
Dynamic Thermal Management through Task Scheduling∗

Jun Yang† Xiuyi Zhou† Marek Chrobak¶ Youtao Zhang§ Lingling Jin‡
†Electrical and Computer Engineering

§Computer Science
University of Pittsburgh, Pittsburgh PA 15261

¶Computer Science
University of California, Riverside

Riverside, CA 92521

‡Nvidia Corporate
Santa Clara, CA 95050

Abstract
The evolution of microprocessors has been hindered by their

increasing power consumption and the heat generation speed
on-die. High temperature impairs the processor’s reliability and
reduces its lifetime. While hardware level dynamic thermal man-
agement (DTM) techniques, such as voltage and frequency scal-
ing, can effectively lower the chip temperature when it surpasses
the thermal threshold, they inevitably come at the cost of perfor-
mance degradation.

We propose an OS level technique that performs thermal-
aware job scheduling to reduce the number of thermal tres-
passes. Our scheduler reduces the amount of hardware DTMs
and achieves higher performance while keeping the temperature
low. Our methods leverage the natural discrepancies in ther-
mal behavior among different workloads, and schedule them to
keep the chip temperature below a given budget. We develop
a heuristic algorithm based on the observation that there is a
difference in the resulting temperature when a hot and a cool
job are executed in a different order. To evaluate our schedul-
ing algorithms, we developed a lightweight runtime temperature
monitor to enable informed scheduling decisions. We have im-
plemented our scheduling algorithm and the entire temperature
monitoring framework in the Linux kernel. Our proposed sched-
uler can remove 10.5-73.6% of the hardware DTMs in various
combinations of workloads in a medium thermal environment.
As a result, the CPU throughput was improved by up to 7.6%
(4.1% on average) even under a severe thermal environment.

1 Introduction
As technology for microprocessors enters the nanometer

regime, power density has become one of the major constraints
to attainable processor performance. High temperatures jeopar-
dize the reliability of the chip and significantly impact its per-
formance. The immense spatial and temporal variation of chip
temperature also creates great challenges to cooling and packag-
ing which, for the sake of cost-effectiveness [43], are designed
for typical, not worst-case, thermal condition. This entails dy-
namic thermal managements (DTM) to regulate chip tempera-
ture at runtime.

There have been plenty of researches on DTMs at the mi-
croarchitecture level [6, 11, 16, 25, 28, 34, 35, 36]. Architec-
ture solutions can respond to thermal crisis rapidly and reduce
the chip temperature effectively through various performance re-
duction mechanisms.

Recently, a number of works have shown great potential in
OS-assisted workload scheduling in addition to the hardware
level techniques [7, 10, 14, 22, 23, 31]. The main approach is to
leverage the temperature variations between different jobs, and
swap them at an appropriate time to control the chip temper-

∗This work is supported in part by NSF grants CCF-0734339, CNS-0720595,
OISE-0340752 and CCF-0641177.

ature. This has been practiced in both CMPs [7, 10, 31] and
single-core processors [14, 22, 23]. Our work continues this di-
rection of research.

We develop a heuristic scheduling algorithm to alleviate the
thermal pressure of a processor. Our algorithm ThreshHot is
based on the observation that, given two jobs, one hot and one
cool, executing the hot job before the cool one results in a lower
final temperature than after the reversed order. Thus, as long as
executing the hot job itself does not violate the thermal thresh-
old, the hot-cold order is better (or, at least, not worse) than the
cold-hold order. Consequently, ThreshHot selects at each step
the hottest job that does not exceed the thermal threshold.

ThreshHot outperforms other scheduling algorithms such as
the one that changes the priority ranks of the hot and the cool
jobs [22]. To know which job will be hot or cool for the
hotspot, we develop a highly efficient on-line temperature esti-
mator leveraging the performance counter based power estima-
tion [19, 20, 22], compact thermal modeling [35], and a fast tem-
perature solver [12]. We implemented the estimator for a Pen-
tium 4 processor, although our general methodology is applica-
ble to other processors such as CMPs. We calibrate and validate
the model parameters against real measurements on our proces-
sor package. We also implemented our scheduling heuristics in
the Linux kernel, together with our temperature estimator, and
we tested the entire framework over the complete executions of
SPEC CPU2K benchmarks, mediabench, packetbench and net-
bench. ThreshHot can remove up to 73.6% (34.5% on average)
hardware DTMs in a medium thermal environment. With all
the context switching, temperature estimation, and the thermal-
aware scheduling overheads considered, ThreshHot consistently
improves the performances of a mix of hot and cool programs by
up to 7.2% (4.7% on average) compared to a base case with tra-
ditional thermal-oblivious Linux task scheduling. Our schedul-
ing algorithm targets only batch jobs and thus has unnoticeable
impact on interactive jobs and no impact on real-time applica-
tions.

The remainder of the paper is organized as follows. Section
2 discusses previous related works. Section 3 elaborates on our
thermal-aware heuristic algorithm through mathematical deriva-
tions. Section 4 explains how to obtain online power and thermal
information for our scheduler to work properly. Section 5 intro-
duces our modifications of the Linux kernel scheduler. Section
6 compares our proposed scheduler with other alternatives. Sec-
tion 7 reports the experimental results comparing ThreshHot to
three other algorithms. Section 8 concludes this paper.

2 Prior Work
Some recent works have developed temperature control tech-

niques for regular [32] and real-time [1, 2, 39, 40] workloads.
The main approach is to dynamically adjust the CPU speed
to minimize the peak temperature of the CPU, subject to the
constraint that all jobs finish by their deadlines. Similar ap-

proaches can be used to minimize the energy consumption for
real-time systems [30, 41]. Temperature control through job
scheduling has also been utilized to enhance the reliability of
a processor [26]. In contrast, our objective is to maximize the
performance by scheduling the workloads to keep the temper-
ature below a given threshold. Note that the threshold can be
the manufacturer-defined temperature threshold1 for the physi-
cal chip, or an OS-defined threshold for a system to stay within
a thermal envelope. Hence, we always attempt to run workloads
with full speed as long as the temperature stays below the given
threshold.

Thermal management through workload scheduling has been
studied in various scenarios. In CMPs, the “Heat-and-Run”
technique performs thread assignment and migration to balance
the chip temperature at runtime [31]. In another work [10], a
suite of DTM techniques, job migration policies, and control
granularity are jointly investigated to achieve the maximum chip
throughput. Also recently, a simple periodic thread swapping
between two cores to balance the chip temperature was stud-
ied on a dual-core processor [7]. All these approaches exploit
simple interleaving between hot and cool jobs to improve ther-
mal characteristics of a schedule. Our objective is to find the
best thread for a core when it becomes hot, and this thread may
not be the coolest available thread. For example, when there is
both a medium hot and a cool thread, our scheduler will pick a
medium hot thread as long as it will not trigger DTM. In this pa-
per, we demonstrate this philosophy using a scheduling heuristic
on a single-core processor, and leave its extensions to CMPs as
future work.

In single-core domain, the “HybDTM” [22] controls temper-
ature by limiting the execution of the hot job once it enters an
alarm region. This is achieved by lowering the priority of the hot
job so that the OS allocates it with fewer time slices to reduce
the processor temperature. The same principle can be seen in
[4], where energy dissipation rate is evened among hot and cool
jobs through assigning different CPU time to them. Our tech-
nique does not modify the time allocated to hot and cool jobs, as
this would affect the fairness policy of the system. Instead, we
attempt to rearrange their execution order within each OS epoch
to lower the overall temperature. This allows us to control the
temperature while preserving priorities among different jobs.

Thermal control through workload management has also
been studied at the system level. In [29], a temperature-
aware workload placement heuristic was studied for data cen-
ters to minimize the cost of cooling. The “Mercury and Freon”
[15] framework uses a software to estimate temperatures for a
server cluster and manages its component temperatures through
a thermal-aware load balancer. The “ThermoStat” [8] tool em-
ploys a detailed 3D computational fluid dynamics model for a
rack-mounted server system. This tool can guide the design of
better dynamic thermal management techniques for server racks.
Our work targets at CPU temperature control, which can be
complementary to system level thermal management schemes.

