
Cascade: A Dependency-Aware Efficient Training
Framework for Temporal Graph Neural Networks

Yue Dai
University of Pittsburgh

Department of Computer Science
Pittsburgh, PA, USA
yud42@pitt.edu

Xulong Tang
University of Pittsburgh

Department of Computer Science
Pittsburgh, PA, USA

tax6@pitt.edu

Youtao Zhang
University of Pittsburgh

Department of Computer Science
Pittsburgh, PA, USA
youtao@pitt.edu

Abstract
Temporal graph neural networks (TGNN) have gained signif-
icant momentum in many real-world dynamic graph tasks.
These models use graph changes (i.e., events) as inputs to
update nodes’ status vectors (i.e., memories), which are then
exploited to assist predictions. Despite their improved accu-
racies, the efficiency of TGNN training is significantly limited
due to the inherent temporal relationship between the input
events. Although larger training batches can improve paral-
lelism and speed up TGNN training, they lead to infrequent
memory updates, which cause outdated information and re-
duced accuracy. This trade-off forces current methods to use
small batches, resulting in high latency and underutilized
hardware. To address this, we propose an efficient TGNN
training framework, Cascade, to adaptively boost TGNN
training parallelism based on nodes’ spatial and temporal de-
pendencies. Cascade adopts a topology-aware scheduler that
includes as many spatial-independent events in the same
batches. Moreover, it leverages node memories’ similarities
to break temporal dependencies on stabilized nodes, enabling
it to pack more temporal-independent events in the same
batches. Additionally, Cascade adaptively decides nodes’ up-
date frequencies based on runtime feedback. Compared to
prior state-of-the-art TGNN training frameworks, our ap-
proach can averagely achieve 2.3× (up to 5.1×) speed up
without jeopardizing the resulted models’ accuracy.

CCSConcepts: •Computingmethodologies→Artificial
intelligence; Learning paradigms; Parallel algorithms.

Keywords: Temporal GraphNeural Network, Dynamic Graph,
Efficient Deep Learning, Parallel Computing

ACM Reference Format:
YueDai, Xulong Tang, and Youtao Zhang. 2025. Cascade: ADependency-
Aware Efficient Training Framework for Temporal Graph Neural
Networks. In Proceedings of the 30th ACM International Conference

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03.
https://doi.org/10.1145/3676641.3716250

on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rot-
terdam, Netherlands. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3676641.3716250

1 Introduction
Dynamic graphs are widespread across various domains,
such as social media networks [20], knowledge graphs [22],
autonomous systems [24], and traffic networks [29]. Un-
like static graphs, whose nodes and edges remain constant,
dynamic graphs evolve over time, introducing challenging
tasks [1, 3, 6, 16, 20, 21, 31]. Inspired by the successes of
Graph Neural Networks (GNNs) [8, 9, 15, 19, 39, 48], Tempo-
ral graph neural networks (TGNNs) have attracted growing
attention for their improved accuracies in many real-world
dynamic graph tasks [17, 21, 31, 33, 38, 43, 45, 47, 50, 52, 55].
On top of native GNNs, recent TGNN models keep a state
vector for each node, called node memory, to encode the tem-
poral dynamics and spatial relationships around the node.
These memory vectors are continually updated and serve as
the basis for making predictions, allowing TGNNs to achieve
extraordinary prediction accuracy. With growing demands
and interests in TGNN-based models, there is an escalating
demand for developing training schemes that can swiftly
adapt TGNNs to the ever-changing landscapes of dynamic
graphs, ensuring that these models can be deployed quickly
and effectively in real-world scenarios.

However, TGNN training faces significant challenges due
to the sequential dependencies of input events, which sub-
stantially limit throughput. Recent studies utilize Continuous-
Time Dynamic Graphs (CTDGs) to model the evolving dy-
namics of graphs by viewing them as sequences of event
updates, such as changes to nodes or edges. These events
are typically represented as edges connecting one node to
another and are chronologically ordered by their timestamps.
Existing TGNN training approaches segment these event se-
quences into batches for parallel processing [31, 45, 55, 56].
The computation within a single batch generally involves
three steps: First, TGNNs predict edge presence or node
classes based on the latest node memories, then compare
these predictions to events within the batch (as the ground
truth) to calculate losses and update model weights. Sec-
ond, the model uses events within the batch to generate

https://orcid.org/0000-0003-4436-0991
https://orcid.org/0000-0002-3385-2053
https://orcid.org/0000-0001-8425-8743
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3676641.3716250
https://doi.org/10.1145/3676641.3716250
https://doi.org/10.1145/3676641.3716250

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

messages for updating node memories. Lastly, it uses these
messages to update nodes’ memories for future usage. How-
ever, this batching process often overlooks the sequential
occurrence order of events within the same batch. Conse-
quently, larger batches may speed up processing but rely
on potentially outdated node memories, thus compromis-
ing prediction accuracy. To maintain high accuracy, smaller
batches are preferred to ensure updates incorporate the most
recent memories. Nonetheless, these smaller batches lead
to more training iterations and under-utilize the underlying
hardware resources, leading to inefficiencies. For example,
while training the Temporal Graph Network [31] on the
Wikipedia [20] dataset, a batch size of 900 results in a 25%
better validation loss compared to a batch size of 6000 but
slows training on a Nvidia A100 GPU by 3.5×.

Fortunately, there exist significant opportunities to strate-
gically increase the size of training batches in TGNNs with-
out compromising the freshness of the nodes’ memories.
Specifically, the potential stems from two key observations:
First, input events tend to occur sparsely across different
parts of the dynamic graph. In particular, while specific nodes
may experience frequent incoming and outgoing events, lead-
ing to quickly outdated memories, others may see much
fewer events and retain their memory up-to-date over time.
Consequently, when events impact distinct areas of the graph,
they will have weak dependencies, presenting an opportu-
nity to process them in parallel without losing accuracy.
Second, memories within specific nodes could remain stabi-
lized within a period. In particular, some nodes’ memories
may not change much by their outgoing or incoming events
and, therefore, can be updated less frequently. For example,
a consistently popular product in an e-commerce graph may
have stable states (e.g., rating) despite frequent purchases.
Events related to such stable nodes possess low dependen-
cies between each other, hence allowing for their parallel
processing. These insights suggest a pathway to optimizing
TGNN training: By recognizing and leveraging the spatial
relationship of events and the temporal stability of node
memories, it’s feasible to expand batch sizes adaptively.

Inspired by these observations, we propose a TGNN train-
ing framework, Cascade, to adaptively boost TGNN training
parallelism based on input events’ spatial and temporal de-
pendencies. Cascade adaptively increases batch size during
TGNN training in three folds: First, it uses a topology-aware
batching algorithm to pack as many spatially independent
events as possible into single batches, maximizing parallel
processing while maintaining memory freshness. Second, it
identifies stabilized nodes with minimal memory variations
and excludes their updates from batching decisions, bypass-
ing their temporal dependencies for more flexible batch con-
figurations. Third, it dynamically adjusts the frequency of
node memory updates based on runtime feedback during the
training. We summarize our contribution as follows,

• We investigate the trade-off between parallelism and ac-
curacy in TGNN training and recognize the potential of
boosting parallelism of TGNN training by batching spatial
and temporal independent events adaptively.

• We propose a TGNN training framework, Cascade, to dy-
namically identify the spatial and temporal dependencies
between input events and pack as many events as possible
without worsening node memories’ freshness.

• We evaluate our approach on various real-world bench-
marks. The experimental results show that our proposed
training framework can achieve up to 5.1× speedup (2.3×
on average) over the state-of-the-art TGNN training frame-
work without increasing model losses.

2 Background
2.1 Dynamic Graphs
In contrast to static graphs, which are characterized by a
constant set of nodes and edges 𝐺 = (𝑉 , 𝐸), dynamic graphs
embody nodes and edges that evolve over time. There are two
primary representations of dynamic graphs: Discrete-time
dynamic Graphs (DTDGs) describe them as a sequence of
static graph snapshots taken periodically, while Continuous-
Time Dynamic Graphs (CTDGs) view them as a sequence of
events, each detailing updates like edge changes. Recent stud-
ies have shown a preference for CTDGs due to their superior
capacity for capturing detailed temporal variations over the
static time frames inherent to DTDGs [17, 31, 54, 55]. In fact,
DTDGs are often considered specific instances of CTDGs,
distinguished by the segmentation of events into uniform
time intervals [55]. In the CTDGs, dynamic graphs are de-
noted as dynamic graphs as𝐺 = {𝑒 (𝑡1), 𝑒 (𝑡2), ...}, where each
𝑒 (𝑡𝑖) indicates an event happened at timestamp 𝑡𝑖 , typically
represented as an edge with a timestamp. The prediction
tasks for CTDGs can be depicted in Equation 1.

