝑖

term is single qubit mea-
surement operations, with 𝛽 representing the outcome of
the measurement, 𝛽 ∈ {1,-1}. More details can be found in
[30].

G-Cut has not been well-studied at the circuit level. Given
a large circuit, it remains an open problem to determine the
subset of two-qubit gates to be cut to achieve our design
goal, in particular, together with W-Cut and qubit reuse.
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Figure 1. Circuit-cutting and qubit reuse. (a) An example of wire cutting is where qubit q1 has been cut. It leaves measurement
(M) and Initialization (I) operations in two subcircuits, respectively. (b) An example of Gate cut is where gate U3, acting on
qubits q1 and q2 has been cut. It leaves two single-qubit gates in two subcircuits, respectively. (c) An example of qubit reuse.
Once the U1 gate has finished executing, qubit q0 can be measured and reused for logical qubit q2.
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Figure 2. The integration of W-Cut, G-Cut, and qubit reuse helps to find better cutting solutions. (a) Original Circuit, showing
three different cutting solutions. (b) The solution generated by CutQC. (c) The solution when integratingW-Cut and qubit reuse.
(d) The solution when integrating W-Cut, G-Cut, and qubit reuse. (M/I indicate measurement and initialization, respectively,
due to W-Cut; and U𝑇 /U𝐵 indicate the top/bottom single-qubit gates after applying G-Cut to a two-qubit gate U).

2.4 Measure and Reset Functionality
IBM recently introduced mid-circuit measurement operation
and mid-circuit reset operation [23] to support dynamic cir-
cuits for quantum error correction[13, 24, 48] and runtime
program verification[22, 27]. As shown in Figure 1(c), once
qubit q0 finishes its operation with gate𝑈 1, we measure this
physical qubit and re-initialize another logical qubit q2 in
the |0⟩ state, and assign qubit q2 to the same physical qubit
on the quantum device. This is referred to as qubit-reuse in
[21]. In the figure, qubit-reuse enables the execution of the
original three-qubit circuit on a two-qubit quantum device.

CaQR [21] proposes a compiler-assisted tool that automat-
ically identifies qubit-reuse opportunities in a given circuit,
reduces the total number of required physical qubits, and
achieves better performance and computation fidelity. The
effectiveness of qubit reuse diminishes as the circuit becomes
bigger — only a few qubits can delay their operations enough
to start after some other qubits have finished.
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3 Motivation
In this section, we use an example (in Figure 2) to illustrate
the effectiveness when integrating qubit reuse,W-Cut, and G-
Cut. Our problem is to run a 5-qubit circuit on small quantum
devices, e.g., 4-qubit or 3-qubit quantum devices.
When adopting CutQC [44], the original circuit is split

into two subcircuits using three cuts, as shown in Figure 2(b).
Each subcircuit has four qubits. Three extra qubits (i.e., the
initialization qubits) are introduced, e.g., the first wire cut on
𝑞2 generates an extra qubit𝑞5, which is now the second qubit
in 𝑠𝑢𝑏𝑐𝑖𝑟𝑐𝑢𝑖𝑡1. It leaves a measurement in 𝑠𝑢𝑏𝑐𝑖𝑟𝑐𝑢𝑖𝑡0. We
use three color pairs to indicate the introduced measurement
operation and its matching initialization bit.
For this circuit, CutQC can’t find a solution that splits

the original circuit into two 3-qubit subcircuits. It is also
impossible to apply qubit reuse [21] directly on the original
circuit to reduce the number of required qubits.

3.1 W-Cut and qubit-reuse
Figure 2(c) shows the cutting solution when we integrate
W-Cut and qubit reuse. The integrated scheme, even though
choosing the same cutting positions as those in CutQC, gen-
erates two 3-qubit subcircuits.

The improvement comes from the reuse opportunities ex-
posed from wire cutting. For example, for 𝑠𝑢𝑏𝑐𝑖𝑟𝑐𝑢𝑖𝑡0, qubit
𝑞2 becomes idle after the first cut. It can be reused by the
initialization qubit. By exploiting the qubit reuse opportu-
nities, each subcircuit requires one fewer qubit so that both
can run on three-qubit quantum devices.

W-cut partitions the operations on the cut qubit, such that
it introduces new qubit reuse opportunities into the circuit,
which previously did not exist.

3.2 W-Cut and G-Cut
Figure 2(d) shows the cutting result when we integrate W-
Cut and G-Cut. The integrated scheme can cut the original
circuit into two subcircuits in two cuts — one wire cut and
one gate cut. The two-qubit gate 𝐶𝑍 is cut into two single-
qubit gate instances𝑈𝑇 and𝑈𝐵 in different subcircuits.
In this example, G-Cut is enabled only if the circuit com-

putes the expectation value. The classical post-processing
overhead also impacts the solution selection, in particular,
the cost from G-Cut is slightly higher than that from W-Cut,
i.e., 6𝑘 vs 4𝑘 , where 𝑘 is the number of cuts. Therefore, we
need to consider this difference when choosing a cutting
solution. Given a solution S(𝑘1, 𝑘2) where 𝑘1 and 𝑘2 are the
numbers of gate cuts and wire cuts, respectively, its classical
post-processing overhead is O(4𝑘16𝑘2). It is better to choose
S(1,1) over S(2,1) for the example in the figure. In another
situation, it would be worse to choose S(0,4) over S(5,0).

4 The QRCC Framework
In this section, we elaborate QRCC, an end-to-end frame-
work, for running large quantum circuits on small quan-
tum devices. Given a large circuit, QRCC converts it to a
QR (qubit-reuse)-aware DAG, formulates and solves an ILP
model, maps the cutting solutions to subcircuits, runs the
subcircuits, and reconstructs the original result.

4.1 The QR-aware DAG Representation
Given a 𝑁 -qubit input quantum circuit that is to be cut for an
𝐷-bit quantum device (𝑁>𝐷>0), we first convert the circuit
to a QR-aware DAG by adding dummy Identity gates such
that, each qubit goes through the same number of quantum
operations. After adding the identity gates, all qubits are
aligned so that we define a quantum layer𝑚 as the set of
𝑚-th gate for each qubit.

In Figure 3, V1, V6, and V7 are two-qubits gates, S2 and
S4 are single-qubit gates, and F3, F5, F8, and F9 are inserted
Identity gates. Gates S4, F5, and V6 belong to layer 𝑀 . We
place a yellow × on each wire before a gate to indicate a
potential cutting location.

V1 V7
S4

M M + 1M - 1

F9F3
V6

F5

S2 F8

WT1

WB1

WB6

WB7

WT7

WT6WS2

WS3

WS8

WS9

WS5

WS4
q0 :

q1 :

qN-2 :

qN-1 :

Layer :

…

Figure 3. A QR-aware DAG representation of the quantum
circuit. (Dashed boxes indicated identity gates. Each wire
segment may potentially be W-Cut, and each two-qubit gate
may be potentially G-Cut.)