3 Thermal Scheduling Algorithms
When the processor overheated and forced to slow down,

nearly all vital measures will be degraded: throughput and uti-
lization will be reduced, response time will increase, jobs are
more likely to miss deadlines, etc. Thus, independently of the

1This threshold is a safe operating temperature beyond which the chip might
be damaged due to overheating, and exceeding it triggers DTMs.

characteristics and focus of a given system, processor overheat-
ing will negatively affect its performance.

When incorporating new features, such as thermal awareness,
into a scheduler, it is desirable to make them as transparent to
the user as possible; in particular, to keep the existing sched-
uler structure and properties. For this reason, we focus our work
on a batch system for which the main objectives are the mini-
mum turnaround time, maximum throughput, and CPU utiliza-
tion. For batch jobs, the OS periodically interrupts the job ex-
ecution to maintain its statistics and determines if a different
job should be swapped in and, if so, which one. We amend
the decision of which job should be selected next with thermal-
awareness while keeping all other features intact. Therefore, in
every scheduling interval, the OS needs to select the best job
anticipating that such a selection would lead to the overall least
amount of thermal violations.

3.1 The Principle
To keep the temperature below the threshold, the naı̈ve,

greedy approach would be to minimize the current chip tem-
perature by executing at each step the coolest available job. As
a result, the jobs are scheduled in the order of increasing tem-
perature, from coolest to hottest. As it turns out, however, the
greedy schedule actually increases the chances of exceeding the
temperature threshold in the long run. To see this, consider a
simple case where at some schedule interval t only two jobs x
and y are available, with power consumption Px and Py respec-
tively, where Px < Py (so x is cooler than y). We will show that
if we execute these jobs in order xy (x before y, as in the greedy
schedule) then the temperature at the end of t + 1 is higher than
for the order yx (y before x). This means that if the tempera-
tures for both orders stay below the threshold, then order yx
is less likely to cause a DTM in the future.

Consider the simplified thermal model for a processor treated
as a single node. The duality between heat transfer and electri-
cal phenomena [21] has provided a convenient basis for mod-
eling the chip temperature using a dynamic compact thermal
model [35]:

1

R
T + C

dT

dt
= P, (1)

where T is the temperature relative to the ambient air, R and
C are, respectively, the chip’s effective vertical thermal resistor
and capacitor, and P is the power consumption. Note that when
dT
dt = 0, the chip reaches its steady temperature RP which de-

pends on the average power of a job. The time to reach the
steady temperature is determined by the RC constant (R×C) of
the thermal circuit. However, when the chip is switching among
different jobs prior to the steady temperature, it is always in a
transient stage (i.e. dT

dt 6= 0).
Discretizing the time scale into small time steps ∆t and de-

noting by Ti the temperature at time i∆t, Equation (1) can be
approximated by

1

R
Ti + C

Ti − Ti−1

∆t
= P. (2)

Rearranging the terms, we have Ti = αTi−1 + βP , where α =
RC

∆t+RC and β = R∆t
∆t+RC are constants dependent on ∆t and,

clearly, α < 1. If each scheduling interval is divided into n
steps of length ∆t, the temperature at the end of this interval
can be expressed as:

Tn = αnT0 + (αn−1 + αn−2 + · · · + 1)βP. (3)

For schedule xy, the temperature after completing y (2n steps)
will be

T xy
2n = α2nT0 + (αn−1 + αn−2 + · · · + 1)β(αnPx + Py), (4)

while for schedule yx, this final temperature will be

T yx
2n = α2nT0 + (αn−1 + αn−2 + · · · + 1)β(αnPy + Px). (5)

It is now easy to see that Px < Py implies T yx
2n < T xy

2n . That
is, scheduling the hotter job first results in a lower final tem-
perature. We emphasize that this is benecitial only when run-
ning the hotter job first does not increase the temperature
above the threshold. Figure 1 gives an intuitive illustration of
the impact of scheduling on temperature. The graph shows tem-
perature variation for the IntReg unit with two different power
inputs, representing two different jobs. They are scheduled in
two different orders as just described. The graph was obtained
using a full-chip thermal model (rather than a single node as a
whole) solved by the fourth order Runge-Kutta method. As we
can see, running the hotter job first results in lower final temper-
ature. If the chip’s thermal threshold is in between the differ-
ence of the two ending temperatures, the greedy schedule would
cause a thermal violation.

5 10 15 20

55

56

57

58

59

Time(ms)

T
em

pe
ra

tu
re

(C
)

Hot−Cool

Cool−Hot

Figure 1. The impact of scheduling a hot and cool program
in different orders.

Suppose now you are given a schedule for some number of
job intervals. Suppose further that in this schedule there are two
consecutive job intervals x, y with x before y, such that Px < Py

and that executing y first will not exceed the threshold. Then,
by the reasoning above, we can exchange x with y, and this
swap will not increase the number of thermal violations in the
whole schedule. The reason is that in this new schedule, after
completing yx, the temperature will be lower than in the original
schedule after completing xy, so we cannot cause an increase of
the temperature at any given step later in the schedule. This
observation naturally leads to the following heuristic:

P: at each step choose the hottest job that will not increase
the temperature above the threshold.

The above policy P is the basis of our algorithm ThreshHot.
We emphasize that P does not guarantee to minimize the total
number of thermal violations for a given set of job intervals (in
fact, in a more rigorous setting, this problem can be shown to be
NP-hard [9]); nevertheless, it computes a local minimum and it
constitutes a reasonable heuristic for our application.

We also need to address the case when no job interval satis-
fies policy P , i.e. all the jobs would increase the temperature
above the threshold. In this case, it is most beneficial to pick
the hottest job interval for execution. This is because the hard-
ware thermal management (e.g. DVFS) will be triggered to cool
the chip regardless of which job we choose, and selecting the

hottest job interval at this time reduces the likelihood of a future
thermal violation.

For example, suppose there are three job intervals available,
say J1, J2 and J3 with descending powers. If picking J1 would
increase the temperature above the threshold while picking J2

would not, then policy P will first pick J2 to run. If all of them
would exceed the threshold, P will pick J1.

We remark here that the OS fairness policy imposes some
restrictions on how long a job interval can be postponed (this
will be discussed in more depth in Section 5). Thus, in addition
to the rules described above, the choice of the next job to run
must be consistent with these fairness restrictions.

3.2 In Practice
In the earlier discussion we assumed a simple case where the

CPU is considered as a single node and the heat is only dis-
sipated through the vertical thermal resistor and capacitor. In
reality, there is a great temperature variation on-die and only the
temperature at the hottest spot should be maintained below the
threshold. This scenario is more complex than for a single node,
as the heat can also be dissipated laterally. Therefore, the ther-
mal model in Equation (1) will be expanded into a matrix form
in which every node is described by:

T − T1

RL1
+

T − T2

RL2
+

T − T3

RL3
+

T − T4

RL4
+

T

R
+ C

dT

dt
= P (6)

where the first four extra terms describe the heat transfer from
the central node (with temperature T) to its lateral neighbor
nodes (with temperature T1-T4). The number of neighbors per
node depends on the processor floorplan and how the system is
discretized. We have shown four nodes as an example, with Ti

being the temperature for the ith neighbor node, and RLi being
its lateral resistance from the central node.

The temperature T of the hottest spot on-chip, described
by Equation (6), is higher than the Ti’s. Also, heat is re-
moved mostly from the vertical path and less from the surface
[10, 31, 35]. In more quantitative terms, our experience with a
full-chip model shows that the RLi’s are typically 10∼20 times
the R for a hot unit such as the IntReg. The resulting lateral RC
time constants are on the order of 100 milliseconds and verti-
cal RC time constant is less than 10 milliseconds. Since the left
hand side of Equation (6) is dominated by the last two terms, we
can still treat a hotspot as a single node as before.