𝑦𝑖 = 𝑓𝜃 (𝐺−
𝑖 , 𝑡𝑖) = 𝑓𝜃 ({𝑒 (𝑡1), 𝑒 (𝑡2), ...𝑒 (𝑡𝑖−1)}, 𝑡𝑖) (1)

At the prediction time 𝑡𝑖 , the model 𝑓𝜃 (·) takes all previous
events 𝐺−

𝑖 = {𝑒 (𝑡1), 𝑒 (𝑡2), ...𝑒 (𝑡𝑖−1)} as inputs and predicts
the testing nodes’ classes or the presence of future edges.

2.2 Temporal Graph Neural Networks
The Temporal Graph Neural Networks (TGNNs) are widely
studied and achieve state-of-the-art accuracies in CTDG
tasks [17, 21, 31, 33, 38, 43, 47, 50, 52]. In addition to embed-
ding nodes’ neighborhood information like Graph Neural
Networks (GNNs) [8, 9, 15, 19, 39, 48], TGNNs maintain a
state vector, usually referred as node memory, for each node.
This memory encodes the node’s history and is used for pre-
dictions. The node memory is updated once the node is the
destination or the source of a new event. Specifically, TGNNs
produce node embedding for the predictions in three steps:

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

First, if an event 𝑒 (𝑡) adds an edge 𝑒𝑢𝑣 from 𝑛𝑜𝑑𝑒𝑢 to 𝑛𝑜𝑑𝑒𝑣
(i.e., 𝑒 (𝑡) = 𝑒𝑢𝑣), themessage generating step will be trig-
gered, in which two messages are generated as Equation 2.
For simplicity, we only present the updating and following
operations of 𝑛𝑜𝑑𝑒𝑢 , which is the same for 𝑛𝑜𝑑𝑒𝑣 .

𝑚𝑣𝑢 =𝑚𝑠𝑔(𝑠−𝑣 , 𝑠−𝑢 ,Δ𝑇, 𝑒𝑢𝑣) (2)
The𝑚𝑠𝑔(·) is a learnable module such as Multi-Layer Percep-
tions (MLPs). The 𝑠−𝑢 and 𝑠−𝑣 denote the memories of 𝑛𝑜𝑑𝑒𝑢
and 𝑛𝑜𝑑𝑒𝑣 at their last updated times, 𝑒𝑢𝑣 denotes the edge
features, and Δ𝑇 is the difference between the event’s occur-
ring timestamp and 𝑛𝑜𝑑𝑒𝑢 ’s last updated time.
Second, when TGNN models trigger a memory updat-

ing step, nodes 𝑢 and 𝑣 aggregate messages generated by
previous events, then update their memories as Equation 3.

𝑠+𝑢 = 𝑈𝑃𝐷𝑇 (𝑠−𝑢 , 𝐴𝐺𝐺𝑅(𝑚−
𝑘𝑢
|𝑘 ∈ 𝑁 (𝑢)), (3)

The 𝑁 (𝑢) denotes neighbors of 𝑛𝑜𝑑𝑒𝑢 . The 𝐴𝐺𝐺𝑅(·) is usu-
ally implemented by a𝑚𝑒𝑎𝑛 (i.e., averaging sampled mes-
sages),𝑚𝑜𝑠𝑡_𝑟𝑒𝑐𝑒𝑛𝑡 (i.e., directly using the latest message)
function to aggregatemessages from the node’s neighbors [21,
31, 42]. The𝑈𝑃𝐷𝑇 (·) uses aggregated results to update the
node’s memory, which is usually implemented by a recurrent
neural network such as Gated-Recurrent-Unit (GRU) [7].

Lastly, when TGNNsmake a prediction that involves𝑛𝑜𝑑𝑒𝑢 ,
the node embedding step is triggered, in which TGNNs use
a GNNmodule, such as Graph Attention Network (GAT) [39],
to embed the node’s and its neighbors’ memories into its
final node embedding, as depicted in Equation 4.

ℎ𝑢 = 𝐺𝑁𝑁 (𝑠𝑢, 𝑠𝑘 |𝑘 ∈ 𝑁 (𝑢)), (4)
The resulting node embedding ℎ𝑢 is fed into a final MLP
module to get the prediction results.

Time

𝒆(𝒕𝒊): Add Edge 𝒆𝟐𝟑

1

2

3

𝒆(𝒕𝒊+𝟏): Add Edge 𝒆𝟑𝟒

4

1

2

3

𝒆(𝒕𝒊+𝟐): Add Edge 𝒆𝟏𝟒

4

1

2

3

𝒆(𝒕𝒊+𝟑): Add Edge 𝒆𝟐𝟒

4

1

2

3

…

𝒆(𝒕𝒊)

𝒆(𝒕𝒊+𝟏)

𝒆(𝒕𝒊+𝟐)

𝒆(𝒕𝒊+𝟑)

…

Input Events

𝒆 𝒕𝒊 = 𝐞𝟐𝟑

𝒆 𝒕𝒊+𝟏 = 𝐞𝟑𝟒

Input Events

𝒆 𝒕𝒊+𝟐 = 𝐞𝟏𝟒

𝒆(𝒕𝒊+𝟑) = 𝐞𝟐𝟒

Messages

𝐦𝟐𝟑

…

𝐦𝟑𝟐

𝐦𝟑𝟒

…

𝐦𝟒𝟑Batch k

Batch k + 1

Node

Memory

𝒔𝟏
−

𝒔𝟐
− → 𝒔𝟐

+

𝒔𝟑
− → 𝒔𝟑

+

𝒔𝟒
− → 𝒔𝟒

+

…

Prediction
෤𝒆 𝒕𝒊

෤𝒆 𝒕𝒊+𝟏

Step 1: Node Embedding

 & Prediction

Step 2:

Message

Generating

Step 3:

Memory

Updating

Loss

Node

Memory

Loss

Messages
Node

Memory

Prediction

Batch k - 1
Batch k - 1

Batch k

Batch k + 1

…
…

Figure 1. TGNN training steps: First start with node embed-
ding and prediction, then message generating, and finally
memory updating.

2.3 TGNN Training on CTDG
In recent developments, training methods for TGNNs have
evolved from traditional snapshot-based approaches, which
process the dynamic graph in a snapshot-by-snapshot man-
ner (i.e., DTDG) [29, 32, 33, 40, 44, 47, 50, 52], to event-
batching training methods, which segment the input event
sequence of CTDGs into batches and then process events
within a single batch in parallel [21, 31, 43, 46, 55, 56]. Each
batch’s events serve a dual purpose: they act as the ground
truth for calculating prediction losses and the inputs for
updating node memories.
Using edge prediction task as an example, as illustrated

in Figure 1, a TGNN model takes a sequence of events (i.e.,
graph changes) as training inputs, divides the sequence into
batches, then processes each batch in three steps as follows:

(1) First, it uses the nodememories updated in the previous
batches to embed node final representations and use the
resulting node features to predict the events in the current
batch. The trainer will then calculate losses based on the
predictions and the input events, back-propagate losses, and
update model weights accordingly. For instance, as shown
in the figure, if there is an event 𝑒 (𝑡𝑖) = 𝑒23 in the batch 𝑘 ,
the TGNN will use 𝑠−2 , 𝑠−3 from updated before the batch as
𝑠𝑢, 𝑠𝑘 to compute ℎ2 as Equation 4 and predict the probability
of the edge 𝑒 (𝑡𝑖). The trainer will then compute the Binary-
Cross-Entropy Loss to measure how much the probability
of this real edge is higher than a wrong edge, such as 𝑒28,
and use the optimizer like Adam Optimizer [18] to backward
propagate the loss and update the model weights.

(2) Second, the messages are generated based on the input
events within the batch. For instance, if there is an event
𝑒 (𝑡𝑖) = 𝑒23 in the batch 𝑘 , the model will generate𝑚23 and
𝑚32 based on the event 𝑒23, its timestamp 𝑡𝑖 , and its source
node’s current memory 𝑠−2 , and destination node’s current
memory 𝑠−3 following Equation 2).
(3) Lastly, for each event within the current batch, the

trainer updates its source and destination nodes’ memories.
For instance, since 𝑒 (𝑡𝑖) = 𝑒23 in the batch 𝑘 involves 𝑛𝑜𝑑𝑒2
and 𝑛𝑜𝑑𝑒3, the models will update 𝑠−2 to 𝑠+2 and 𝑠−3 to 𝑠+3 as
Equation 3) to ensure that they have up-to-date information.
In the batched training diagram, all the events within

the same batch will be processed in parallel to finish the
abovementioned steps. For example, for batch 𝑘 , the events
𝑒23 and 𝑒34, will be processed in parallel: First, the 𝑠−2 , 𝑠−3 , 𝑠−4
will be used to compute the probability 𝑒23 and 𝑒34 (i.e., 𝑒 (𝑡𝑖)
and 𝑒 (𝑡𝑖+1)); next, messages 𝑚23, 𝑚32, 𝑚34 and 𝑚43 will be
generated in parallel as well; lastly, 𝑠−2 , 𝑠−3 , 𝑠−4 will be updated
to 𝑠+2 , 𝑠+3 , 𝑠+4 in parallel using the previous node memories.