Compared to the DAG for traditional wire cutting [44]
that lists two-qubit gates only, our QR-aware DAG explicitly
lists all single-qubit gates and differentiates the cuts on the
wires connecting different single qubits. For example, for
the two cuts: (i)𝑊𝑆4 is the one on the wire connecting the
S4 gate and (ii)𝑊𝑇7 is the one on the top wire connecting
the V7 gate, the traditional DAG treats 𝑊𝑆4 and 𝑊𝑇7 as
the same cut, as cutting at either location does not affect
the number of required qubits in each subcircuit. However,
when we consider qubit reuse, if there is another cut𝑊𝑇6
(the top wire connecting V6), we may prefer to choose𝑊𝑆4
if gate V1 and V6 are in the same subcircuit. This is because
qubit 𝑞0 can be reused for qubit 𝑞𝑁−2 while cutting at𝑊𝑆4
disables this reuse. For discussion purposes, we assume the
measurement and initialization operations take no depth
and qubit-reuse does not increase circuit depth. Section 4.2.6
discusses how to handle the depths of these operations.
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4.2 The ILP Model
4.2.1 The Meta Parameters. We formulate the problem
as an ILP model. We first list the meta parameters, i.e., the
constants that we define for the problem and/or we collect
from preprocessing the input circuit.
• 𝑁 and 𝐷 : They are the number of qubits in the input quan-
tum circuit and the number of available physical qubits of
the quantum device, respectively. We have 𝑁>𝐷>0.

• 𝐺𝑚𝑎𝑥 and𝑊𝑚𝑎𝑥 : The maximum number of allowed gate
cuts and wire cuts, respectively.

• 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 : The minimum and maximum numbers of
subcircuits to be cut, respectively. Note, that our ILP solver
often reports a cutting solution that has fewer than 𝐶𝑚𝑎𝑥

subcircuits. This is because our model focuses on reducing
the classical post-processing overhead, which does not
relate to the number of subcircuits. As we elaborate next,
the cost relates to a combination of wire cuts and gate cuts,
as the two types of cuts have slightly different classical
post-processing overhead.
If 𝐶𝑚𝑖𝑛=𝐶𝑚𝑎𝑥 , the solution that we find has the specified
number of subcircuits.

• 𝛿 : The relative weight for adjusting the optimization goal
between classical post-processing overhead and computa-
tion fidelity. We will elaborate in Section 4.2.5.

• 𝐺-𝐶𝑢𝑡-𝑒𝑛𝑎𝑏𝑙𝑒𝑑 : This is a binary parameter indicating if
gate cutting should be enabled. As we discussed, after G-
Cut, we can only reconstruct the expected value of the
circuit. If the original circuit is to compute the probability
vector, we disable the gate cutting in the model.

4.2.2 ILP Variables. When preprocessing the original cir-
cuit, we differentiate three types of gates, i.e., two-qubit gates,
single-qubit gates in the original circuit, and identity gates
that we inserted. We number all gates and define a binary
variable for each of the gates as follows.

𝑉𝑥,𝑐 =

{
1 if two-qubit gate 𝑥 is in subcircuit 𝑐
0 Otherwise

𝑆𝑥,𝑐 =

{
1 if single-qubit gate 𝑥 is in subcircuit 𝑐
0 Otherwise

(5)

𝐹𝑥,𝑐 =

{
1 if identity gate 𝑥 is in subcircuit 𝑐
0 Otherwise

For single-qubit and identity gates, we can only perform
W-Cut. We set the cutting point on the wire before each gate.
We do not Cut any gate on the first layer.

𝑊𝑆𝑥 =

{
1 if single-qubit/identity gate 𝑥 is W-Cut,
0 Otherwise

(6)

For two-qubit gates, we can perform both W-Cut and G-
Cut. For W-Cut, we can cut either of its input wires. We
define the following variables.

𝑈𝑥 =


1 if two-qubit gate x is neither W-Cut

nor G-Cut
0 Otherwise

𝑊𝑇𝑥 =


1 if top wire to two-qubit gate 𝑥

is W-cut
0 Otherwise

(7)

𝑊𝐵𝑥 =


1 if bottom wire to two-qubit gate 𝑥

is W-cut
0 Otherwise

𝐺𝑥 =

{
1 if two-qubit gate x is G-Cut
0 Otherwise

When G-Cutting a two-qubit gate 𝑥 , we get two single-
qubit gates, referred to as 𝑥 .𝑡𝑜𝑝 and 𝑥 .𝑏𝑜𝑡𝑡𝑜𝑚. These two
gates appear only if 𝐺𝑥=1. Similar to those in definition
(6), we define variables to determine if they are in some
subcircuits.

𝐺𝑇𝑥,𝑐 =


1 if for two-qubit gate 𝑥 , we have

𝐺𝑥=1 and 𝑥 .𝑡𝑜𝑝 is in subcircuit c
0 Otherwise

(8)

𝐺𝐵𝑥,𝑐 =


1 if for two-qubit gate 𝑥 , we have

𝐺𝑥=1 and 𝑥 .𝑏𝑜𝑡𝑡𝑜𝑚 is in subcircuit c
0 Otherwise

4.2.3 The General ILP Constraints. We next list the
general constraints in our model. These constraints are the
same regardless of the input circuit and user parameters.
Whether a single-qubit or identity gate 𝑥 is cut is deter-

mined by its𝑊𝑆𝑥 variable. However, a two-qubit gate may
be W-Cut, G-Cut, or not cut. That is, we cannot W-Cut and
G-Cut the gate at the same time. Therefore, we have the
following constraints for each two-qubit gate 𝑥 .

𝑈𝑥 +𝑊𝑇𝑥 +𝑊𝐵𝑥 +𝐺𝑥 ≥ 1
𝑈𝑥 +𝑊𝑇𝑥 ≤ 1
𝑈𝑥 +𝑊𝐵𝑥 ≤ 1 (9)
𝑈𝑥 +𝐺𝑥 ≤ 1

Each gate 𝑥 must belong to one and only one subcircuit,
unless it is a two-qubit gate and has been G-Cut. If a two-
qubit gate 𝑥 is G-Cut, its two-qubit gate form 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙𝑙𝑦

disappears such that the two single-qubit gates, i.e., 𝑥 .𝑡𝑜𝑝
and 𝑥 .𝑏𝑜𝑡𝑡𝑜𝑚, emerge in the circuit. In this case, the newly
generated single-qubit gates, i.e., 𝑥 .𝑡𝑜𝑝 and 𝑥 .𝑏𝑜𝑡𝑡𝑜𝑚, must
belong to one and only one subcircuit. These two single-qubit
gates cannot belong to the same subcircuit.