4 Obtaining Power and Temperature
Online

As discussed above, our thermal-aware scheduling algorithm
needs information about the peak temperature of the processor
and power usage for the executed jobs. In this section, we ex-
plain how these values can be computed at runtime.

4.1 Computing the Temperatures
Most current processors are equipped with an on-chip ther-

mal sensor for detecting the chip temperature at runtime. The
sensor compares the current temperature with a preset threshold
and signals a violation if the former is higher. The hardware
then responds to such a signal immediately by throttling the per-
formance so that the chip generates less power and, as a result,
the temperature starts to drop. In Pentium 4, for example, the
performance is throttled by dynamic frequency scaling — the

frequency is scaled by half until the temperature drops below
the safe threshold [43].
Thermal sensor readings are insufficient. It seems that the
OS could leverage such on-chip thermal sensors for temperature
readings. Unfortunately, this is insufficient because, in addition
to the current temperature, our algorithm also needs the temper-
ature in the next time interval. Further, for a job not currently
in execution it is difficult to determine, from its temperature his-
tory, what its temperature might be in the future. For example,
suppose a job was swapped out last time at 65◦C, and currently
the sensor reading is 60◦C. The temperature for this job in the
next time interval may be either higher or lower than 60◦C. This
is because the future temperature depends on several factors: the
current temperature, the power consumption of this job in the
next time interval, and the length of the next interval.
Temperature model. Formally, Tnext = F (P, Tcurrent,∆t)
where P is the average power in the next interval, ∆t is the
interval length, and function F is characterized by:

GT + C
dT

dt
= P , (7)

which is the matrix form of Equation (1) with G being the ma-
trix of the thermal conductances. Both T and P are now vec-
tors. Each element corresponds to one modeling node. There-
fore, to obtain the temperatures in the next time interval for a
candidate job interval, the scheduler must solve Equation (7)
from Tcurrent (which can be read from sensors), P of the job
(which can be projected from its past power consumption), and
∆t (which is a fixed value). The sensor readings alone cannot
lead to a quantitative comparison with the threshold.
Temperature calculation. This may seem like a lot of com-
putation for the scheduler to solve (7) at runtime. Fortunately,
previous work has shown that the complexity of Equation (7)
can be greatly reduced if the time interval ∆t is kept constant
[12]. This is the case in our scheduler. Here, we briefly discuss
our temperature estimation method.

The linear system in equation (7) has a complete solution as:

T (t) = eC−1GtT (0) +

∫ t

0

eC−1G(t−τ)C−1P (τ)dτ (8)

For a fixed-length scheduling interval ∆t, we take the average
power during the interval so that P (t) can be factored out. (8) is
now:

T (∆t) = AT (0) + BP (9)

where A = eC−1G∆t, and B =
∫ ∆t

0
eC−1G(t−τ)C−1dτ . Both

A and B are constant matrices with a constant ∆t. Since lin-
ear system (9) is time-invariant, it holds for every interval ∆t.
Therefore:

T (n∆t) = AT ((n − 1)∆t) + BP (n − 1), or simply
T (n) = AT (n − 1) + BP (n − 1)

(10)

As we can see, once A and B are pre-calculated and stored, tem-
perature at any step n can be found through linear combination
of the temperature and power at step n − 1. When used online,
T (n− 1) is the current temperature, P (n− 1) is the power dis-
sipated by a job in the next scheduling interval, and T (n) is the
temperature at the end of the next interval. Computing the T (n)
now is very inexpensive. Our thermal model has 82 nodes in to-
tal and computing the 82×1 temperature vector at runtime takes
only ∼16.45µs. Next, we will discuss how to obtain the power
values P (n− 1) online.

4.2 Computing the Powers

Power estimation. Recent research has proposed to incorpo-
rate on-chip power sensors for power and thermal control [27].
With on-chip power sensors, the OS can obtain the runtime
power consumption of critical components easily and quickly.
Though such technology is not readily available, some other al-
ternatives have been proposed before and were demonstrated to
be very fast and effective. We adopt the method that uses the
performance counters to monitor runtime power consumption
[3, 19, 20]. Counters provided by high-performance processors
such as the Pentium and UltraSPARC can be queried at runtime
to derive the activities of each functional unit (FU). When com-
bined with FUs’ per access power, their dynamic power and the
total chip power can be obtained. However, earlier works ei-
ther did not consider the leakage power or used a constant as
a proxy, since leakage is dependent on temperature, which was
difficult to obtain at runtime. When the processor runs at a high
temperature, its leakage can contribute significantly to the total
power [18]. Since we also calculate the temperature online, we
consider the leakage as an integral part in our power estimation.
We adopted a model developed in [13, 24] using PTM 0.13µ
technology parameters [44], matching our processor technology
size (Pentium 4 Northwood). We determined the necessary de-
vice constants through SPICE simulation.

Power prediction. The last issue we need to resolve now is the
prediction of power consumption of a job in the next scheduling
interval, as required by Equation (10). Here, we face a tradeoff
between complexity and accuracy, for a high quality predictor
would typically require large memory to store the history in-
formation and significant computation time for processing this
information. Table-based schemes are likely not appropriate for
our framework, for the kernel has a strict limit on the memory
space for storing the control information of each job. For exam-
ple, a good hash table based power predictor that we considered
exceeded the kernel space limit, and a small fully-associative ta-
ble predictor could slow down the program by ∼6%. Therefore
we settled for the simple – but cost-effective and fast – last-
value-based predictor which always uses the last power values
to predict those in the next interval. Its error rates for our ex-
perimented benchmarks, including 22 SPEC2K, 4 mediabench,
10 netbench, and 4 packetbench, are shown in Figure 2. As
we can see, on most programs it has less than 10% error rate.
High misprediction rates are seen in bzip, jpegenc, jpegdec, crc,
and md5. Our experiments with those programs (in Section 7)
did not show significant disadvantages in most cases, indicat-
ing that (at least in those cases) mispredictions did not lead to
much mis-scheduling. This is easy to explain: in order for a ma-
jor mis-scheduling to occur, the prediction error would have to
be large enough to either change the jobs’ relative temperature
ranking, not only their numerical vales, or to incorrectly predict
a thermal violation. With moderate prediction errors, the rela-
tive ranking of jobs with very different power values will likely
remain the same, while for jobs with similar power values, the
negative effects of mis-scheduling are small. This is confirmed
by our results for crc and md5, both of which tend to alternate
between two different power levels. Here, the last-value predic-
tor often missed the right value but, since the error does not lead
to big temperature changes, this did not impact the scheduling
decision.

0%
10%
20%
30%
40%
50%

am
m

p
ap

pl
u

ap
si

cr
af

ty
eq

ua
ke

fa
ce

re
c

fm
a3

d
ga

p
gc

c
lu

ca
s

m
es

a
m

gr
id

pa
rs

er
si

xt
ra

ck
sw

im
tw

ol
f

vo
rte

x
w

up
w

is
e

gz
ip

bz
ip ar
t

m
cf

jp
eg

en
c

jp
eg

de
c

m
pe

g2
en

c
m

pe
g2

de
c

cr
c dh dr
r

ip
ch

ai
ns

m
d5 na

t
ro

ut
e

sn
or

t tl ur
l

flo
w

cl
as

s
ip

se
c

ip
v4

_l
ct

rie
ip

v4
_r

ad
ix

SPEC CPU2K mediabench netbench packetbench

A
ve

ra
ge

 e
rr

or

Figure 2. Average error rates for last power value predictor.