3 Motivation
3.1 Challenge in Batched TGNN Training
While batching as many events during TGNN training en-
hances training efficiency by parallel processing input events,

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

it risks using outdated information and neglecting the tem-
poral sequence of these events within a single batch. This

0
0.3
0.6
0.9
1.2
1.5
1.8

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

B
S

=
9
0
0

B
S

=
3
0
0

0

B
S

=
6
0
0

0

TGN JODIE TGN JODIE TGN JODIE TGN JODIE TGN JODIE

WIKI REDDIT MOOC WIKI-TALK SX-FULL

Norm Val Loss Latency

Figure 2. Normalized training latency and validation loss in
TGN and JODIE trained under different batch sizes.

oversight makes TGNN models insensitive to intra-batch
graph dynamics, potentially compromising their awareness
of changes occurring within the current training batch. A
major consequence of batching too many events is the po-
tential expiration of node memories, leading to outdated em-
beddings, stale messages, and inaccurate memory updates.
Moreover, concurrent event processing may disrupt their
temporal sequence, which is crucial for capturing the graph’s
evolution. For example, a trending article’s recommendation
(as an event) may trigger rapidly increased product purchases
in follows (as following events), showcasing how the tempo-
ral order of events can signal significant shifts in the graph’s
structure. As such, large batches could potentially jeopardize
model accuracies, leading to compromised training results.

However, opting for small batches to preserve the tempo-
ral integrity of events may inevitably slow down the training
process since it increases the number of training iterations
required per epoch. To explore the impact of training batch
sizes on training results and latencies, we employ a state-of-
the-art training framework, TGL [55], to train two TGNN—
Temporal Graph Network (TGN) [31] and JODIE [21]—on
the datasets listed in Table 2. More details about the models
and datasets are included in Section 5.1. Specifically, we train
the models in different training batch sizes on a Nvidia A100
GPU and then evaluate their performance at a batch size of
900. As shown in Figure 2, while larger batches effectively
reduce training latency, the resulting models’ validation loss
significantly increases. For instance, compared to BS=900 (us-
ing a batch size of 900), although BS=6000 reduces 71% TGN
training latency on WIKI, the corresponding valuation loss
is increased by 35%. Small batches, while helping accuracies,
could cause poor training latencies. Moreover, the hardware
utilization is significantly low in small batches. For instance,
when training TGN on WIKI with BS=900, the streaming
multiprocessor and memory utilization are as low as 17.2%
and 15.2%, respectively. In contrast, BS=6000 increases these
values to 39.8% and 34.2%. To this end, finding a solution
that balances TGNN training efficiency and effectiveness is
significant yet challenging.

3.2 Spatial-independence in Scattered Events
Our first observation is that training batch can be enlarged
without accuracy loss by adding events from different subgraph
regions. Specifically, events within the input sequence often
occur in distinct subgraphs and impact diverse sets of nodes.
They are independent of each other and can be added to the
same batch for two reasons: First, not all nodes will experi-
ence as many events around them during a period; thus, they
do not expire simultaneously. This staggered expiration al-
lows us to continue relying on nodes that remain unaffected
since their last updates. Second, because events in different
subgraphs typically exert minimal influence on each other,
they can be processed in parallel without jeopardizing the
integrity of the temporal information they carry.
To assess the potential of scattered events, we segment

the training sets of datasets in Table 2 using a batch size of
900 and analyze the distribution of node degrees (i.e., the
number of events outgoing from and incoming to each node)
within these batches. As shown in Figure 3, most nodes
are involved in far fewer events than a subset of highly
connected nodes—the majority have only 0 to 25 events per
batch. Even the most connected nodes have only 140 to 175
events, far less than the batch size. Hence, by significant
chance, we can pack more events into the batches if they are
spatially independent of current batched events.

0%

20%

40%

60%

80%

100%

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

0
-2

0

2
0

-4
0

4
0

-6
0

6
0

-8
0

8
0

-1
0

0

1
0

0
+

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

d
e

 D
e

g
re

e
 D

is
tr

ib
u

ti
o

n

Figure 3. The distribution of nodes’ degree within the batch
size of 900 in different datasets.

However, the fixed batching strategy used by existing ap-
proaches cannot fully exploit the opportunities from this
spatial-independent input. While large batches may poten-
tially include more spatial-independent events, they could
potentially pack too many dependent events if there are
events extensively occur around specific nodes; conversely,
although small batches may mitigate too aggressive batching
on those high-degree nodes, they could potentially miss the
opportunity of packing spatial-independent events. As such,
an ideal batching scheme should adaptively increase and
decrease batch sizes to include as many spatial-independent
events as possible while avoiding packing too many spatial-
dependent events on those high-degree nodes. We illustrate
an example in Figure 4, in which an original batch con-
tains events related to 𝑛𝑜𝑑𝑒1 and its neighbors: If the fol-
lowing events continue to affect the same set of nodes (e.g.,
𝑒16, 𝑒15, 𝑒13 continues to affect 𝑛𝑜𝑑𝑒1 and its neighbors), then

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

4

2

1

3

8

6

9 b

7 a

5 d

c

𝐞𝟏𝟐 𝐞𝟏𝟕 𝐞𝟏𝟖 𝐞𝟏𝟗 … … …

𝐞𝟏𝟐 𝐞𝟏𝟕 𝐞𝟏𝟖 𝐞𝟏𝟗 𝐞𝟏𝟔 𝐞𝟏𝟓 𝐞𝟏𝟑

𝐞𝟏𝟐 𝐞𝟏𝟕 𝐞𝟏𝟖 𝐞𝟏𝟗 𝐞𝒂𝒄 𝐞𝒂𝒃 𝐞𝒂𝒅
Original Batch: 𝒏𝒐𝒅𝒆𝟏 extensively affected

Spatial Dependent:

Following events involve 𝒏𝒐𝒅𝒆𝟏

Spatial Independent:

Following events not involve 𝒏𝒐𝒅𝒆𝟏

𝐞𝟏𝟐 𝐞𝟏𝟕 𝐞𝟏𝟖 𝐞𝟏𝟗 𝐞𝟏𝟔 𝐞𝟏𝟓 𝐞𝟏𝟑

𝒏𝒐𝒅𝒆𝟏 = 𝑺𝟏
− 𝒏𝒐𝒅𝒆𝟏 = 𝑺𝟏

+ ≈ 𝑺𝟏
−

𝐞𝟏𝟐 𝐞𝟏𝟕 𝐞𝟏𝟖 𝐞𝟏𝟗 𝐞𝟏𝟔 𝐞𝟏𝟓 𝐞𝟏𝟑

𝒏𝒐𝒅𝒆𝟏 = 𝑺𝟏
− 𝒏𝒐𝒅𝒆𝟏 = 𝑺𝟏

+ ≈ 𝑺𝟏
−

Temporal Independent:

𝒏𝒐𝒅𝒆𝟏 is stabilized

Temporal Dependent:

𝒏𝒐𝒅𝒆𝟏 is NOT

stabilized

(a) Spatial Independence (b) Temporal Independence

Figure 4. An example illustration of (a) Spatial Independence due to events scattered in different subgraphs; and (b) Temporal
Independence due to stabilized node memories with their consequent potential in increasing batch sizes.

they are spatial dependent to current batch and the batch can-
not be increased. Conversely, if the following event affects
other nodes (e.g., 𝑒𝑎𝑐 , 𝑒𝑎𝑏, 𝑒𝑎𝑑 affect 𝑛𝑜𝑑𝑒𝑎 and its neighbors
instead of 𝑛𝑜𝑑𝑒1), we may expand the batch to include them.

3.3 Temporal-independence in Stabilized Memories
Our second observation is that training batch can also be
enlarged without accuracy loss by adding events related to
stabilized node memory. Specifically, during the memory up-
dating phase in TGNNs, many nodes reach a state of stability
for extended periods. These stabilized nodes provide reliable,
up-to-date memories, and their stability enables associated
events to be processed in parallel without missing impor-
tant temporal information. The intuition behind this is that
nodes in the real world may usually stabilize and show simi-
lar behaviors over a period. For instance, a Reddit user may
consistently show interest in specific topics, such as a par-
ticular game, and frequently engage in related discussions.

0%
20%
40%
60%
80%

100%

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

E
p

o
c
h

=
0

E
p

o
c
h

=
2

0

E
p

o
c
h

=
4

0

TGN JODIE TGN JODIE TGN JODIE TGN JODIE TGN JODIE

WIKI REDDIT WIKI WIKI WIKI

N
o

d
e
 S

ta
b

le
 R

a
ti

o
(%

)

Figure 5. The ratio of stable node updates in different epochs
when TGN and JODIE.