We use this technique to linearize the gate cut constraints.
This technique is also used in Section 4.2.6.
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for single-qubit gate 𝑥 ,
∑︁
𝑐∈𝐶

𝑆𝑥,𝑐 = 1

for two-qubit gate 𝑥 ,
∑︁
𝑐∈𝐶

𝑉𝑥,𝑐 +𝐺𝑥 = 1 (10)∑︁
𝑐∈𝐶

𝐺𝑇𝑥,𝑐 = 𝐺𝑥∑︁
𝑐∈𝐶

𝐺𝐵𝑥,𝑐 = 𝐺𝑥

for ∀ subcircuit 𝑐 ∈ 𝐶 , 𝐺𝑇𝑥,𝑐 +𝐺𝐵𝑥,𝑐 ≤ 1

After cutting, each subcircuit should not have more than
𝐷 qubits, i.e., the device size constraint. Therefore, for all
identity gates 𝑥 , single-qubit gates 𝑠 , and two-qubit gates 𝑡 ,
respectively at each layer 𝑙 ,

𝑄𝑐,𝑙 =
∑︁
𝑥

𝐹𝑥,𝑐 +
∑︁
𝑠

𝑆𝑠,𝑐 +
∑︁
𝑡

(2𝑉𝑡,𝑐 +𝐺𝑇𝑡,𝑐 +𝐺𝐵𝑡,𝑐 ) ≤ 𝐷 (11)

where 𝑄𝑐,𝑙 is the number of qubits used in subcircuit 𝑐 at
layer 𝑙 . By adopting the layer-based cutting approach, our
model allows us to find better qubit reuse opportunities such
that a wire cut at an early layer can be reused by a different
qubit at a later layer.

We also restrict the number of gate cuts and wire cuts.∑︁
𝑥

𝐺𝑥 ≤ 𝐺𝑚𝑎𝑥∑︁
𝑥

(𝑊𝑆𝑥 +𝑊𝑇𝑥 +𝑊𝐵𝑥 ) ≤ 𝑊𝑚𝑎𝑥 (12)

4.2.4 The Circuit-dependent Constraints. In addition
to the general constraints, we have circuit-dependent con-
straints. These constraints specify the relationship between
two neighboring gates.

If two neighboring gates are two two-qubit gates, we may
have two cases: (a) the bottom output of the upstream gate
connects to the top input of the downstream gate, e.g, the
U1-U3 connection in Figure 1(b); or (b) the top output of the
upstream gate connects to the bottom input of the down-
stream gate, e.g, the U2-U3 connection. We specify their
constraints as follows.

2 ×𝑊𝑇𝑈 3 =
∑

𝑐∈𝐶 ( |𝑉𝑈 1,𝑐 −𝑉𝑈 3,𝑐 +𝐺𝐵𝑈 1,𝑐 −𝐺𝑇𝑈 3,𝑐 |)
2 ×𝑊𝐵𝑈 3 =

∑
𝑐∈𝐶 ( |𝑉𝑈 2,𝑐 −𝑉𝑈 3,𝑐 +𝐺𝑇𝑈 2,𝑐 −𝐺𝐵𝑈 3,𝑐 |) (13)

If two neighboring gates are one upstream single-qubit
gate and one downstream two-qubit gate, for example, if we
replace U1 and U3 with single-qubit gates, the constraints
are

2 ×𝑊𝑇𝑈 3 =
∑

𝑐∈𝐶 ( |𝑆𝑈 1,𝑐 −𝑉𝑈 3,𝑐 −𝐺𝑇𝑈 3,𝑐 |)
2 ×𝑊𝐵𝑈 3 =

∑
𝑐∈𝐶 ( |𝑆𝑈 2,𝑐 −𝑉𝑈 3,𝑐 −𝐺𝐵𝑈 3,𝑐 |) (14)

Similar constraints are specified for other circuit connec-
tions. They follow the same rules of gate and wire cuts.

4.2.5 The Objective Function. Our ILP model consists
of two optimization goals.
• Our main optimization goal is to reduce the number of
cuts to minimize the classical post-processing overhead.
Since the overhead of a cutting solution (𝑘 ,𝑚), i.e., with 𝑘
wire cuts and𝑚 gate cuts, is O(4𝑘6𝑚), a naive integration
of this overhead in the objective function would lead to a
non-linear component, which can greatly slow down the
solver. Instead, we linearize the cost as 𝛼𝑘 + 𝛽𝑚 such that
if the exponential cost of (𝑘1,𝑚1) is smaller than that of
(𝑘2,𝑚2), our linear cost has the same relative relationship.
In this work, we choose 𝛼=3.25 and 𝛽=4.2 as they satisfy
the requirement for the number of cuts smaller than 240
(120 W-cut and 120 G-cut).
Therefore, the classical post-processing overhead is

𝑃𝑃𝐶𝑜𝑠𝑡 = 𝛼 ×
∑︁
𝑥

(𝑊𝑆𝑥 +𝑊𝑇𝑥 +𝑊𝐵𝑥 ) + 𝛽 ×
∑︁
𝑥

𝐺𝑥 (15)

• The other optimization goal of our model is to improve
the computational fidelity. Studies have shown that the
computation error of a quantum circuit depends on the
number of operations, in particular, two-qubit quantum
operations [33, 36, 52]. This is because the error rate of
two-qubit gates is orders of magnitude higher than that of
single-qubit gates. To improve the computational fidelity
after circuit cutting, we strive to balance the number of
two-qubit gates across different subcircuits.
We define a new variable𝑇𝐸 to track the maximal number
of two-qubit gates in a subcircuit. Minimizing 𝑇𝐸 would
help to improve the overall computation fidelity. We add
one linear constraint for each subcircuit 𝑐 as follows. This
helps to find the subcircuit that has the maximal number
of two-qubit gates.

𝑇𝐸 ≥
∑︁
𝑥

𝑉𝑥,𝑐 (16)

We further define the two-qubit gate-related error as

𝐶𝐸𝑟𝑟𝑜𝑟 = 𝑓 (𝑇𝐸) (17)

Next, we illustrate how to choose a linear function so that
𝑃𝑃𝐶𝑜𝑠𝑡 and 𝐶𝐸𝑟𝑟𝑜𝑟 have similar value ranges. We use an
example to explain how to choose the function. We first
run the model considering 𝑃𝑃𝐶𝑜𝑠𝑡 only such that we may
find a cutting solution (4, 6) with the PPCost value being
3.25×4+4.2×6=38, the number of subcircuits being 5, and
the current TE being 40. Assumingwe can achieve a perfect
balancing of the subcircuits with a maximal increase of 4
additional cuts and get a solution (6,7) with 𝑃𝑃𝑐𝑜𝑠𝑡 being
53. The PPCost range is [38,53]. The TE range is now
[20,40]. We choose linear function 𝑓 (TE)= TE×0.75+23.
Note, that a further refined linear function can be derived
for a given circuit.