4.3 Workflow Summary
To summarize, at the end of each scheduling interval, the

OS probes the performance counters from the processor. Those
counters record the activities of the current job during the past
interval. They are then converted into the power consumption
values at the granularity of functional units. Power prediction is
performed at this time. The past power values are then fed into
a full-chip thermal model for computing the current temperature
at the current scheduling interval. For all candidate jobs, their
future temperatures are also calculated at this time using their
predicted power values. All those future temperatures are sent
to the scheduler to determine the next job selection. The flow is
depicted in Figure 3(a).

Thermal-aware
Scheduler

Temperature
Calculation

Power Estimation &
Prediction

Performance Counter
Readings

(a) Without thermal and power sensors

Thermal-aware
Scheduler

Power Prediction &
Temperature calculation

Hardware Thermal
Sensor Readings

Hardware Power
Sensor Readings

(b) With thermal and power sensors

Figure 3. Thermal-aware task scheduling methodologies.
Alternatively, if the processor has available thermal and

power sensors, the OS can directly read information from the
sensors to compute the future temperatures, as illustrated in Fig-
ure 3(b). However, this would entail many sensors as the future
temperature calculation needs fine-grained power and tempera-
ture information. If the sensors are very few, probing the coun-
ters is still necessary but the sensor readings can be used for on-
line self-calibration to lessen the error due to thermal and power
model abstraction.

5 Linux Kernel Implementation
To evaluate our thermal-aware scheduling policy, we imple-

mented all the modules in Figure 3(a) into a Linux kernel ver-
sion 2.4.18 with O(1) scheduler patch. The major challenge is
to insert the new scheduling policy into the existing scheduler
while retaining its features. We will first introduce briefly the
mechanism of the Linux scheduling [5] and then describe our
modification.

5.1 The Skeleton of the Linux Scheduler
The Linux OS distinguishes three classes of jobs: interactive

jobs, batch jobs and real-time jobs. The real-time jobs are given
the highest priorities while the other two are initialized with the
same default priorities. Based on different priorities, the ker-
nel assigns each job a “time quantum”. High-priority jobs are

given larger time quantum than low-priority jobs. At runtime,
all jobs are put into their corresponding “priority queues”, and
then selected for execution in a descending priority order. Each
job occupies the CPU for its allocated time quantum, unless a
certain event triggers a swapping, e.g. an I/O request. When a
job uses up its time quantum, it is moved into an “expire queue”
and the scheduler selects the next job to run. When all the jobs
finished using their assigned quanta, an “epoch” is completed.
All jobs in the expire queue are now assigned new time quanta
determined from their priorities – and a new epoch starts.

5.2 Our Modification
The execution of a time quantum is periodically interrupted

by the kernel’s interrupt handler, typically once every 1-10ms.
This is the time when a context switch may happen. We choose
to insert our scheduling in this interrupt handler to force a con-
text switch on every thermal scheduling interval.

Scheduling interval length. First, we need to decide on the
length of scheduling intervals. Since our objective is to keep the
peak temperature below the threshold, our scheduling interval
should not be much longer than the RC constant of the hottest
unit. Previous works assumed 10ms as the RC constant of the
hottest unit on a CMP processor [10, 31]. From our own experi-
ence, we found that the vertical RC constant for the hottest unit
is around 7ms while the lateral RC constant is on the order of
100ms. Due to certain implementation requirement (the counter
rotation effect [38]), we chose the thermal scheduling interval to
be 8ms. Thus, if the default interrupt frequency is once every
2ms(or 1ms), we might force a context switch on every 4(or 8)
interrupts.

Context-switch overhead. In the original scheduler, jobs can
occupy the processor for its entire time quantum. For batch jobs,
the default time quantum is 100ms [5]. With an 8ms swap-
ping frequency, we could have increased the number of context
switches by 12.5 times. We measured the absolute time for each
context switch to be ∼35.35µs on average. Hence, the context-
switch overhead on an 8ms interval is 0.044%. Most impor-
tantly, as we will show in our final experiments, the thermal-
aware scheduler does not necessarily switch to a different job
every 8ms – quite often the current job is run again. This al-
leviates the potential for increasing the total number of context
switches – without lessening the benefits of our scheduling pol-
icy.

Fairness. In the original scheduler, the new epoch does not be-
gin until all the jobs have finished their assigned quantum. When
we enforce the thermal scheduling every 8ms, every quantum is
effectively further divided into smaller slices and these slices
are executed following our scheduling policy. Therefore, a slice
may be delayed due to its potential high temperature, but will
not be postponed beyond an epoch. All slices will eventually
be executed since they all belong to certain quantum. This is
guaranteed by the original scheduler.

Impact on non-batch jobs. Recall that we apply our thermal-
aware policy only to batch jobs; but we still need to con-
sider possible indirect impacts on real-time and interactive jobs.
Batch jobs are given different range of priorities than the real-
time jobs. The candidate jobs that are eligible for thermal
scheduling fall within the batch job’s priority range. This en-
sures that we do not touch any real-time jobs and they are sched-
uled in the same way as before. For interactive jobs, there is

no easy way to distinguish between them and batch jobs. Linux
implements a sophisticated heuristic algorithm based on the past
behavior of the job to decide whether a job should be considered
as interactive or batch. We experimented with a GUI application
VNCplay developed by Zeldovich et al. [42], and we observed
that the user response time change due to thermal scheduling is
not perceptible.

6 Anatomy and Comparison of Differ-
ent Scheduling Algorithms

With proper implementation in the Linux kernel, we are now
ready to examine the effectiveness of our proposed scheduling
algorithm, compared against several alternatives. To show the
distinctions among different algorithms, we created three pro-
grams that are hot (computation intensive), warm (medium com-
putation and memory accesses), and cool (memory intensive),
respectively. We then tested the following scheduling algorithms
on the mix of three jobs:
1. Random — This algorithm randomly selects a job to exe-
cute in every scheduling interval (8ms). We test this scheduler
to measure whether the performance improvements can be at-
tributed simply to frequent context switches. This helps to show
how much more effective a guided job selection can be in con-
trolling the temperature.
2. Priority — This algorithm lowers the priority of the hot
jobs and raises the priority of the cool jobs for every new epoch
[22]. A job is considered “hot” if its overall temperature in an
epoch exceeds a pre-defined soft threshold which is lower than
but close to the hardware threshold. The priority is adjusted
proportionally to the proximity of the job’s temperature to the
hardware threshold. Since the time quanta are calculated based
on priorities, this scheduler in effect allocates less CPU time to
hot jobs and more to cool jobs within an epoch.
3. MinTemp+ — This algorithm selects the coolest job if its
temperature is over the threshold, and selects the hottest job if
the current temperature is below the threshold [23]. We im-
proved the original design of MinTemp in that we select the
“hot” or “cool” slices based on the jobs’ transient temperatures,
as opposed to their steady temperatures (the global temperature
trends of programs). Using steady temperatures could produce
significant errors as 1) there are often great temperature vari-
ations within jobs (Figure 5 shows this property), and 2) even
thermally stable jobs will be mostly in their transient state when
they are constantly swapped in and out. Our improvement can
clearly discern temporarily cool slices in a hot job and temporar-
ily hot slices in a cool job, hence, helps the scheduler follow the
policy correctly.
4. ThreshHot — This is our proposed algorithm. It selects the
hottest program that does not increase the temperature above the
threshold. If such job does not exist, it selects the hottest job to
run.

Figure 4 shows the execution details of three different jobs
under the default Linux scheduler (our baseline scheduler) and
the above four schedulers. For clarity, two epochs are shown and
all graphs have the same baseline scheduling results so that the
differences among the four thermal-aware algorithms are evi-
dent. When executing the mix of the three jobs, the baseline
thermal-oblivious scheduler picks the job in an ad-hoc manner:
in this case cool, hot and warm. The resulting temperature in-
creases above the threshold three times per epoch. This can

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Time(ms)

CPU
Freq

Task
Sched

(a) base vs. Random

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Task
Sched

CPU
Freq

Time(ms)

(b) base vs. Priority

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Task
Sched

CPU
Freq

Time(ms)

Temp

(c) base vs. MinTemp+

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Task
Sched

CPU
Freq

Time(ms)

(d) base vs. ThreshHot

Figure 4. A close-up of the execution traces for four dif-
ferent algorithms. Each graph compares the default Linux
scheduler (dashed line) with one algorithm (solid line). In
all graphs, the top portion shows the temperature variation
with time. The middle portion shows the job switching se-
quence and the bottom portion shows whether a frequency
scaling, a reduction from 3GHz to 1.5GHz (downward arrow),
occurred.

been seen from the three downward arrows (drops from 3GHz
to 1.5GHz) in the bottom part of the graphs. The three thermal
violations happened after the hot job ran for a while. We now
compare and contrast how the other four schedulers impact the
peak temperatures.