As depicted in Figure 5, while training TGN [31] and
JODIE [21] (on the datasets specified in Table 2), on average,
over 84% of the nodes maintain similar memory before and
after updates (i.e., with a cosine similarity higher than 0.9)
when models are trained after 20 epochs. To this end, by mea-
suring runtime information and identifying these stabilized
nodes, it is highly possible to adaptively neglect unneces-
sary temporal dependencies among events, thereby batching
more events related to the same but stabilized nodes into
a single batch without sacrificing the integrity of temporal
data. We illustrate the cases using the same example in Fig-
ure 4: For the extensively affected 𝑛𝑜𝑑𝑒1, if it is not stabilized

(i.e., it has dissimilar memories before and after the node up-
date in the original batch), then we need to update it before
conduct following computations on 𝑒16, 𝑒15, 𝑒13. Conversely,
suppose it is stabilized (i.e., it has highly similar memories
before and after the node update in the original batch). In
that case, we may expand the batch to conduct computations
on 𝑒16, 𝑒15, 𝑒13 as they can use similar input no matter with
or without updating nodes’ memories.

4 Design
4.1 Overview of Cascade
We introduce Cascade, an efficient training framework to in-
crease batch sizes while keeping model accuracy. It consists
of three designs: First, we propose a Topology-aware Graph
Diffuser (TG-Diffuser) to incorporate spatial-independent
events into batches. Second, we design a Similarity-aware
Graph Filter (SG-Filter) to add temporal-independent events
into batches. Lastly, we introduce anAdaptive Batch Sensor
(ABS), a profile-based auto-tuner to analyze input training
data and automatically control the TG-Diffuser.

Preprocess

Training Epoch

Adaptive Batch Sensor:

Analyze original batching statistics
Topology-Aware Graph Diffuser:

Build dependency table

Topology-Aware Graph Diffuser:

Parallelly increment the last event Node Embedding & Prediction

Message Generating

Memory Updating

Training Event Sequence

Training Event Sequence

Batch

Similarity-Aware Graph Filter:

Update node stable status

a b

c

1 2

3 4

5

Figure 6. The workflow overview of Cascade.

The complete workflow of the Cascade framework is il-
lustrated in Figure 6. We also detail it in Algorithm 1. Be-
fore training, the TG-Diffuser and ABS collaboratively pre-
process the sequence of events in three steps: Initially, the

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

TG-Diffuser analyzes the training events (a) to construct a
dependency table that captures both spatial and temporal
dependencies among the events (i.e., line 5 in Algorithm 1).
Subsequently, the ABS processes these events as input (b)
and profiles the batching patterns using an originally de-
fined sample batch size, which is small enough to ensure
the training proceeds without deteriorating the model’s per-
formance (i.e., line 6 in Algorithm 1). Based on this analy-
sis, the ABS sets the appropriate hyper-parameters for the
TG-Diffuser (c) (i.e., line 7 in Algorithm 1), optimizing the
training setup. During training, the TG-Diffuser collaborates

Algorithm 1: TGNN training in Cascade
Input :𝐺 : Input dynamic graph as event sequence; 𝑁

Number of input training events; 𝐵0: pre-defined
batch size; 𝐸: Training epochs.

1 Initialize: Topology-Aware_Graph_Diffuser(TG-Diffuser);
2 Initialize Adaptive_Batch_Sensor(ABS);
3 Initialize Similarity-Aware_Graph_Filter(SG-Filter);
4 Initialize TGNN model(𝑇𝐺𝑁𝑁);
// Preprocessing before training:

5 TG-Diffuser.build_dependency_table(𝐺);
6 𝜔 = ABS.max_endurance_profiling(𝐺);
7 TG-Diffuser.set_parameters(𝜔);
8 𝑠𝑡_𝑖𝑑𝑥 = 𝑒𝑑_𝑖𝑑𝑥 = 0;
// Training:

9 for 𝑒 = 0, 1, · · · , 𝐸 − 1 do
10 SG-Filter.reset();
11 while 𝑒𝑑_𝑖𝑑𝑥 < 𝑁 do
12 𝑠𝑡_𝑖𝑑𝑥 = 𝑒𝑑_𝑖𝑑𝑥 ;

// Signify stable nodes:

13 S = SG-Filter.get_stable_nodes();
// Get current batch:

14 𝑒𝑑_𝑖𝑑𝑥 = TG-Diffuser.get_last_event_index(S);
15 𝑦 = 𝐺 [𝑠𝑡_𝑖𝑑𝑥 : 𝑒𝑑_𝑖𝑑𝑥];

// Model Training:

16 H = 𝑇𝐺𝑁𝑁 .Node_Embedding(𝑦);
17 𝑦 = 𝑀𝐿𝑃 (H);
18 L(𝑦,𝑦).backward();
19 𝑇𝐺𝑁𝑁 .Generate_Message(𝑦);
20 𝑇𝐺𝑁𝑁 .Update_Node_Memory(𝑦);

// Update stable node flags:

21 SG-Filter.update_stable_nodes_flags(𝑇𝐺𝑁𝑁);
22 return 𝑇𝐺𝑁𝑁 ;

with the SG-Filter to dynamically increase the training batch
sizes through a five-step process: Initially, the TG-Diffuser
sends a request to the SG-Filter (1) and retrieves (2) the
node stable flags(i.e., line 12 in Algorithm 1), which are reset
to all-false at the start of each epoch. Then, the TG-Diffuser
ignores those stable nodes and identifies the last tolerable
events for the current batch using the previously established
dependency table (i.e., line 13 in Algorithm 1). This informa-
tion is then used to segment a new batch from the training

event sequence (3) (i.e., line 14 in Algorithm 1). Following
this, the TGNN models access the relevant events (4) and
proceed with the designated training steps (i.e., lines 15-19
in Algorithm 1). Lastly, the SG-Filter dynamically updates
the node stable flags based on the node memories before and
after the updates within the current batch (5) (i.e., line 20
in Algorithm 1), ensuring that the node stable information
is dynamically adjusted over training.

4.2 Topology-Aware Graph Diffuser
The TG-Diffuser efficiently integrates spatially independent
events into batches through a two-step process: Initially,
before training, it builds a dependency table that maps the
spatial relationships between input events and nodes. The
table reflects all related events around nodes. Next, for each
batch, the TG-Diffuser independently identifies the last tol-
erable event on different nodes, which signifies the necessity
to update node memories, and then includes all preceding
unprocessed events up to this point into the current batch.
Build Dependency Table. Given a training dynamic

graph of 𝑁 nodes, the TG-Diffuser first builds a 𝑁 -entries
Dependency Table to reflect the spatial dependency between
the training events and their related nodes. Each entry within
the table contains two fields: Node Idx describes a node, and
Event Idx consists of a sequence of event indices that in-
dicate the events that may affect the node and, conversely,
potentially may rely on the node. We illustrate the workflow
of building the dependency table in Figure 7(a) and show the
detailed algorithm in Algorithm 2. For each node (i.e., each
table entry), the TG-Diffuser fills its Event Idx in two steps.
First, it inserts all incoming and outgoing events indices of
the current node into the Event Idx. For instance, as shown
by the Step 1, for 𝑛𝑜𝑑𝑒1 = 𝑛1, its incoming and outgoing
events {𝑒 (0), 𝑒 (1), 𝑒 (2), 𝑒 (3), 𝑒 (8), 𝑒 (10)} are added into the
entry. The reason behind this is straightforward—all these
events will be directly used to update the node’s memory
as 𝑚−

𝑘𝑢
in Equation 3, and the prediction about them will

directly use the node’s memory as 𝑠𝑢 in Equation 4. Second,
the TG-Diffuser looks up the node’s neighbors and adds
all their future events to the current node’s Event Idx. As
shown by the Step 2, where 𝑛𝑜𝑑𝑒1 has 𝑛𝑜𝑑𝑒3 as its neigh-
bors due to 𝑒 (8) = 𝑒13, we add the events of 𝑛𝑜𝑑𝑒3 after 𝑒 (8)
into 𝑛𝑜𝑑𝑒1’s Event Idx. These events are relevant to the
current node because they update the neighbors’ memories,
influencing the current node’s future memory updating and
embedding; reversely, predicting them relies on features of
the current node. It is worth mentioning that we do not in-
clude the past events in neighbors before they are connected
to the current node (e.g., do not add events of 𝑛𝑜𝑑𝑒3 before
index 8)) since these neighbors are independent with the
current node before there is an event building a connecting
between them. We only consider events from the current
node’s 1-hop neighbors since they directly affect the current
node’s memories and propagate information from further

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

4

2

1

3

8

6

9 b

7 a

5 d

c

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge 𝒆𝟏𝟐 𝒆𝟏𝟕 𝒆𝟏𝟖 𝒆𝟏𝟗 𝒆𝒂𝒃 𝒆𝒂𝒄 𝒆𝒂𝒅 𝒆𝒂𝟒 𝒆𝟏𝟑 𝒆𝟏𝟓 𝒆𝟏𝟔 𝒆𝟑𝟒