Oftentimes, balancing the number of two-qubit gates across
subcircuits may result in a cutting solution with more cuts
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and thus higher classical post-processing overhead, or even
no solution. Therefore, we introduce another meta param-
eter 𝛿 to adjust the optimization goal between 𝑃𝑃𝐶𝑜𝑠𝑡 and
𝐶𝐸𝑟𝑟𝑜𝑟 . The 𝛿 value can be integrated into deciding the lin-
ear function in 𝐶𝐸𝑟𝑟𝑜𝑟 .
To summarize, our objective function is as follows.

Min[𝛿 × 𝑃𝑃𝐶𝑜𝑠𝑡 + (1 − 𝛿) ×𝐶𝐸𝑟𝑟𝑜𝑟 ] (18)

4.2.6 Discussion. We make two simplifications for clarity
purposes in the preceding discussion of the model. (1) We
assume adding 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 gates to ensure all layers have 𝑁

gates. This may introduce a large number of identity gates
and their corresponding constraints, which slows down the
solver. In our implementation, for a long wire that connects
two gates far away from each other, we selectively add two
or three identity gates at the beginning, middle, and end of
the wire. (2) We assume the measurement and initialization
operations take no depth. However, when considering their
depths, we introduce a trailing measurement gate after the
cut point, and a leading initialization gate before the cut
point. These two gates emerge in the circuits only if the
corresponding wire is cut. We use the same technique as
that for gate cutting, i.e., only if a two-qubit gate is cut, its
corresponding single-qubit gates emerge in the circuit.

4.3 Output Reconstruction
Reconstruction after W-Cut. If the original quantum

circuit computes the probability distribution vector, we can
only adopt wire-cut. The probability vector results from the
subcircuit runs can be recombined using Equation (3). The
classical post-processing process follows the techniques as
elaborated in CutQC [44].

Reconstruction after W-Cut and G-Cut. The original
quantum circuit, if computing the expectation value, can be
cut by both W-Cut and G-Cut. The reconstruction overhead
of expectation values is lower than that of probability vectors
as the expectation value is a floating point value, while a
probability vector consists of multiple floating point values.
To reconstruct the expectation value of the original cir-

cuit, we sort the subcircuits according to the numbers of
their qubits and then start from the smallest subcircuit. For
each subcircuit, we first reconstruct at the wire-cutting posi-
tions and then at the gate-cutting positions. When handling
the W-Cut wires, we reconstruct the expectation values di-
rectly, instead of the probability vectors. The Equation (19)
in Section 2 is applicable for both probability vectors and
expectation values [37]. For the latter, it can be adapted as
follows.

E[𝜌] = 𝐴1 +𝐴2 +𝐴3 +𝐴4

2
(19)

Tr(II): 0.86
Tr(XI): 0.00
Tr(YI):-0.436
Tr(ZI): 0.75 

∅1  
instance

∅2  
instance

∅6  
instance…applying Equation (20)

applying Equation (5)

expectation value from reconstruction = -0.075

∅2:-0.33 ∅3:-0.15 ∅4:-0.15 ∅5:0.00 ∅6:0.00∅1:0.18

…

expectation value from simulation= -0.075

State
Vector
SIMU

|0><0|: 0.35
|+><+|:-0.08
|i><i|: 0.10
|1><1|:-0.50

Figure 4. The reconstruction of the expectation value after
W-Cut and G-Cut.

where

𝐴1 = E[𝑇𝑟 (𝜌𝐼 )] (E[|0⟩⟨0|] + E[|1⟩⟨1|])
𝐴2 = E[𝑇𝑟 (𝜌𝑍 )] (E[|0⟩⟨0|] − E[|1⟩⟨1|])
𝐴3 = E[𝑇𝑟 (𝜌𝑋 )] (2E[|+⟩⟨+|] − E[|0⟩⟨0|] − E[|1⟩⟨1|])
𝐴4 = E[𝑇𝑟 (𝜌𝑌 )] (2E[|𝑖⟩⟨𝑖 |] − E[|0⟩⟨0|] − E[|1⟩⟨1|])
After the reconstruction from W-Cut, we adopt Equa-

tion (4) to handle G-Cut for reconstructing the expectation
value of the original circuit.

An example. Wenext illustrate the reconstruction process
for the example shown in Figure 2(d), which consists of both
W-Cut and G-Cut. For Figure 2(c) that contains only W-Cut,
the reconstruction process is the same as that in CutQC[44].
In Figure 2(d), the original quantum circuit was cut into

two subcircuits with one wire cut and one gate cut on a CZ
gate. The CZ gate has the form

𝐶𝑍 = 𝑒
𝑖𝜋𝐼⊗𝑍

4 𝑒
𝑖𝜋𝑍⊗𝐼

4 𝑒
𝑖𝜋𝑍⊗𝑍

4 (20)

Each exponential term in this form can be decomposed as
shown in Equation (4). We can then combine and simplify
all three terms to the following six instances [30]. These
instances are independent of each other.

𝜙1 = S(𝑟𝑧 ( −𝜋
2
) ⊗ 𝑟𝑧 ( −𝜋

2
)) 𝑐1 =

1
2

𝜙2 = S(𝑟𝑧 (𝜋
2
) ⊗ 𝑟𝑧 (𝜋

2
)) 𝑐2 =

1
2

𝜙3 = 𝛽M𝑍,𝛽 ⊗ S(𝑒𝑖𝜋𝑍/2) 𝑐3 =
−1
2

𝜙4 = 𝛽M𝑍,𝛽 ⊗ S(𝐼 ) 𝑐4 =
1
2

𝜙5 = S(𝑒𝑖𝜋𝑍/2) ⊗ 𝛽M𝑍,𝛽 𝑐5 =
1
2

𝜙6 = S(𝐼 ) ⊗ 𝛽M𝑍,𝛽 𝑐6 =
−1
2

For example, during 𝜙1 instance’s execution, we replace
the two-qubit CZ gate with two single-qubit 𝑟𝑧 ( −𝜋2 ) gates.
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We then reconstruct the expectation value of this instance,
for the wire cut (whose reconstruction follows Equation (20)).
Figure 4 shows the reconstructed expectation value of each𝜙𝑖
(1≤i≤6) using Equation (20) and then the expectation value
of the original circuit using Equation (4). For verification
purposes, the expectation value of the original circuit is also
computed through state vector simulation, which shows the
same result.

5 Experimental Methodology
We evaluate the effectiveness of QRCC using different bench-
marks and compare the results with those from CutQC [44],
the state-of-the-art wire-cutting scheme. While both were
implemented using the Gurobi optimizer[20], QRCC builds
an ILP (integer linear programming) model while CutQC
builds an MIP (mixed integer programming) model. In the
experiments, we set the maximal number of cuts to 100. The
imbalance threshold is set as 500 gates for CutQC. In the
experiments, we choose two 𝛿 values for case study purposes
and present a comprehensive study of the meta-parameter
in Section 6.4.
• QRCC-C:we choose 𝛿=1, i.e., we focus on post-processing
overhead only. The subcircuits, due to their smaller sizes,
generally have better computational fidelity than that of
the original circuit. However, some subcircuits may have
significantly better computational fidelity than others if
they contain fewer two-qubit gates.