Random scheduler. As we can see from Figure 4(a), the Ran-
dom scheduler switches to a different job, randomly picked from
the job pool, on every scheduling interval. The advantage is that
it may select a hot job to run while the chip is cool, and vice
versa. This can be seen from the beginning of the first epoch
— the base scheduler runs the cool job continuously, while the
Random scheduler swaps among all three different jobs, giving
the hot job some opportunities to run at a low temperature. Such
randomness can remove some frequency scalings when the hot
slices are scattered, e.g. in the first epoch, but cannot prevent the
scalings judiciously if the hot slices happen to run back-to-back,
as with the beginning of the second epoch.

Priority scheduler. This scheduler regulates temperature
through adjusting job priorities to allocate less CPU time to hot
jobs and more to cool jobs. The granularity of this scheduler is
more coarse than that in those discussed earlier since priorities
can only be changed between epochs. As a result, the temper-
ature does not respond immediately to the change of priorities.
More importantly, since hot jobs are executed less frequently
than cool jobs, the cool jobs are likely to finish earlier than the
hot jobs. As we can see from Figure 4(b), the schedule of jobs
has similar shape as the baseline except that the hot job slices
are much shorter (and each epoch is shorter as well). This es-
sentially puts off the execution of hot jobs, which may trigger
significant frequency scalings when the cool jobs are exhausted.
As we will show later, this is the main reason for this scheduler
to fall behind the base scheduler.

The original scheduler also employed two additional thresh-
olds for increasing frequency scaling strengths, as shown in the
figure. The hardware control takes two steps to gradually in-
crease the frequency scaling factor (via programming a hard-
ware register) before the temperature reaches the absolute emer-
gency point. This is why the peaks in the temperature curve
are smoother than the baseline, and also why the downward ar-
rows at the bottom do not reach 1.5GHz. While this can help
to prevent thermal emergencies, it does not prevent frequency
scalings. In fact, the frequency scaling may happen more often,
though at a lower strength, because the temperature may reach
the lower thresholds but not the highest one, as shown in the first
frequency dip in the figure.

MinTemp+ scheduler. This scheduler tends to oscillate be-
tween the hottest and the coolest job, as shown in Figure 4(c).
As we can see, at the beginning of an epoch when temperature is
low, the hot job is selected for execution. It runs for some time
until a thermal violation occurs. At this point, frequency scaling
is engaged and the cool job is swapped in. The temperature re-
duces quickly below the threshold until the end of the window,
at which point the hot job is immediately swapped in again. We
notice that the cool job is swapped in during frequency scaling,
thus, being unfairly penalized for thermal violations caused by
the hot job. We will show in Section 7 that the hot job can be
sped up while the cool job can be severely punished. On the
other hand, when cool jobs are swapped in during a frequency
scaling, the processor cools down more quickly than in the base
scheduler. This can help to reduce the average temperature when

it is close to the threshold, as we can see from the figure. As we
will show later, this algorithm can reduce the number of fre-
quency scalings by a moderate amount.
ThreshHot scheduler. In contrast to MinTemp+, our Thresh-
Hot algorithm first estimates the temperatures for all jobs in the
next time window and then selects the hottest job that will not
exceed the threshold (according to the estimates). Hence, at the
beginning of an epoch in Figure 4(d), the hot job is selected to
run until the temperature is too close to the threshold. At this
point, the scheduler decides to discontinue the hot job and swap
in the warm job because it predicts that the warm job will not
create a thermal violation in the next interval. The warm job
now will run for several intervals until the temperature is low
enough for running another hot job slice. As we can see from
the figure, at the beginning of each epoch, the scheduler toggles
between the hot and the warm job, allocating longer duration
for the latter (as opposed to switching between the hot and cool
job in MinTemp+). Later in the epoch, warm job’s quantum is
used up, so the scheduler toggles between the hot and the cool
job with longer duration allocated to the latter as well. Such a
scheme effectively keeps the temperature right below the thresh-
old achieving the least amount of frequency scaling. For the two
epochs shown in the figures, the ThreshHot scheduling shows
that it is possible to greatly reduce or even avoid frequency scal-
ing if the jobs are arranged in a good order.

In summary, all schedulers try to keep the temperature below
the threshold. The Random scheduler takes an opportunistic ap-
proach to disperse hot slices in each epoch. As we will show in
our experimental results, there is still much room for improve-
ment if the job selection is well-guided. Priority and MinTemp+

take a more indirect approach by lowering the average power lo-
cally using the cool job’s intervals. However, both cannot avoid
the high average power when the cool job’s intervals are ex-
hausted. ThreshHot takes a more direct approach by picking the
job order to regulate the temperature just below the threshold,
at the minimum “expense” of cool jobs. These cool jobs are
thus “saved” for the future, as precious cooling resources. In
contrast, Priority or MinTemp, once the cool jobs are exhausted,
will fall back to a baseline thermal-oblivious scheduler.

7 Experimental Evaluation
Unlike in some previous works, in our thermal-aware

scheduling the temperature control is not only a goal in itself, but
also a tool for improving performance. Such improvements are
possible, because fewer thermal violations reduce the number of
frequency scalings (or other DTMs). We performed quantitative
measurements on the performance with and without thermal-
aware scheduling, on a Linux machine using a Pentium 4 North-
wood core as our test processor. The core comes with perfor-
mance counters that are accessible from the kernel. The thermal
model was adapted from the HotSpot3.0 toolset [17, 18, 35] with
the Pentium 4 floorplan. The DTM used by Pentium 4 is clock
throttling which is equivalent to frequency scaling, but with less
overhead. We remark that our scheduler will work for any other
forms of DTM such as DVS (dynamic voltage scaling).

7.1 Thermal Model Calibration
In the online temperature calculation described by Equa-

tion (10), the most important part is to determine the entries in
the (constant) matrices A and B. All these values depend on the
processor- and package-dependent thermal RC. From our expe-

rience, even a small variation in certain R and C values can lead
to a significant deviation in temperature. Therefore, in order to
accurately approximate the program’s temperature during exe-
cution, it is vital to carefully calibrate our model’s parameters.

We performed four real measurements on the processor pack-
age — three point measures at three different layers, and one
measure in ambient air — for calibrating the RC values: 1) An
on-chip thermal diode reading; 2) A thermometer reading on the
heat spreader; 3) A thermometer reading on the heat sink; and 4)
A thermometer reading for the ambient air. We then proceed to
calibrating the RC values in order to match the simulation out-
puts with the real measurements. Our objective is to minimize
the squared error summed over all the programs we measured.
This is defined as:

error =
∑

all programs

|Tmeasured − Tsimulated(x1, x2, · · ·)|2

where xis are our parameters to be adjusted. This is a min-
imization problem that can be tackled by the Conjugate Gra-
dient (CG) method [37] which is an algorithm for finding the
nearest minimum of a function of n variables. We repeated the
CG a number of times. Each time we add a random offset to
the computed result and start the next round. The final global
minimum is chosen from the lowest local minimums. The cal-
culated temperatures after calibration match well with the real
measurements.
Discussion. We remark here that it is much more difficult to as-
sess the accuracy of the calculated on-chip temperatures, since
we only have one on-chip diode readings but not the thermal
distribution across the chip. Also, the accuracy of the thermal
model is subject to the constraints from the environment such as
room temperature changes, fan speed, aging of thermal interface
material [33] etc. In such a senario, the scheduler should rely
more on the thermal sensor readings as shown in Figure 3(b)
to prevent error from accumulating. Nevertheless, our current
model at least achieves the first order approximation to on-chip
temperatures, and provides our thermal scheduler with reason-
ably good inputs.