Node Indices Event Indices

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

Step 1. Sorted insert node’s in/out

For 𝒏𝒐𝒅𝒆𝟏 = 𝒏𝟏:

…

Node Idx Event Idx

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

2 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

3 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

4 𝟕, 𝟏𝟏

5 𝟗, 𝟏𝟎

6 𝟏𝟎

7 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

8 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

9 𝟑, 𝟖, 𝟗, 𝟏𝟎

a (i.e., 10) 𝟒, 𝟓, 𝟔, 𝟕, 𝟏𝟏

b (i.e., 11) 𝟒, 𝟓, 𝟔, 𝟕

c (i.e., 12) 𝟓, 𝟔, 𝟕

d (i.e., 13) 𝟔, 𝟕

𝑬 𝒏𝟏

= {𝒆(𝟎), 𝒆(𝟏), 𝒆(𝟐), 𝒆(𝟑), 𝒆(𝟖), 𝒆(𝟗), 𝒆(𝟏𝟎)}

4

2

1

3

8

6

9 b

7 a

5 d

c
Node Indices Event Indices

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

Step 2. Sorted insert node’s neighbors’ future events

𝑬 𝒏𝟑 = {𝒆 𝟖 , 𝒆(𝟏𝟏))

Node Idx Event Idx

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

2 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

3 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

4 𝟕, 𝟏𝟏

5 𝟗, 𝟏𝟎

6 𝟏𝟎

7 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

8 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

9 𝟑, 𝟖, 𝟗, 𝟏𝟎

a (i.e., 10) 𝟒, 𝟓, 𝟔, 𝟕, 𝟏𝟏

b (i.e., 11) 𝟒, 𝟓, 𝟔, 𝟕

c (i.e., 12) 𝟓, 𝟔, 𝟕

d (i.e., 13) 𝟔, 𝟕

Step 1. Search the last node event under 𝑴𝒂𝒙𝒓=4

Step 2. Reduce to the batch last event

Node Idx 1 2 3 4 5 6 7 8 9 a b c d

Last Event 8 8 - - - - 9 10 - 11 - - -

Last Event = 8

Step 3. Get batch & Update node event pointers

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge 𝒆𝟏𝟐 𝒆𝟏𝟕 𝒆𝟏𝟖 𝒆𝟏𝟗 𝒆𝒂𝒃 𝒆𝒂𝒄 𝒆𝒂𝒅 𝒆𝒂𝟒 𝒆𝟏𝟑 𝒆𝟏𝟓 𝒆𝟏𝟔 𝒆𝟑𝟒

4

2

1

3

8

6

9 b

7 a

5 d

c

(a) (b)

Figure 7. The workflow of TG-Diffuser: (a) Building dependency Table during preprocessing and (b) Looking up the last
tolerable event during training.

Algorithm 2: Build Dependency Table
Output :𝐷 : Node-event dependency Table
Input :𝐺 : Input dynamic graph as event sequence; 𝑁

Number of nodes.
1 Initialize 𝐷 = {𝐷0, 𝐷1, · · · , 𝐷𝑁−1};
// Loop Parallel:

2 for 𝑛 = 𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, · · · , 𝑛𝑜𝑑𝑒𝑁−1 do
3 for 𝑒𝑛𝑞 ∈ 𝑂𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠 (𝑛) ∪ 𝐼𝑛𝐸𝑣𝑒𝑛𝑡𝑠 (𝑛) do

// 𝑒𝑛𝑞: Event from node 𝑛 to node 𝑞

4 𝐷𝑛 .𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑛𝑞);
5 for 𝑒𝑞𝑘 ∈ 𝑂𝑢𝑡𝐸𝑣𝑒𝑛𝑡𝑠 (𝑞) ∪ 𝐼𝑛𝐸𝑣𝑒𝑛𝑡𝑠 (𝑞) do

// Insert future events in 𝑞

6 if 𝑒𝑞𝑘 .𝑖𝑛𝑑𝑒𝑥 > 𝑒𝑛𝑞 .𝑖𝑛𝑑𝑒𝑥 then
7 𝐷𝑛 .𝑠𝑜𝑟𝑡𝑒𝑑_𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑞𝑘);
8 return 𝐷 ;

distant neighbors. For instance, if 𝑛𝑜𝑑𝑒𝑥 has neighbor 𝑛𝑜𝑑𝑒𝑦
and 𝑛𝑜𝑑𝑒𝑦 has neighbor 𝑛𝑜𝑑𝑒𝑧 , the updates in 𝑛𝑜𝑑𝑒𝑧 will not
affect 𝑛𝑜𝑑𝑒𝑥 unless 𝑛𝑜𝑑𝑒𝑦 is updated; otherwise, 𝑛𝑜𝑑𝑒𝑥 will
always use the same version of 𝑛𝑜𝑑𝑒𝑦 , even if 𝑛𝑜𝑑𝑒𝑦 has an
expired neighbor 𝑛𝑜𝑑𝑒𝑧 . We implement the process using
OpenMP [4] to enable parallel building; to ensure that the
resulting Event Idx contains unique events sorted by their
occurrence, we use sets in C++ to implement the Event Idx
entries. The dependency table is stored in the host memory
and will not be updated once built.

Get Last Tolerable Event. During training, TG-Diffuser
looks into each node and finds the last tolerable event for the
current batch independently. Intuitively, the process includes
more events on those less affected nodes without introducing
more events to those mostly affected nodes. To quantitatively
measure the extension of being affected, we introduce a new
parameter, namely, Maximum Revisit Endurance (𝑀𝑎𝑥𝑟). It
defines the maximum number of relevant events (i.e., events
in Event Idx) for a nodewithin the batch.With higher𝑀𝑎𝑥𝑟 ,
the nodes will be affected/used more before updating. The
Adaptive Batch Sensor will analyze and control this param-
eter, as specified in Section 4.4. The TG-Diffuser increases
the batch size under the limit of𝑀𝑎𝑥𝑟 in three steps, as illus-
trated in Figure 7(b) and specified in Algorithm 3: First, at

Algorithm 3: Lookup Last Tolerable Event
Input :𝐷 : Node-event dependency Table; 𝑃 : Node’s

current latest event ptr; 𝑁 Number of nodes;
𝑀𝑎𝑥𝑟 maximum revisit endurance.

Output :𝐾 : the last tolerable event index for current batch.
1 Initialize 𝐾 = 𝑀𝐴𝑋_𝐼𝑁𝑇 ;
// Loop Parallel: get last tolerable event

2 for 𝑛 = 𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, · · · , 𝑛𝑜𝑑𝑒𝑁−1 do
3 𝐷𝑛 = 𝐷 [𝑛];
4 𝑐𝑢𝑟_𝑝𝑡𝑟 = 𝑃 [𝑛]; // 𝑐𝑢𝑟_𝑝𝑡𝑟 points to node’s

latest relevant event in its event index

5 𝑚𝑎𝑥_𝑝𝑒𝑟𝑚_𝑝𝑡𝑟 =𝑚𝑖𝑛(𝑐𝑢𝑟_𝑝𝑡𝑟 +𝑀𝑎𝑥𝑟 , 𝐷𝑛 .𝑙𝑒𝑛𝑔𝑡ℎ − 1);
6 𝑒𝑛 = 𝐷𝑛 [𝑚𝑎𝑥_𝑝𝑒𝑟𝑚_𝑝𝑡𝑟];
7 𝐾 =𝑚𝑖𝑛(𝑒𝑛, 𝐾);
// Loop Parallel: update nodes’ event pointers

8 for 𝑛 = 𝑛𝑜𝑑𝑒0, 𝑛𝑜𝑑𝑒1, · · · , 𝑛𝑜𝑑𝑒𝑁−1 do
9 if 𝐷 [𝑛] [𝑃 [𝑛]] < 𝐾 then

10 𝑃 [𝑛] + +;
11 return 𝐾 ;

each node, the TG-Diffuser begins with the node’s earliest
unprocessed events indicated by the node’s current event
pointer. It increments this pointer by𝑀𝑎𝑥𝑟 to determine the
node’s last tolerable event, at which this node is involved
too excessively in the current batch and requires an update.
For instance, as shown in the figure, for 𝑛𝑜𝑑𝑒0, it starts from
𝑒 (0) and gets the last event at 𝑒 (8), meaning that the 𝑛𝑜𝑑𝑒0
is affected by too many events (i.e.,𝑀𝑎𝑥𝑟 = 4) and should be
updated at 𝑒 (8). For those events that have all their events
bypassed, we set their result as𝑀𝐴𝑋_𝐼𝑁𝑇 to indicate that
all remaining events in their entries can be processed safely.
Second, the TG-Diffuser reduces the last event indices from
different nodes and gets the smallest index among them. In-
tuitively, we would like to have a batch processed once a
node cannot tolerate more related events. Using the same
example, as shown in the figure, the batch’s last event is 𝑒 (8)
since any events after this one may use intolerably expired
information on 𝑛𝑜𝑑𝑒1 or 𝑛𝑜𝑑𝑒2. Lastly, the TG-Diffuser re-
turns the last event index as depicted in Algorithm 3 and
updates all nodes’ last event pointers, making them point to
the next unprocessed event within the related nodes.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