• QRCC-B: we choose 𝛿=3/4 such that in addition to the
main design goal of reducing the post-processing overhead,
we also balance the two-qubit gates for computational
fidelity improvement.

We also run experiments on the IBM Lagos quantum com-
puter through the IBM cloud service to verify our approach.

5.1 Benchmarks
We test our scheme using two groups of benchmarks: one
computes the probability distribution while the other com-
putes the expectation value. We generate multiple quantum
circuits for each benchmark. We use a three-letter abbrevia-
tion to indicate each benchmark, the abbreviation is in the
parameters as we describe each benchmark next.
The following four benchmarks compute the probability

distribution and thus can only be cut using W-Cut.
• QFT (QFT): Quantum Fourier Transform [10] is an impor-
tant building block in many quantum algorithms, includ-
ing Shor’s factoring algorithm.

• AQFT (AQFT): Approximate Quantum Fourier Transform
is an approximation [6] of the QFT sub-routine, which
tends to produce better results on NISQ devices.

• Supremacy (SPM): This is a type of random circuit that
was used byGoogle to demonstrate quantum supremacy [8].

• Adder (ADD): This is a linear Ripple Carry Adder [11],
which reduces the number of required ancilla qubits to 1.

To evaluate the effectiveness of G-Cut together with W-
Cut, we choose the following five variational quantum algo-
rithms that compute expectation values.

• m-Regular (REG): The graph in REG is a regular graph
in which each node has𝑚 edges [42]. By default,𝑚=5.

• Erdos-Renyi (ERD): The graph in ERD is a random graph
in which we exploit a probability 𝑝 in creating edges across
different nodes in the graph [17]. By default, 𝑝=0.1.

• Barabasi-Albert (BAR): The graph for this benchmark is
also a random graph. Each node in the graph has𝑚 edges
that connect preferentially to nodes with high degrees [5].
by default,𝑚=3.

• Hamiltonian Simulation: For the 2D square latticeHamil-
tonian simulation [26], we choose three variations: 2D
Traverse Field Isling (IS), XY(XY), and Heisenberg(HS)
Hamiltonian. For each variation M, we use M and M-n to
indicate the interactions for the nearest neighbor and the
next nearest neighbor, respectively.

• Variational Quantum Eigensolver (VQE): We simulate
the Hydrogen chain VQE algorithm, using a linear two-
local ansatz [46].

6 Experimental Results
6.1 Wire Cutting Evaluation
Table 1 compares the W-Cut only results when adopting
three different cutting schemes, i.e., CutQC, QRCC-C, and
QRCC-B, on benchmarks that compute probability vectors.
We report the number of subcircuits (#SC), the required
number of W-Cuts (#cuts), and the number of two-qubit
gates in the largest subcircuit (#MS). When CutQC cannot
find a solution, we report no-solution in the table.

Given two cutting solutions C1 and C2, if C1 cuts the origi-
nal circuit to fewer subcircuits than C2 does, C1’s subcircuits
tend to have more two-qubit gates such that C1 tends to have
larger #MS values and thus worse computational fidelity. For
a fair comparison, if QRCC cuts the original circuit to fewer
subcircuits with fewer numbers of cuts than CutQC does,
we also report the solutions from QRCC that, with slightly
more cuts, cuts the original circuits into the same numbers
of subcircuits as CutQC does. For example, for QFT(N=30,
D=27), CutQC cuts the original circuits to four subcircuits
while, by default, QRCC-B cuts into two subcircuits, result-
ing in larger #MS and worse computational fidelity than that
of CutQC, i.e., 351 in CutQC vs 426 in QRCC-B. However, if
allowing four subcircuits, QRCC-B achieves better-balanced
subcircuits, i.e., 351 in CutQC vs 146 in QRCC-B.

From the table, our scheme significantly reduces the num-
ber of cuts — on average, QRCC-C and QRCC-B achieve 29%
and 24% reductions over CutQC, respectively. The test cases
from QFT have the most complicated circuits, i.e., more two-
qubit gates that exhibit all-to-all qubit connections. For these
test cases, CutQC may not find a solution if the device size 𝐷
is small; and QRCC achieves the largest improvements. For
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Table 1. Comparing W-Cut results using QRCC and CutQC. ( D and N are meta parameters in Section 4.2.1; #SC: the number
of subcircuits after cutting; #Cuts: the number of wire cuts; #MS: the maximal number of two-qubit gates in the subcircuits)

Benchmark CutQC QRCC-C QRCC-B
N D #SC #cuts #MS #SC #cuts #MS #SC #cuts #MS

QFT

15 7 No Solution 3 20 69 3 20 68
15 9 9 44 27 2 12 81 2 12 75
30 16 No Solution 2 28 330 2 28 318
30 20 No Solution 2 20 380 2 20 335

30 24 4 52 276 2 12 414 2 12 399
4 14 413 4 32 145

30 27 3 32 351 2 6 429 2 6 426
3 7 428 3 30 146

SPM

15 7 3 6 8 3 5 9 3 6 8
20 7 5 11 8 4 9 13 4 9 9
30 16 3 8 22 2 6 25 2 6 25
42 16 4 13 21 3 12 26 3 12 24

ADD

16 7 4 6 35 3 4 51 3 4 51
22 7 5 8 34 4 6 51 4 6 51
30 16 2 2 120 2 2 120 2 2 120
40 16 3 4 119 3 4 120 3 4 119

AQFT

15 7 4 10 18 4 10 18 4 10 16
20 7 7 22 20 6 22 31 6 22 19
30 16 3 8 65 3 8 65 3 8 65
40 16 4 16 74 4 16 75 5 16 71

example, QRCC reduces the #cuts from 32 to 6 when N=30
and D=27, exhibiting 81% improvement. As a comparison, for
the AQFT benchmark that approximates QFT with all-to-all
connections removed, it is easier to find a cutting solution,
resulting in negligible improvements over CutQC.

6.2 Wire- and Gate- Cutting Evaluation
Table 2 compares the cutting solutionswhen applying cutting
on the benchmarks that compute expectation values. We
compare two choices for our scheme: one is to choose W-
Cut only while the other allows both W-Cut and G-Cut.
For comparison purposes, for a solution (𝑘1, 𝑘2), where

𝑘1 and 𝑘2 are the W-Cut and G-Cut numbers, respectively,
its overhead 4𝑘16𝑘2 is converted to 4𝑘3 with 𝑘3 being the
effective W-Cut number reported in the table. On average,
QRCC (W-Cut only) and QRCC (both) achieve 41% and 44%
reductions in the number of cuts. Exploiting G-Cut further
reduces post-processing overhead. For example, for ERD-50,
QRCC (both) has an #EffCuts of 22.46. While being a small
reduction over 24 from QRCC(W-Cut only), it corresponds
to an 8.45× reduction in post-processing overhead.