7.2 Benchmark Classification
After model calibration, we ran 22 SPEC CPU2K bench-

marks, mediabench, packetbench, and netbench, to first collect
their temperature profiles and classify them into different ther-
mal intensity groups.

For all the programs we ran, the IntReg is always among the
hottest units. Since Pentium 4 has only one on-chip sensor to
control the DTM, this sensor should be placed at a spot that is
most likely to be the hottest. This spot is determined through
extensive testing. To accommodate other hotspots, the threshold
is lowered with enough headroom to account for the discrepancy
between the temperature at the sensor and the real peak temper-
ature at runtime. Overall, it is reasonable to assume that IntReg
correctly represents the peak temperature at runtime.

Figure 5 shows the IntReg temperature profiles for all bench-
marks executed back-to-back till completion. Here the starting
temperature is ∼55◦C, while that of the ambient air is ∼45◦C,
higher than the room temperature. As we can see, different pro-
grams present noticeably different thermal behavior: some run
at a stable temperature, some have large variations, while others
have sharp and spiky raises in temperature.

From the obtained thermal profiles, we can broadly classify
the programs into three groups, hot, warm, and cool, according

0 0.5 1 1.5 2 2.5 3 3.5
50

55

60

65

70

75

80

85

90

Time(x10e6ms)

T
em

pe
ra

tu
re

(C
)

ammp

applu
apsi

crafty

equake

facerec

fma3d

gap
gcc

lucas

mesa

mgrid

parser
sixtrack

swim

gzip

bzip

art

mcf

wupwise

vortex

twolf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
50

60

70

80

90

Time(x10e6ms)

T
em

pe
ra

tu
re

(C
)

jpegenc

jpegdec

mpeg2enc

mpeg2dec

crc md5

drr

dh

ipchains
route

snort
url

tl

flowclass

ipsec

ipv4−lctrie

ipv4−radix

nat

Figure 5. Thermal profiles of the IntReg for all 22 SPEC2K
(above) and media, net, and packetbench (below).

to their relative positions to each other. For example, gcc and
gap produce the peak temperatures in Figure 5, and hence, are
considered hot in the SPEC benchmarks. Similar principle is
applied to the non-SPEC benchmarks as well. Note that if we
combine the two groups of benchmarks, their relative tempera-
ture positions will change and the classification will be different.
Our experiments separate these two groups of benchmarks due
to their input sizes — SPECs have much larger inputs than the
others, and they run significantly longer. The complete classifi-
cation of these programs is shown in Table 1.

SPEC 2K
Hot crafty gap gcc mesa mgrid sixtrack gzip bzip

Warm applu apsi facerec parser vortex wupwise twolf
Cool ammp equake fma3d lucas swim art mcf

Media, Packet bench, Netbench
Hot jpeg mpeg crc dh md5 ipsec ipv4 lctrie ipv4 radix

Warm snort flowclass url ipchains
Cool drr route tl nat

Table 1. Classifications of program thermal intensity.

7.3 Thermal Scheduling Results
We evaluate ThreshHot on different combinations of work-

loads, and compare the results with four other aforementioned
scheduling algorithms. To avoid test space explosion, we limit
the number of jobs executed simultaneously to 3. Every job can
be hot, warm or cool, producing 10 combinations to test. The
combinations where none of the jobs is hot are of little interest,
since these will not involve thermal violations. Excluding those
we are left with 6 combinations shown in Table 2.

We also want to consider the environmental conditions, in
particular, the ambient temperature. The ambient temperature
varies in response to activities in memory, disks or other com-
ponents. This changes the temperature gradient, thus affecting

SPEC2K media, packet and netbench
HHH mgrid gzip bzip jpegdec ipv4 lctrie md5
HHW gzip sixtrack vortex jpegenc jpegdec flowclass
HHC gzip bzip art mpeg2enc mpeg2dec tl
HWW gap apsi twolf ipv4 lctrie url ipchains
HWC gcc apsi art ipv4 radix ipchains nat
HCC mesa ammp mcf dh drr route

Table 2. Workload combinations consisting of relatively hot
(H), warm (W) and cool (C) jobs.

the efficiency of the heat removal. As a result, when the ambient
temperature rises, cool programs can become warm, and warm
programs can become hot to the CPU. Similarly, if the ambient
temperature falls far below normal, even the hot programs, at
their steady state, may not cause thermal violations.

To test the sensitivity of different schedulers to different envi-
ronmental conditions, we varied the frequency scaling threshold
from 75◦C to 73◦C and 71◦C (from Figure 5, most programs’
steady temperatures range between ∼60◦C and ∼80◦C). Such
tests emulate, indirectly, the effect of varying the ambient con-
dition, from low, through medium, to high, respectively. This is
because our test environment had a steady temperature (26◦C),
setting for example, a low trip point such as 71◦C results in rel-
atively more DTMs, similar to a hot environment where more
DTMs occur in the chip. This has been implemented through
programming the OS clock modulation register to throttle the
clock [43] upon reaching a pre-defined thermal threshold. Set-
ting the threshold to even lower or higher values will not produce
useful results, for it corresponds either to the case of all jobs be-
ing cool or all jobs being hot (which is the HHH case already
tested in our study.)

7.3.1 DTM Reductions

Figure 6 shows the amount of DTMs for different workloads
when executed under different schedulers. Each graph repre-
sents one thermal environment, as depicted by the labels. The
results are normalized to the baseline DTM amount. Hence, the
lower the bars, the better the results.

As we can see, in all workloads and in all thermal envi-
ronments, the ThreshHot scheduler consistently removes more
DTMs than other schedulers, often by a great amount. The re-
duction ranges are 8.4-81.9% (41.6% on average), 10.5-73.6%
(34.5% on average), 2.5-48.5% (21.2% on average), and 4.1-
70.5% (19.6%) for mild, medium, and harsh thermal environ-
ment, and non-SPEC benchmarks in medium environment re-
spectively. The effectiveness of the ThreshHot over other sched-
ulers is also evident. As an example, for workload ‘HCC’ in
the medium thermal environment (Figure 6(b)), the MinTemp+

scheduler reduced DTMs in the baseline schedule by 7.5%, the
Random scheduler reduced 34.7%, while the ThreshHot sched-
uler reduced as high as 73.6%.

The Random scheduler performs slightly better than the
MinTemp+ scheduler. The former reduces more DTMs in mild
and medium environments. However in harsh conditions, the
Random scheduler can generate more DTMs than the base case,
as shown in the ‘HHW’ workload in Figure 6(c) and (d). This
is possible because among all workloads, this workload presents
most DTMs in the baseline, as will be shown in Figure 7. The

more DTMs in the baseline, the harder for the scheduler to re-
move them through randomizing the job order. Therefore, the
Random scheduler may worsen the thermal behavior in a harsh
thermal environment, or when most jobs are hot.

The Priority scheduler always increases the number of
DTMs. For example, it increased the DTMs by 65% for the
‘HCC’ workload in the mild thermal environment (this cannot
be seen from Figure 6(a) due to its scale). This is because the
scheduler gives higher priorities (more CPU time) to the cool
jobs than the hot jobs, so the former always finish sooner than
the latter. As a result, the hot jobs, when cool jobs are exhausted,
will trigger more DTMs than the baseline because the baseline
always makes about the same progress for both jobs.