Node Idx Event Idx

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

2 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

3 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏

4 𝟕, 𝟏𝟏

5 𝟗, 𝟏𝟎

6 𝟏𝟎

7 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

8 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎

9 𝟑, 𝟖, 𝟗, 𝟏𝟎

a (i.e., 10) 𝟒, 𝟓, 𝟔, 𝟕, 𝟏𝟏

b (i.e., 11) 𝟒, 𝟓, 𝟔, 𝟕

c (i.e., 12) 𝟓, 𝟔, 𝟕

d (i.e., 13) 𝟔, 𝟕

Ignore Stable nodes, then search the last

node event under 𝑴𝒂𝒙𝒓=4

Reduce to the batch last

event

Node Idx 1 2 3 4 5 6 7 8 9 a b c d

Last Event - - - - - - - 10 - 11 - - -

Last Event = 8➔10

Get batch with temporal & spatial independence

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11

Event Edge 𝒆𝟏𝟐 𝒆𝟏𝟕 𝒆𝟏𝟖 𝒆𝟏𝟗 𝒆𝒂𝒃 𝒆𝒂𝒄 𝒆𝒂𝒅 𝒆𝒂𝟒 𝒆𝟏𝟑 𝒆𝟏𝟓 𝒆𝟏𝟔 𝒆𝟑𝟒

4

2

1

3

8

6

9 b

7 a

5 d

c

(a) (b)

Memory Update

𝒔𝟏
− → 𝒔𝟏

+

𝒔𝟐
− → 𝒔𝟐

+

𝒔𝟕
− → 𝒔𝟕

+

…

Node Idx Stable Flag

1 1

2 1

3 0

4 0

5 0

6 0

7 1

8 0

9 0

a (i.e., 10) 0

b (i.e., 11) 0

c (i.e., 12) 0

d (i.e., 13) 0

Memory

Similarity

𝟎. 𝟗

𝟎. 𝟗

𝟎. 𝟗

…

Previous Batch

𝐞𝟏𝟐
−

𝐞𝟏𝟕
−

…

… Step 1:

Compute similarities

𝑺𝒊𝒎 𝑺𝟏
−, 𝑺𝟏

+

𝑺𝒊𝒎 𝑺𝟐
−, 𝑺𝟐

+

𝑺𝒊𝒎 𝑺𝟕
−, 𝑺𝟕

+

…

Step 2:

Check if node is

stable

𝑺𝒊𝒎 𝑺𝟏
−, 𝑺𝟏

+ > 𝜽𝒔𝒊𝒎

𝑺𝒊𝒎 𝑺𝟐
−, 𝑺𝟐

+ > 𝜽𝒔𝒊𝒎

𝑺𝒊𝒎 𝑺𝟕
−, 𝑺𝟕

+ > 𝜽𝒔𝒊𝒎

…

Figure 8. The workflow of SG-Filter: (a) Update node stable flag and (b) Guide TG-Diffuser to ignore stable nodes while
looking up the last tolerable event.

Chunk-based Optimization for Large-Scale Graphs.
While TG-Diffuser has low overhead for moderate-sized dy-
namic graphs, its overhead can increase with larger graphs
(as we quantified on large-scale graphs in Section 5.5). To ad-
dress this, we propose a chunk-based table-building strategy
to reduce the overheads and enhance scalability. For large
event sequences (e.g., billions of events) in large-scale graphs,
we apply a two-step divide-and-conquer approach: (1) We
split the sequence into smaller chunks, each containing a
subset of consecutive events; and (2) we build tables indepen-
dently for each chunk, considering only within-chunk depen-
dencies. The final event in each chunk serves as a boundary
to limit dependencies. Training is performed sequentially
across chunks, ensuring node memories update in the cor-
rect order. This optimization boosts TG-Diffuser efficiency
in two ways. First, processing smaller chunks improves data
locality, significantly reducing cache misses and consequent
memory latencies during the table building process. Specifi-
cally, instead of repeatedly accessing large memory sections
that exceed cache capacity, processing smaller chunks allows
each thread (i.e., node) to work with data that is more likely
to remain in the cache. Second, by pipelining table building
and training, training in each chunk can start as soon as its
table is ready and training in the previous chunk has finished.
This approach speeds up overall processing by pipelining
and overlapping table building with training tasks.

4.3 Similarity-Aware Graph Filter
As discussed in Section 3.3, if a node exhibits stable memory—
meaning its memory status changes minimally over time—–
events associated with this node will consistently retrieve
similar input memories. Consequently, we can neglect these
stabilized nodes when assessing dependencies within the in-
put sequence. The Similarity-Aware Graph Filter (SG-Filter)
is designed to identify temporal independence among node
memories, thereby mitigating unnecessary constraints im-
posed by these temporal dependencies.

The operation of the SG-Filter unfolds in two main steps,
as depicted in Figure 8. First, the SG-Filter maintains and

updates node stable flags once the node memory is updated
in two steps: At step 1, it calculates the similarities between
nodes’ memories before/after their updates. As illustrated
in Figure 8(a), when memories in 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, 𝑛𝑜𝑑𝑒7 are up-
dated from 𝑠−1 , 𝑠

−
2 , 𝑠

−
7 to 𝑠+1 , 𝑠+2 , 𝑠+7 due to input events 𝑒−12, 𝑒−17,

the SG-Filter computes the similarities between 𝑠−1 and 𝑠+1 ,
𝑠−2 and 𝑠+2 , 𝑠−7 and 𝑠+7 , respectively. Next, at step 2, it compares
the similarities with predefined threshold 𝜃𝑠𝑖𝑚—if the sim-
ilarity is higher than the threshold, the node is considered
stable, and vice versa—and updates the nodes’ flags accord-
ingly. For instance, 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, 𝑛𝑜𝑑𝑒7 are considered sta-
ble since 𝑠𝑖𝑚(𝑠−1 , 𝑠+1), 𝑠𝑖𝑚(𝑠−2 , 𝑠+2), 𝑠𝑖𝑚(𝑠−7 , 𝑠+7) are higher than
𝜃𝑠𝑖𝑚 = 0.9, and their flags are updated to 1. Lastly, based on
the node stable flag, the SG-Filter guides the TG-Diffuser
to ignore the stable nodes straightforwardly: It signifies the
stable node indices to TG-Diffuser, and the TG-Diffuser will
no longer look up the last event in those stable nodes’ entires.
For instance, as illustrated in Figure 8(b), the TG-Diffuser
will ignore their entries if 𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, 𝑛𝑜𝑑𝑒7 is specified as
stable. Consequently, the barriers (i.e., Node last events as 8)
posed by 𝑛𝑜𝑑𝑒1 and 𝑛𝑜𝑑𝑒2 no longer exist, and we can further
expand batch size from 8 to 10.

4.4 Adaptive Batch Sensor
As discussed in Section 4.2, we employ the concept of Max-
imum Revisit Endurance (𝑀𝑎𝑥𝑟) to quantitatively control
how many events a node can tolerate before its updating.
A higher 𝑀𝑎𝑥𝑟 value allows nodes to participate in more
events per batch, increasing the risk of incorporating out-
dated information. Consequently, a high 𝑀𝑎𝑥𝑟 potentially
leads to more broken input dependencies. To ensure the
TG-Diffuser operates within thresholds that maintain train-
ing efficiency without sacrificing the quality of the input
data as the originally defined small batch sizes, we introduce
the Adaptive Batch Sensor (ABS), a profile-based module, to
gather statistics on𝑀𝑎𝑥𝑟 using the original batch sizes.
Maximum Endurance Profiling. As depicted in Fig-

ure 9, the ABS begins by segmenting the input sequence into
batches using a predefined small batch size. It then randomly

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Event Idx 0 1 2 3 4 5 6 7 8 9 10 11
Event Edge 𝒆𝟏𝟐 𝒆𝟏𝟕 𝒆𝟏𝟖 𝒆𝟏𝟗 𝒆𝒂𝒃 𝒆𝒂𝒄 𝒆𝒂𝒅 𝒆𝒂𝟒 𝒆𝟏𝟑 𝒆𝟏𝟓 𝒆𝟏𝟔 𝒆𝟑𝟒

Node Idx Event Idx

1 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏
2 𝟎, 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎
3 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏
4 𝟕, 𝟏𝟏
5 𝟗, 𝟏𝟎
6 𝟏𝟎
7 𝟏, 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎
8 𝟐, 𝟑, 𝟖, 𝟗, 𝟏𝟎
9 𝟑, 𝟖, 𝟗, 𝟏𝟎

a (i.e., 10) 𝟒, 𝟓, 𝟔, 𝟕, 𝟏𝟏
b (i.e., 11) 𝟒, 𝟓, 𝟔, 𝟕
c (i.e., 12) 𝟓, 𝟔, 𝟕
d (i.e., 13) 𝟔, 𝟕