6.3 Real Machine Evaluation
The cutting solutions that adopt either W-cut or G-cut have
already been independently verified in [44] and [30], respec-
tively. We next verify the solution by adopting both and
highlight our strategy for efficient post-processing.

We verify our approach by testing benchmark REG(𝑚=2)
on an IBM 7-qubit LAGOS quantum computer. The computer
has 1.7 physical connections per qubit. When we ran the

experiments, it had median error rates of 8.25e−3 for CNOT
gates and 2.6e−4 for single-qubit,

√
𝑥 gates, respectively.

We choose 𝑁=7 and 𝐷=4, i.e., the original quantum circuit
has seven qubits, and QRCC partitions it into smaller subcir-
cuits so that each subcircuit can run on a 4-qubit quantum
computer. Table 3 compares four execution modes.
• State Vector Simulation: The result from the state vector
simulation computes the ground truth for the comparison
of the results from different schemes.

• Shot-based Simulation: In this mode, we run a shot-based
state-vector simulation, which uses the state-vector prob-
ability to introduce a random bit-string output every shot
for simulating an ideal device. We report the average from
10 circuit runs with each run having 16,384 shots.

• Device Execution (7-qubit): We ran the 7-qubit original
circuit on the real quantum computer with 16,384 shots
for each run. We run 10 times and report the average.

• QRCC: QRCC partitions the original circuit into two sub-
circuits with one gate cut and one wire cut. The subcircuits
are run with different measurement and initialization in-
stances, resulting in a total of 42 instances. Each instance
runs just one time (with 16,384 shots) using four physical
qubits. The results from subcircuits are then combined to
compute the result for the original circuit.
From the table, QRCC achieves better accuracy than that

of 7-qubit device execution. This is because (1) The orig-
inal circuit has 16 two-qubit CNOT gates (and 9 of them
were introduced from SWAP operation) while each of our
subcircuits contains 3 CNOT gates. This results in better
computation fidelity for the subcircuit execution. (2) the sub-
circuits have fewer qubits and short execution depths. Due
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Table 2. Comparison of W-Cut and W-Cut+G-Cut schemes (#EffCuts is the effective wire-cuts for comparison) for benchmarks
computing expectation values.

Benchmark CutQC QRCC-C (W-Cut Only) QRCC-C (W-Cut and G-Cut)
N D #SC #Cuts #MS #SC #Cuts #MS #SC #W-cuts #G-cuts #EffCuts #MS

REG 40 27 3 21 49 2 17 51 2 15 1 16.29 55
50 27 4 38 43 2 24 63 2 22 1 23.29 62

ERD 40 27 3 31 67 2 23 109 2 21 1 22.29 109
50 27 5 39 41 2 24 69 2 17 5 23.46 65

BAR 40 27 3 17 71 2 15 55 2 13 1 14.29 56
50 27 3 28 62 2 24 71 2 20 2 22.46 71

IS 36 27 3 12 38 2 10 54 2 10 0 10 55
49 27 3 19 42 2 14 54 2 14 0 14 54

XY 36 27 5 61 42 2 23 112 2 17 3 20.88 111
50 27 No Solution 2 30 111 2 26 2 28.58 108

HS 36 27 4 62 60 2 23 165 2 19 2 21.58 167
49 27 No Solution 2 30 160 2 26 3 29.88 161

IS-n 36 27 2 18 81 3 16 127 2 16 0 16 127
50 27 No Solution 2 24 71 2 20 2 22.46 71

XY-n 40 27 No Solution 2 38 259 2 34 2 36.58 255
50 27 No Solution 2 84 264 2 73 4 78.17 264

HS-n 40 27 No Solution 2 15 55 2 13 1 14.29 56
50 27 No Solution 2 24 71 2 20 2 22.46 71

VQE 42 27 2 1 26 2 1 26 2 1 0 1 26
50 27 2 1 26 2 1 26 2 1 0 1 25

Table 3. Comparison between 7-qubit device execution and
QRCC (4-qubit device execution + post-processing).

Execution Mode Results Accuracy
State Vector simulation -0.0349 100%
Shot-based Simulation -0.0323 92%
Device Execution (7-qubit) -0.0078 22.3%
QRCC-B -0.0355 98.3%

to noisy qubits, the expectation value result from quantum
device execution shows low accuracy; similar results were
also observed in recent studies [45].
In addition, QRCC achieves better accuracy than that of

shot-based simulation. The state vector of the shot-based
simulation is 8× that of the 4-qubit device execution, which
tends to introduce more randomness in output probability
distribution than that of the real execution.

6.4 Studying 𝛿 Parameter
In Equation (18), assigning different 𝛿 values changes the
priority on post-processing overhead and computation fi-
delity. We next study the impact on the effective cut numbers
(i.e., #cuts) and the largest #MS in subcircuit with varying 𝛿
values. The post-processing overhead increases with larger
#cuts values, and the computation fidelity increases with
smaller #MS values. Figure 5 reports the average for the
benchmarks with both W-Cut and G-Cut. The 𝛿 value varies
from 0.1 to 1.0 as the post-processing overhead is the main
design goal and thus cannot be completely ignored.
From the figure, #cuts decrease and #MS increases when

the 𝛿 value increases. This is because giving higher priority

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.10

1.30

1.50

1.70

1.90

2.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
orm

alized
 #M

S

N
or

m
al

iz
ed

 #
cu

ts
 

delta, δ

Normalized Cuts

Normalized #MS

Figure 5. Correlating varying 𝛿 values with #cuts and #MS.
The left y-axis represents the #cuts, normalized to that when
𝛿=1. The right y-axis represents the #MS, normalized to the
size of the original circuits.

to post-processing overhead, i.e., assigning a large 𝛿 value,
minimizes #cuts. Given higher priority to computation fi-
delity, i.e., assigning a smaller 𝛿 value, minimizes #MS but
hurts #cuts significantly. The figure also reveals that #cuts
stabilize when 𝛿>0.5, while the impact on #MS is significant.
In the paper, we choose 𝛿=0.7 for QRCC-B which exhibits
negligible impact on #cuts but a large improvement on #MS.
For a strategy that chooses a smaller 𝛿 value, e.g., 𝛿=0.2, it in-
creases #cuts by 30% on average. We observed that, for some
benchmarks, it may find a solution that has a higher post-
processing overhead than that from CutQC. Meanwhile, this
choice leads to significantly improved computation fidelity,
on average 52% improvement of #MS.