7.3.2 Performance Improvements

The performance improvements of different schedulers are not
necessarily proportional to the amount of DTM reductions. This
is because the time due to DTM is only a portion of the total
execution time. Figure 7 plots the percentages of execution time
attributed to DTMs. Figure 8 shows the overall performance
improvements. The three subgraphs represent different thermal
environments, similar to Figure 6. As expected, the Thresh-
Hot scheduler consistently and significantly outperforms other
schedulers. The Priority scheduler brings negative impact to per-
formance unless there is constant supply of cool jobs, which was
assumed in the original work [22]. From these graphs, we make
the following observations:

• Workloads containing cool jobs incur fewer DTMs than
those containing warm and hot jobs. Harsh thermal en-
vironment naturally causes more DTMs in all workloads.

• When considering Figure 6 and 7 jointly, we observe that
the percentage DTM reduction rate depends on their contri-
bution to the total execution time: the more execution time
spent on DTMs, the less effective a thermal-aware sched-
uler is in removing them. (More precisely: it may remove
more DTMs overall, but a smaller percentage.) For exam-
ple, when the DTMs occur only 5.4% of time in ‘HCC’
(Figure 7(a)), the ThreshHot scheduler can easily remove
81.9% of them (Figure 6(a)). When the DTMs occur 44.4%
of time in ‘HHW’ (Figure 7(c)), the TheshHot scheduler
can only remove 2.5% of them (Figure 6(c)). Therefore, the
amount of DTMs existing in a workload indicates directly
how difficult it is to perform a thermal-aware scheduling.
This is, of course, not surprising, for if the average tem-
perature of the workload increases, so does the minimum
number of DTMs in the optimal schedule – independently
of what scheduler we use.

• Figure 8 shows the overall performance reduction, reflect-
ing both the reduction of DTMs from Figure 6 and the
original number of DTMs produced by the base sched-
uler, as seen in Figure 7. We see that a harsh/mild en-
vironment does not necessarily result in less/more per-
formance improvements from a thermal-aware scheduler.
Similarly, workloads having more cool jobs do not always
result in most performance improvements. The highest
performance improvements from the ThreshHot scheduler
are seen in ‘HHC’ (6.56% in mild, 7.18% in medium,
and 6.45% in harsh environment) and ‘HCC’ (6.31% in

(a) Mild thermal environment (b) Medium thermal environment (c) Harsh thermal environment (d) Mix of mediabench, packet-
bench, and netbench in medium en-
vironment

0%
20%
40%
60%
80%

100%
120%

HCC HWCHWWHHC HHW HHH avg

Base Priority MinTemp+ Random ThreshHot

0%
20%
40%
60%
80%

100%
120%

HCC HWCHWWHHC HHW HHH avg

Base Priority MinTemp+ Random ThreshHot

0%
20%
40%
60%
80%

100%
120%

HCC HWCHWWHHC HHW HHH avg

Base Priority MinTemp+ Random ThreshHot

0%
20%
40%
60%
80%

100%
120%

HCC HWCHWWHHC HHW HHH avg

Base Priority MinTemp+ Random ThresHot

Figure 6. Number of thermal emergency triggers, normalized to the baseline scheduler (Linux default).

5.4% 8.0%

17.0%15.5%

29.7%

16.6%15.4%

0%

10%

20%

30%

40%

50%

HCC HWCHWW HHC HHW HHH avg

9.6%
13.1%

23.7%21.2%

38.6%

24.5%21.8%

0%

10%

20%

30%

40%

50%

HCC HWCHWW HHC HHW HHH avg

16.9%19.0%

30.5%28.2%

44.4%

34.2%
28.9%

0%

10%

20%

30%

40%

50%

HCC HWCHWW HHC HHW HHH avg

8.9%10.8%
4.5%

14.6%

28.3%
32.3%

16.6%

0%

10%

20%

30%

40%

50%

HCC HWCHWW HHC HHW HHH avg

Figure 7. Percentage of execution time under DTM in the baseline scheduler.

-6%
-4%
-2%
0%
2%
4%
6%
8%

HCC HWCHWWHHC HHW HHH avg

Priority MinTemp+ Random ThreshHot

-6%
-4%
-2%
0%
2%
4%
6%
8%

HCC HWCHWWHHC HHW HHH avg

Priority MinTemp+ Random ThreshHot

-6%
-4%
-2%
0%
2%
4%
6%
8%

HCC HWCHWWHHC HHW HHH avg

Priority MinTemp+ Random ThreshHot

-6%
-4%
-2%
0%
2%
4%
6%
8%

HCC HWCHWWHHC HHW HHH avg

Priority Mintemp+ Random ThresHot

Figure 8. Performance improvements.
medium, 7.57% in harsh environment, and 6.25% in non-
SPEC programs). The average improvements are 3.8%,
4.7%, 4.1%, and 3.25% for mild, medium, harsh thermal
environment, and non-SPEC programs respectively.

We also observed that the MinTemp+ scheduler, though far
less effective than the ThreshHot scheduler, does a more con-
sistent job in improving the total performance of a workload
than the Random scheduler. The Random scheduler occasion-
ally reduces the performance when it fails to remove DTMs,
e.g., for ‘HHW’ in a harsh environment. However, when the
conditions are mild or medium, the Random scheduler outper-
forms MinTemp+, not only because it reduces more DTMs and
has better performances, but also because it does not require any
online power/temperature calculations, and thus is much easier
to incorporate in an existing system. However, it tends to worsen
the system performance when the thermal condition is severe.

-40%
-20%

0%
20%
40%

m
es

a
am

m
p

m
cf

ov
er

al
l

gc
c

ap
si ar
t

ov
er

al
l

ga
p

ap
si

tw
ol

f
ov

er
al

l

gz
ip

bz
ip ar
t

ov
er

al
l

gz
ip

si

xt
ra

ck
vo

rte
x

ov
er

al
l

m
gr

id
gz

ip
bz

ip
ov

er
al

l

HCC HWC HWW HHC HHW HHH

Figure 9. Drastic performance changes to individual jobs by
MinTemp+ scheduler (mild thermal environment).

One important downside of the MinTemp+ scheduler is that
it penalizes the cool slices for the thermal violations caused by
hot slices. As we analyzed before, this is because the hot pro-
grams always run at full speed until the temperature increases
above the threshold. Then the frequency is scaled and the
coolest program is swapped in at the reduced frequency. As

we can see from Figure 9, although the overall performance is
improved in all workloads, each individual job experiences dras-
tic performance changes, from ∼-30% to ∼+30%. In contrast,
the performance gains from using the ThreshHot and the Ran-
dom scheduler come mainly from the improvements in hot jobs,
which is a more reasonable way of resolving the thermal emer-
gencies.

7.3.3 Overhead

Finally, the overhead of our ThreshHot scheduler (and
MinTemp+ and Priority) mainly comes from the temperature
calculation inserted in the kernel and context switches (includ-
ing cache warm-up). We measured that the time required to cal-
culate the temperatures is∼16.45µs. This has been estimated by
running the program with and without the temperature module
in the kernel for a sufficiently long time and computing the tem-
perature every 8ms. This overhead includes probing the hard-
ware performance counters, calculating power and calculating
the temperatures using the method described in Section 4.1. As
we also mentioned in Section 5.2, the average context switch
time in our test system is ∼35.35µs. This has been determined
by forcing periodic context switches among different programs,
for different period lengths, and comparing the differences in
execution time. The performance results presented earlier are
based on real machine measurements and thus include all the
overhead incurred at runtime.

8 Conclusion
We have proposed the ThreshHot scheduling algorithm, and

compared it with three other thermal-aware schedulers. As we
demonstrated, such a job scheduler, when carefully designed,
not only is feasible but also can remove significant DTMs and

provide great performance benefits. Among the four sched-
ulers we analyzed, our proposed ThreshHot scheduler follows
the strategy of keeping the temperature right below but not ex-
ceeding a given threshold, based on the observation that this ap-
proach increases the heat removal rate and thus is likely to re-
duce the overall number of thermal violations. As it turns out,
indeed, such a scheduling consistently removes most DTMs, and
constantly improves the performance of all types of workloads
in all thermal environments we tested.