Sample Batch Size = 4

Batch 0
0 1 2 3

𝒆𝟏𝟐 𝒆𝟏𝟕 𝒆𝟏𝟖 𝒆𝟏𝟗

Batch 1
4 5 6 7

𝒆𝒂𝒃 𝒆𝒂𝒄 𝒆𝒂𝒅 𝒆𝒂𝟒

Batch 3
8 9 10 11

𝒆𝟏𝟑 𝒆𝟏𝟓 𝒆𝟏𝟔 𝒆𝟑𝟒

Batch Index 0 1 2

Max Endurance 𝟒 𝟒 𝟒

𝑴𝒆𝒂𝒏(𝑴𝒂𝒙𝒓) = 𝟒
𝑩𝒂𝒕𝒄𝒉 𝑵𝒖𝒎𝒃𝒆𝒓 = 𝟑

Count Batch

Events

Get Stats

Figure 9. The workflow of maximum endurance profiling .
selects several batches to gather statistics on𝑀𝑎𝑥𝑟 through a
two-step process. Initially, for each batch, the ABS counts the
number of relevant events for each node and identifies the
highest count, which is termed Max Endurance. For example,
in Batch 1, nodes 𝑛𝑜𝑑𝑒4, 𝑛𝑜𝑑𝑒𝑎 , 𝑛𝑜𝑑𝑒𝑏 , 𝑛𝑜𝑑𝑒𝑐 , and 𝑛𝑜𝑑𝑒𝑑 are
involved in 1, 4, 4, 3, and 2 relevant events respectively, result-
ing in a Max Endurance of 4. Subsequently, ABS compares
statistics from various batches, calculating the maximum,
mean, and minimum values of Max Endurance and counting
the batch number under the small batch settings. These sta-
tistics are then communicated to the TG-Diffuser to establish
the upper limits on node involvement in each batch.
Logarithmic-Decaying Endurance. During training,

the TG-Diffuser employs a logarithmic decaying strategy to
subtly tune𝑀𝑎𝑥𝑟 between the max and minimum values of
Max Endurance configured by the ABS. In particular, ABS
decays 𝑀𝐴𝑋𝑟 once convergence halts (training loss stops
decreasing for ten batches) as smaller batches can provide
fresher node memories, aiding convergence. When triggered,
the decaying step size is decided by the batch index—To
avoid introducing errors in early timestamps, we adopt larger
reduction steps in early batches and smaller reductions in
later batches. The resulting new𝑀𝐴𝑋𝑟 will be sent to the TG-
Diffuser to control how many events one node can endure
before its update. Upon receiving the value, the TG-Diffuser
will use the newly updated value to look up the last tolerable
event for each node. The adjustment of𝑀𝑎𝑥𝑟 occurs in three
steps: Initially, 𝑀𝑎𝑥𝑟 is set to two times the mean value of
Max Endurance (i.e.,𝑚𝑟𝑚𝑒𝑎𝑛). We empirically set the value
for two reasons: the maximum value is too aggressive due
to potential information loss, while the mean can be too
conservative if the batch size is insufficient. Also, we cap
𝑀𝑎𝑥𝑟 all the time to ensure it is within the range of the
analyzed maximum(i.e.,𝑚𝑟𝑚𝑎𝑥) and minimum(i.e.,𝑚𝑟𝑚𝑖𝑛).
Next, the ABS further monitors training loss throughout the
epoch, and periodic checks determine if there is no reduction
in loss. If the training loss does not decline, we reduce𝑀𝑎𝑥𝑟
toward the minimum value of Max Endurance through a
logarithmic decay, a method commonly used in the deep
learning domain [12, 27, 35]. Specifically, for the batch 𝑖 , the

TG-Diffuser will get the𝑀𝑎𝑥𝑟 following Equation 5,
𝑀𝑎𝑥𝑟 = 2 ×𝑚𝑟𝑚𝑒𝑎𝑛 − 𝛼 × 𝑙𝑜𝑔(𝑖

𝛽
+ 1)

𝛼 =
𝑚𝑟𝑚𝑖𝑛 ×𝑚𝑟𝑚𝑖𝑛

𝑚𝑟𝑚𝑎𝑥

, 𝛽 =
𝐵

𝛼

𝑀𝑎𝑥𝑟 =𝑚𝑎𝑥 (𝑚𝑟𝑚𝑎𝑥 ,𝑚𝑖𝑛(𝑚𝑟𝑚𝑖𝑛, 𝑀𝑎𝑥𝑟))

(5)

(6)

(7)

in which𝑚𝑟𝑚𝑒𝑎𝑛,𝑚𝑟𝑚𝑖𝑛 and𝑚𝑟𝑚𝑎𝑥 refer to the maximum,
mean, and minimum values of the Max Endurance, respec-
tively; and 𝐵 refers to the batch numbers under preset batch
sizes.

5 Evaluation
5.1 Methodology
Models. We evaluate Cascade using five recent TGNN mod-
els. Specifically, we include the followingCTDG-based TGNN
models: (1) JODIE [21] applies a normal Recurrent-Neural-
Network(RNN) [34] to update node memories and uses a
time-decay coefficient to scale them before classification.
(2) TGN [31] uses a GRU [7] to update node memories and
uses a Graph Attention Network (GAT) [39] to embed node
memories. (3) APNN [43] adopts an asynchronous mailbox
to store and update node memories and then directly use
memories for predictions. To assess our approach’s adapt-
ability to DTDG-based models, we also include the following
two DTDG-based TGNN models: (2) DySAT [33] uses RNN
to update and combine node memories from different time
graph snap-shots. (3) TGAT [47] adopts positional encoding
to abstract edge temporal information and uses an attention-
based module to collect messages from nodes’ neighbors
during memory updating. We follow the model configura-
tion used in TGL [55] as shown in Table 1.

Table 1. Details of TGNN models.

Sample Message Memory Update Node Embedding

JODIE most recent
(num = 1)

RNN
(out size=100)

Identity
(out size=100)

TGN most recent
(num = 1)

GRU
(out size=100)

GAT
(out size=100)

APAN most recent
(num = 10)

Transformer
(out size=100)

Identity
(out size=100)

DySAT uniform
(num = 10)

GAT
(out size=100)

RNN
(out size=100)

TGAT uniform
(num = 10)

Identity
(out size=100)

2-layers GAT
(out size=100)

Datasets.We use the following five real-world datasets to
evaluate Cascade: (1) Wikipedia (WIKI), (2) Reddit (REDDIT),
(3) MOOC student drop-out (MOOC) [21] are relatively small-
scale datasets; (4) Wikipedia Talk network (WIKI-TALK) [23]
and (5) Stack overflow temporal network (SX-FULL) [25]
are large-scale datasets with millions nodes and events. We
also include two billion-edge graph datasets to evaluate the
scalability of Cascade: (1) GDELT [55] is originated from the

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

Event Database in GDELT 2.0, containing 0.2 billion events
as news and articles. (2) MAG [55] is a paper citation graph
containing 1.3 billion events as citations between papers. The
statistics of the datasets are shown in Table 2. For datasets
with no edge features, we randomly generate edge features
following the setup in TGL [55] (denoted by *). For large-
scale graphs with millions of nodes and edges, we set the
edge feature size to 32 to avoid OOM issues on GPUs.

Table 2. Statistics of Datasets.

Nodes # Edges # Edge Features
WIKI 9,227 157,474 172
REDDIT 11,000 672,447 172
MOOC 7,047 411,749 128*
WIKI-TALK 2,394,385 5,021,410 32*
SX-FULL 2,601,977 63,497,050 32*
GDELT 16,682 191,290,882 186
MAG 121,751,665 1,297,748,926 32*

Platforms and Implementations.We run our experi-
ments on a server with an AMD EPYC 7742 64-Core Proces-
sor CPU and a Nvidia A100 40GB GPU with CUDA 11.6 [28].
Our experiment compares the following approaches:
• TGL (baseline) [55] is a state-of-the-art TGNN training
framework that achieves better training efficiency and
accuracy than the vanilla version of the TGNN models. It
adopts a parallel sampler to speed up the sampling process
in TGNN and introduces a random batch shuffling strategy
to improve the resulting models’ losses.

• TGLite [45] is a state-of-the-art TGNN framework that
provides core abstractions and building blocks for imple-
menting TGNN. It speeds up TGNN training by integrating
several optimization schemes and providing lightweight
implementations of TGNN models.

• Cascade. We implement TG-Diffuser and ABS using C++
to parallel the table building and last event looking up. The
SG-Filter is implemented by Python to directly leverage
the parallel matrix operation in PyTorch [30].We adopt the
same sampling and model implementation as the baselines
since these components are orthogonal to our designs.