6.5 Time Comparison
We next compare the time required to find the cutting so-
lutions using QRCC and CutQC. For a fair comparison, we
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assume we know 𝑘 , the number of subcircuits of the solution
for each setting. This is because QRCC and CutQC work
slightly differently. For QRCC, the user specifies a range
[𝐶𝑚𝑖𝑛 ,𝐶𝑚𝑎𝑥 ] and the subcircuit number of the found solution
𝑘 is guaranteed to be within the range. For CutQC, the user
needs to specify the exact 𝑘 such that CutQC searches for
the best solution with 𝑘 subcircuits. For the latter, the user
needs to manually increment 𝑘 if a smaller 𝑘 value results
in 𝑛𝑜-𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. In the experiment, assuming we know 𝑘 , we
set 𝐶𝑚𝑖𝑛=𝑘=𝐶𝑚𝑎𝑥 for QRCC and start with 𝑘 for CutQC.

Table 4. The searching time comparison of the ILP model in
QRCC and the MIP model in CutQC.

Benchmark CutQC QRCC Improv.Name Circuit Device time time

SPM

15 7 0.80 0.63 21%
20 7 11.7 6.21 47%
30 16 7.05 0.54 92%
42 16 65.16 18.1 72%

QFT
15 9 1800 1.42 100%
30 24 1800 19.28 100%
30 27 1800 1.92 100%

ADD

16 7 31.1 4.16 87%
22 7 148.5 19.70 87%
30 16 4.72 0.75 84%
40 16 14.0 13.1 6%

AQFT

15 7 18.0 18.0 0%
20 7 1800 1800 0%
30 16 33.9 26.3 22%
40 27 1565 1297 17%

Table 4 summarizes the wall clock time to find the solu-
tions in Table 1. From the table, QRCC runs much faster
than CutQC for most cases. On average, QRCC is 58% faster
than CutQC, for cases where CutQC can find a solution.
The main reason is that QRCC builds a linear model while
CutQC adopts a non-linear model. The quadratic constraints
in CutQC significantly slow down the search performance.
In addition, without qubit reuse, CutQC introduces one extra
qubit (i.e.,initialization qubit) after each cut, which increases
the number of qubits in the subcircuit and makes it difficult
to find a valid cutting solution.

6.6 Scalability
For cutting-based approaches such as QRCC and CutQC,
the classical post-processing overhead dominates the over-
all overhead for handling large and complicated quantum
circuits. In this section, we study the scalability of such ap-
proaches with scaled problem sizes.

6.6.1 Scalability vs #cuts. As discussed in Section 2, the
classical post-processing overhead increases exponentially
with increasing numbers of effective circuit cuts. We next
compare the computation overhead using different schemes
to reconstruct the results of the original circuit. We evaluate
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Figure 6. Comparison of the computation overhead with
different reconstruction schemes: i) FRP (purple curves) –
the hybrid full state reconstruction; ii) ARP (green curves) –
the hybrid approximate reconstruction; iii) FSS (red curve) –
the full-state simulation threshold; iv) FRE (blue curve) – the
expectation value of the original circuit. The Y-axis indicates
the log scale of the post-processing overhead in terms of #FP
operations.

the computation overhead using the number of floating-
point number operations (#FP) and ignore the memory re-
quirement. We summarize the result in Figure 6. The X-axis
indicates the number of circuit cuts (#cuts) and the y-axis
indicates the log scale of required #FP for post-processing.

• FSS: the full-state simulation of a dense 34-qubit 1000-
gate quantum circuit. It requires about 1e24 #FP, shown
as the Horizontal red curve in the figure. Simulating such
a circuit sequentially at the gate level may take several
hours on CPU [1, 2, 9]. This is set as a threshold such
that a reconstruction process is considered too expensive if
its post-processing overhead exceeds this threshold. This
threshold is set for illustration purposes and thus can be
adjusted according to different settings.

• FRP: the hybrid full-state reconstruction for the proba-
bility vector of the original circuit. FRP assumes that we
reconstruct two subcircuits cut from an 𝑁 -qubit original
circuit with #𝑐𝑢𝑡𝑠 cuts (X-axis). For simplicity, we assume
that the original qubits are evenly distributed among two
subcircuits.

• FRE: The reconstruction of FRE is for the expectation
value of the original circuit. Shown as the blue curve in
figure 6, this scheme has a similar assumption as above.

• ARP-2: the hybrid approximate reconstruction for the
probability vector of the original circuit. ARP-2 assumes
the reconstruction from two subcircuits and the original
qubits are evenly distributed among them.
ARP-2 differs from FRP in that it adopts an approximation
strategy as follows. A full-state reconstruction strategy
such as FRP faces a big challenge for circuits with large
numbers of qubits. For example, saving the full probability
vector of a 50-qubit quantum circuit demands O(250) or PB
scale memory space, which is prohibitive for most small-
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to medium-scale servers. An alternative approximate re-
construction [43] is to shrink the original vector space
250 to a small vector space, e.g., 230. ARP-2 exploits the
approximate reconstruction for all N>30.

• ARP-4: This is similar as ARP-2 but the reconstruction
is conducted on four subcircuits. For simplicity, we hori-
zontally partition the original circuit into four subcircuits
(i.e., S1, S2, S3, and S4) such that the original qubits are
evenly partitioned to the four subcircuits; and the cuts are
evenly partitioned for cutting S1/S2, S2/S3, and S3/S4. A
wire cut for S1/S2 indicates its measurement is in S1 and
its initialization is in S2.

From the figure, the FRP_48 curve has the highest recon-
struction cost, as a function of the number of #𝑐𝑢𝑡𝑠 , because
of the 248 state space of the output vector. FRP reproduces the
full state vector and thus demands O(2𝑁+2∗#𝑐𝑢𝑡𝑠 ) #FP. FRE
has much lower overheads, O(22∗#𝑐𝑢𝑡𝑠 ), due to computing
one expectation value instead of long probability vectors.
This can be observed by the vertical distances between the
purple lines (FRP_32 and FRP_48) to the blue curve (FRE).
FRE independently computes the expectation value of each
subcircuit instance, and multiples these expectation values
together based on equation 3 and 4. As such, only scalar
multiplication is required in FRE, and the number of scalar
multiplication is independent of the number of qubits and is
only affected by the number of #𝑐𝑢𝑡𝑠 .
As a comparison, when N=48, FRE can tolerate 40 #cuts,

while FRP_48 can only tolerate 16 #cuts before hitting the
post-processing overhead threshold.
Furthermore, by exploiting approximate reconstruction,