The next scheduler we recommend is the Random scheduler,
for it is easy to incorporate, and does not require any online
power/thermal estimations. However, this scheduler does not
achieve the same quality scheduling as the ThreshHot does, and
tends to decrease the performance when the system is in a harsh
thermal condition and DTMs happen very frequently.

The MinTemp+ scheduler, since it toggles between the hot
and cool job, is probably more suitable to lower the average
temperature of a system. We emphasize that the threshold for
toggling should be lower than the hardware threshold in order
not to penalize the cool jobs unfairly. The Priority scheduler
may be helpful in a system with long and cool jobs, and the hot
jobs are not subject to any timing constraints.

References
[1] N. Bansal, T. Kimbrel, K. Pruhs, “Dynamic speed scaling to manage en-

ergy and temperature,” the 45th IEEE FOCS, pp. 520-529, 2004.

[2] N. Bansal, K. Pruhs, “Speed scaling to manage temperature,” Symposium
on Theoretical Aspects of Computer Science, pp. 460-471, 2005.

[3] F. Bellosa, “The benefits of event-driven energy accounting in power-
sensitive systems,” the 9th ACM SIGOPS European Workshop, 2000.

[4] F. Bellosa, A. Weissel, M. Waitz, S. Kellner, “Event-driven energy ac-
counting for dynamic thermal management,” Workshop on COLP, 2003.

[5] D. Bovet, M. Cesati, “Understanding the Linux kernel, 3rd Edition,”
O’Reilly Publisher, November, 2005.

[6] D. Brooks, M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” the 7th HPCA, pp. 171-180, 2001.

[7] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, P. Bose, “Thermal-
aware task scheduling at the system software level,” ISLPED, pp. 213-
218, 2007.

[8] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, J. Lee, “Mod-
eling and managing thermal profiles of rack-mounted servers with ther-
mostat,” IEEE 13th HPCA, 2007.

[9] M.Chrobak and C.Dürr and M.Hurand and J.Robert, “Algorithms for
temperature-aware task scheduling in microprocessor systems,” submit-
ted for publication.

[10] J. Donald, M. Martonosi, “Techniques for multicore thermal manage-
ment: classification and new exploration,” the 33rd ISCA, pp 78-88,
2006.

[11] S. H. Gunther, F. Binns, D. M. Carmean, J. C. Hall, “Managing the im-
pact of increasing microprocessor power consumption,” Intel Technology
Journal, First Quarter, 2001.

[12] Y. Han, I. Koren, C. M. Krishna, “Temptor: A lightweight runtime
temperature monitoring tool using performance counters,” Workshop on
TACS, 2006.

[13] L. He, W. Liao, M. R. Stan, ”System level leakage reduction considering
the interdependence of temperature and leakage,” DAC, pp. 12-17, 2004.

[14] H. Hanson, S. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, J. Ru-
bio, “Thermal response to DVFS: Analysis with an Intel Pentium M,”
ISLPED, pp. 219-224, 2007.

[15] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, R. Bianchini,
“Mercury and freon: temperature emulation and management for server
systems,” ASPLOS, pp. 106-116, 2006.

[16] S. Heo, K. Barr, K. Asanovic, “Reducing power density through activity
migration,” ISLPED, pp. 217-222, 2003.

[17] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, S.
Velusamy, “Compact thermal modeling for temperature-aware design,”
DAC, pp. 878-883, 2004.

[18] W. Huang, E. Humenay, K. Skadron, M. R. Stan, “The need for a full-
chip and package thermal model for thermally optimized IC designs,”
ISLPED, pp. 245-250, 2005.

[19] C. Isci, M. Martonosi, “Runtime power monitoring in high-end proces-
sors: methodology and empirical data,” MICRO, pp. 93-104, 2003.

[20] R. Joseph, M. Martonosi, “Run-time power estimation in high-
performance microprocessors,” ISLPED, pp. 135-140, 2001.

[21] A. Krum, “Thermal management,” In F. Kreith, editor The CRC hand-
book of thermal engineering, pp. 2.1-2.92. CRC Press, Boca Raton, FL
2000.

[22] A. Kumar, L. Shang, L.-S. Peh, N. Jha, “HybDTM: A coordinated
hardware-software approach for dynamic thermal management,” DAC,
pp. 548-553, 2006.

[23] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, P. Bose, “Investigating the ef-
fects of task scheduling on thermal behavior,” Workshop on TACS, 2006.

[24] Y. Li, B. Lee, D. Brooks, Z. Hu, K. Skadron, “CMP design space explo-
ration subject to physical constraints” HPCA, Feb, 2006

[25] Y. Li, D. Brooks, Z. Hu, K. Skadron, “Performance, energy, and thermal
considerations for SMT and CMP architectures,” HPCA, pp. 71-82, 2005.

[26] Z. Lu, J. Lach, M. R. Stan, K. Skadron, “Improved thermal management
with reliability banking,” IEEE Micro, Nov. 2005.

[27] R. McGowen, “Adaptive designs for power and thermal optimization,”
ICCAD, pp. 118-121, 2005.

[28] P. C. Monferrer, G. Magklis, J. González, A. González, “Distributing the
frontend for temperature reduction,” HPCA, pp. 61-70, 2005.

[29] J. Moore, J. Chase, P. Ranganathan, R. Sharma, “Making scheduling
‘cool’: temperature-aware workload placement in data centers,” USENIX
2005 Annual Technical Conference, pp. 61-75, 2005.

[30] P. Pillai, K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” ACM SOSP, pp. 89-102, 2001.

[31] M. D. Powell, M. Gomaa, T. N. Vijaykumar “Heat-and-run: leveraging
SMT and CMP to manage power density through the operating system,”
ASPLOS, pp. 260-270, 2004.

[32] E. Rohou, Michael D. Smith, “Dynamically managing processor temper-
ature and power,” Workshop on FDDO, 1999.

[33] E. Samson, S. Machiroutu, J-Y. Chang, I. Santos, J. Hermerding, A. Dani,
R. Prasher, D. W. Song, “Interface material selection and a thermal man-
agement technique in second-generation platforms built on Intel Centrino
mobile technology,” Intel Technology Journal, February 2005.

[34] K. Skadron, T. Abdelzaher, M. R. Stan, “Control-theoretic techniques
and thermal-RC modeling for accurate and localized dynamic thermal
management,” HPCA, pp. 17-28, 2002.

[35] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
D. Tarjan, “Temperature-aware microarchitecture,” ISCA, pp. 2-13, 2003.

[36] J. Srinivasan, S. V. Adve, “Predictive dynamic thermal management for
multimedia applications,” ICS, pp. 109-120, 2003.

[37] J. Stoer, R. Bulirsch, “Introduction to numerical analysis,” Springer-
Verlag, 2nd ed. 1991.

[38] B. Sprunt, “Brink and abyss Pentium 4 performance counter tools for
Linux,” TR, February 2002.

[39] S. Wang, R. Bettati, “Reactive speed control in temperature-constrained
real-time systems,” the 18th Euromicro Conference on Real-Time Sys-
tems, 2006.

[40] S. Wang, R. Bettati, “Delay analysis in temperature-constrained hard real-
time systems with general task arrivals,” RTSS, pp. 323-334, 2006.

[41] W. Yuan, K. Nahrstedt, “Energy-efficient soft real-time CPU scheduling
for mobile multimedia systems,” ACM SOSP, pp. 149-163, 2003.

[42] N. Zeldovich, R. Chandra, “Interactive performance measurement with
VNCplay,” FREENIX Track: USENIX Annual Technical Conference,
2005.

[43] “Intel Pentium 4 processor in the 478-pin package thermal design guide-
lines,” design guide, Intel, May 2002.

[44] Predictive Technology Model, http://www.eas.asu.edu/ ptm/