ARP-2 and ARP-4 can tolerate a larger number of #cuts, e.g.,
25 and 50 #cuts respectively, before hitting the FSS thresh-
old, as shown in the figure. This is because their overhead
is qubit-independent when N>30. No matter the size of the
circuit, only 230 states of the original circuit are reproduced.
One can also observe that when the original circuit is divided
into more subcircuits, e.g., four subcircuits in ARP-4 instead
of two in ARP-2, the reconstruction overhead decreases. This
is because the overhead is dependent on the #cuts required to
combine each two subcircuit pairs. Each combination of the
subcircuit instances (e.g., S1/S2, S2/S3, and S3/S4) is indepen-
dent of each other. For example, S1/S2 and S3/S4 can first be
combined independently, as the cuts between S1/S2 do not
have any effect on the combination of S3/S4 and vice-versa.
This allows a divide-and-conquer strategy for the recombi-
nation of the original output, as the overhead only depends
on the largest number of cuts among all the subcircuit pairs,
not the total number of cuts aggregated across all subcircuit
pairs. Consequently, the overhead increases at a slower pace
than that of the total #cuts, validating that the use of recur-
sive circuit-cutting improves the scalability of our proposed
framework. However, we also want to mention that, while
the increased number of subcircuits can have lower overhead
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Figure 7. The #cuts values increase with larger 𝑁 /𝐷 ratios.
The 𝑁 values are 50, 80, and 170 for small, medium, and large
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in reconstruction, the complexity of circuit cutting increases
due to the increased search space.
From the figure, it is clear that the post-processing over-

head is dominated by the number of cuts (#cuts). Therefore,
the reduction of #cuts from QRCC over CutQC can effec-
tively mitigate the corresponding post-processing computa-
tion time.

For example, for REG (N=40, D=27) in Table 2, the effective
#cuts are reduced from 21 in CutQC to 16.3 in QRCC-C. This
corresponds to O(421−16.29) reduction in computation over-
head, or a 685× speedup of post-processing time, without
considering the memory requirement.

6.6.2 Scalability vs N/D Ratio. We next correlate the
number of circuit cuts #cuts to the circuit size 𝑁 and the
device size 𝐷 . Intuitively, the cutting problem becomes more
challenging when we have larger 𝑁 values and smaller 𝐷
values. Figure 7 reports the impact on #cuts with different
𝑁 /𝐷 ratios with the results averaged on all benchmarks from
table 2. We choose 𝑁= 50, 80, and 170 for small, medium,
and large circuits, respectively.

From the figure, we observe that #cuts increase with larger
𝑁 /𝐷 ratios. For small and medium circuits, the increase is
moderate as there exists many qubit reuse opportunities. For
large circuits, the increase is at a faster pace due to more
two-qubit gates in the circuits.

6.6.3 Scalability vs Circuit Connectivity. To further
study the impact of increased two-qubit gates, we fix 𝑁 and
𝐷 values for a subset of large circuits (in Table 2) whose
circuit complexity can be adjusted with a meta-parameter,
and summarize the required number of circuit cuts in Table 5.
As discussed above, increasing the N/D ratio from 200/150 to
300/200 for REG (m=3) leads to more cuts for both schemes.
We also observe that, by adjusting the meta-parameter 𝑚
(fromm=3 to m=4), the circuits contain more two-qubit gates
and thus demand around double the amount of cuts. Formore
complex circuits, e.g., choosing 𝑁=300, 𝐷=200, and 𝑝=0.02
for ERD, our model still scales well and finds a solution.
However, the solution contains large numbers of wire cuts
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Table 5. The scalability correlates to circuit size and com-
plexity.

Benchmark QRCC CutQC
name N D #W-Cuts #G-Cuts #W-Cuts

REG (m=3) 200 150 19 0 21
REG (m=3) 300 200 31 3 36
REG (m=4) 200 150 36 3 49
REG (m=4) 300 200 61 6 75
BAR (m=4) 200 150 74 3 No Solution
BAR (m=2) 300 200 55 1 60
ERD (𝑝=0.05) 200 150 96 2 No Solution
ERD (𝑝=0.02) 300 200 52 104 No Solution

and gate cuts, indicating that the bottleneck has shifted to
the post-processing overhead, i.e., O(4526104).

6.7 Qubit Reuse in Cutting
Based on the observation that QRCC exploits qubit reuse to
find better cutting solutions than those of CutQC, it becomes
interesting to investigate if naively combining CutQC and
qubit reuse can achieve similar results.

To partition a 𝑁 -qubit original circuit into smaller subcir-
cuits that can run on 𝐷-qubit quantum devices, we have two
simple approaches to combine CutQC and qubit reuse.

(i) For the first approach, we apply CutQC to partition the
original circuit into small subcircuits that can each run on
𝑁 -qubit devices, and then optimize each subcircuit using
qubit reuse. Compared to QRCC, this is a sub-optimal
approach because its first step often results in a cutting
solution withmore cuts than that of QRCC. Applying qubit
reuse at the second step, even if it reduces the number of
required qubits for each subcircuit, shall not help to reduce
the post-processing overhead.

(ii) Alternatively, we may partition the original circuit into
subcircuits that can run on𝑋 -qubit devices, where𝑁>𝑋>𝐷 ,
assuming we can reduce 𝑋 to 𝐷 by applying qubit reuse.
Unfortunately, the assumption is not always true.

For example, we choose QFT with 𝑁=15 and 𝐷=7, QRCC
finds a cutting solution that partitions the circuit into three
subcircuits with 20 wire cuts. Given that CutQC cannot find
a solution for 𝐷=7 or 8, we may choose other solutions and
then apply qubit reuse, we try all different 𝑁>𝑋>𝐷 settings
and summarize the results in Table 6.
From the table, sequentially applying CutQC and qubit

reuse cannot find a solution as good as the one from QRCC.
The closest one is the solution at X=9 when all subcircuits
after the cut can run on 9-qubit devices. Applying qubit reuse
enables them to run on 7-qubit devices. However, the number
of cuts is more than twice the number of our solution, i.e.,
44 vs 20. For all other settings, the required qubits for the
subcircuits can be reduced after reuse, but the subcircuits
still cannot run on 7-qubit quantum computers.

Table 6. Applying CutQC and qubit reuse sequentially pro-
duces sub-optimal results.

Device size CutQC + CaQR
#SC #cuts width width

9 9 44 9 7
10 4 24 10 8
11 4 20 11 10
12 4 20 12 10
13 4 20 12 10
14 4 20 12 10

7 Related Work
The recent studies on circuit-cutting focus mainly on lower-
ing the reconstruction overhead. Lowe et al.[29] proposed
to reduce the overhead of wire cutting using randomized
probabilistic measurements. Piveteau et al.[38] proposed to
reduce the overhead of gate cutting, using classical two-way
communication and shared bell pair between subcircuits.
These works assume that the input is a pre-cut circuit and
thus are orthogonal to our work.
Xie et al. proposed a compiler framework for distributed

quantum computing [49]. Smith et al. exploited circuit-cutting
and Clifford gate simulation to enhance the reach of classical
quantum circuit simulation and the simulation time [41].

8 Conclusion
In this paper, we propose QRCC for evaluating large quan-
tum circuits on small quantum computers. QRCC integrates
wire cutting and qubit reuse in one framework to find good
cutting solutions for quantum circuits that compute proba-
bility vectors, and in addition with gate cutting for circuits
that compute expectation values. We formulate the problem
as an ILP model to find the cutting solutions efficiently.
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