• Cascade-Lite. In this version, we equip Cascade with
optimized TGNN model implementation as the TGLite
to evaluate its effectiveness in collaborating with various
existing TGNN frameworks.
In addition, we compare Cascade with recent TGNN and

Dynamic-GNN training frameworks that adopt dynamic par-
allelization schemes as described below:
• NeutronStream [5] is a DGNN training framework de-
signed for windowed Dynamic Graph Neural Network
(DGNN) training. It builds a dependency graph for the
input events sequence, and then sequentially processes
dependent events and only allows parallelizing events
without dependence.

• ETC [11] is a TGNN training framework that uses an
information-loss-bounded batching scheme to enlarge
batch sizes without increasing information loss, which
quantifies how many times nodes in the batch are ex-
pected to be updated. Additionally, it employs a pipelined
data access strategy to improve data transfer efficiency
between the CPU and GPUs during TGNN training.
Training Setup. We train the models for the link pre-

diction tasks following setup in the baseline [55]. For WIKI,
REDDIT, and MOOC, we train TGNN models with 100 epochs.
For WIKI-TALK and SX-FULL, we train TGNNmodels with 50
epochs. We use a batch size of 900 for training the baselines,
as the preset small batch size for ABS in Cascade, and for
evaluating all resulting models. We set the similarity thresh-
old 𝜃𝑠𝑖𝑚 in SG-Filter to 0.9 (more discussion in Section 5.3)
and CPU thread numbers in TG-Diffuser and ABS as 32. We
set the adaptive decaying period to be 20 for all benchmarks
(i.e., ABS makes decisions after each of the 20 batches).

5.2 Overall Performance
Speedup. To facilitate visualizing, we normalize all results
by the baseline performances. As shown in Figure 10, Cas-
cade achieves 1.3× to 5.1× (averagely 2.3×) speedups over
the baseline. Moreover, Cascade-Lite achieves 1.2× to 5.0×
(averagely 2.3×) speedups over the TGLite, indicating the po-
tential of adapting Cascade to various existing TGNN frame-
works. The acceleration is particularly notable in sparser dy-
namic graphs. Specifically, in WIKI, WIKI-TALK, and SX-FULL,
which have average degrees of approximately 17.5, 2.5, and
24.4 respectively, Cascade achieves average speedups of 2.5×,
2.4×, and 3.0× over TGL. In comparison, in REDDIT and MOOC,
whose average degrees are 61.1 and 58.4, Cascade achieves
1.8× and 1.7× average speedups over the baseline, respec-
tively. This is because events in sparser graphs are more
likely to be spatial independent of each other due to weaker
connectivity among nodes. Regarding the models, Cascade
demonstrates higher speedups for TGNNmodels that depend
less on neighboring nodes for node updates or computing
embeddings. Within CTDG-based models, TGN and JODIE,
which update node memories using the most recent message,
receive average speedups of 2.4× and 2.5×, respectively. In
contrast, APAN, which utilizes the ten most recent messages,
achieves a lower average speedup of 1.7×. For DTDG-based
TGNNs, DySAT, which employs a single-layer GAT, achieves
a 3.1× average speedup compared to 1.7× for TGAT, which
uses a two-layer GAT that embeds more neighborhoods.
The potential reason is that those slower models cost more
time on the neighbor sampling step. With larger batches,
the sampling step takes longer, compromising the benefit of
higher parallelism and fewer iterations. Cascade effectively
increases batch sizes in diverse benchmarks—as showcased
in Figure 12(a), it increases the batch size from 900 to 4200
across WIKI, REDDIT and REDDIT-TALK.

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0

1

2

3

4

5

6
A

P
A

N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

S
p

e
e
d

u
p

TGL TGLite Cascade Cascade-Lite

Figure 10. Training speed-ups introduced by Cascade and Cascade-Lite compared to baseline (TGL) and TGLite.

0%

20%

40%

60%

80%

100%

120%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

rm
.

V
a
l
L

o
s
s TGL TGLite Cascade Cascade-Lite

Figure 11. Validation losses (normalized to baseline) of TGNN models trained in Cascade and Cascade-Lite.

Model Losses. Unlike simply increasing batch sizes, Cas-
cade accelerates the trainingwithout worsening the resulting
models’ performances. As shown in Figure 11, on average,
models trained by Cascade and Cascade-Lite are validated to
have 99.4% and 97.9% average losses compared to the baseline
and TGLite, respectively. In those datasets with real-world
edge features (i.e., WIKI and REDDIT), Cascade decreases the
average losses of the resulting model by 5.5% (up to 15%) and
2.5% (up to 7.3%), respectively. To investigate its capabilities
to maintain model performances, we train the TGNNs with
baseline while increasing their batch sizes to the same as the
average batch size in Cascade. We compared the resulting
model losses with those in Cascade, as shown in figure 12(b),
using larger batches (i.e., TGL-LB) causes 1% to 83% loss
increases than using batch size of 900. In contrast, Cascade
introduces 1% to 15% loss decreases than the baseline, leading
to ∼80% accuracy improvement over large batch sizes.

5.3 Optimization Analysis
To further investigate the effectiveness of the TG-Diffuser
and SG-Filter, we evaluate the performances when Cascade
only enables the TG-Diffuser and ABS without SG-Filter (re-
ferred to as Cascade-TB), on WIKI and REDDIT. As shown
in Figure 12(c), Cascade-TB achieves 1.8× speedup over the
baseline by equipping TG-Diffuser and ABS. Similar to over-
all performance, it benefits more on relatively sparser dy-
namic graphs—the average speedup of Cascade-RB is 1.9×
on WIKI, and is lower as 1.7× on REDDIT. The speedup is
more significant for those models relying less on neighbors.
For instance, on JODIE and TGN, Cascade achieves 2.3× and
2.5× average speedup than in APAN, which is 1.2×. With the
help of SG-Filter, the average speedup in Cascadeis further
boosted to 2.2×. Compared to the TG-Diffuser, the SG-Filter

can further boost the performance of models that use more
neighbors for their computing. For instance, in APAN, Cas-
cade achieves 1.7× speed up compared to 1.1× in Cascade.
This is because APAN uniformly samples more messages
from the past instead of using the most recent message; there
might be more overlapping in these sampled past messages,
which leads to similar inputs for memory updating. Con-
sequently, there is a higher possibility of having temporal
independent node memories.
In terms of the model losses, as shown in Figure 12(d),

Cascade-TB is capable of maintaining validation losses and,
in some cases, even reduces more loss than the Cascade.
For instance, in JODIE, the Cascade reduces model losses
to 84% and 97%; in comparison, Cascade reduces losses to
85% and 99%. This is because the stable detecting scheme
in SG-Filter decides node stable status based on past up-
dates and may mispredict in some cases. To better under-
stand the potential impact of SG-Filter, we measure Cascade
under different choices of similarity thresholds. As shown
in Figure 13(a), using lower similarity can improve laten-
cies yet harm the model accuracy. For instance, while using
𝜃𝑠𝑖𝑚 = 0.85 achieves 2.7× average speedup, it increases loss
by 8%. Conversely, using higher similarity can help maintain
model accuracy yet achieve fewer benefits in latencies. For
instance, using 𝜃𝑠𝑖𝑚 = 0.95 causes no loss drops yet lowers
the speedup to 2×.

5.4 Overhead Analysis
To measure the impact of these overheads, we investigate
the time and space breakdown of Cascade under datasets
WIKI, REDDIT, and WIKI-TALK. As shown in Figure 13(b),
on average, Cascade causes 17% latency overhead in these

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

0%

50%

100%

150%

200%

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

N
o

rm
a

li
z
e

d
 V

a
l

L
o

s
s TGL TGL-LB Cascade

75%

80%

85%

90%

95%

100%

105%

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

N
o

rm
a

li
z
e

d
 V

a
l

L
o

s
s

TGL Cascade-TB Cascade

0
0.5

1
1.5

2
2.5

3
3.5

4

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT

S
p

e
e

d
u

p

TGL Cascade-TB Cascade

0

1000

2000

3000

4000

5000

6000
A

P
A

N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y

S
A

T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

B
a

tc
h

 S
iz

e
s

TGL Cascade

(a) (b) (c) (d)

Figure 12. (a) Batch sizes of TGNNs in Cascade compared to the baseline. (b) Validation losses of TGNNs trained by Cascade
and TGL-LB (baselines with larger batches)—results are normalized by the losses in the baseline. (c) Speedups of Cascade-TB
and Cascade over baseline. (d) Validation losses of TGNNs trained in Cascade-TB and Cascade compared to baseline.

0%

20%

40%

60%

80%

100%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

L
a
te

n
c
y
 B

re
a
k
d

o
w

n

Build Table Event_Lookup&Updating Model Training

0%

20%

40%

60%

80%

100%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT WIKI-TALK

S
p

a
c
e
 B

re
a
k
d

o
w

n

DT SF Graph Edge Feature Model Mailbox

0

0.4

0.8

1.2

1.6

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

s
im

=
0
.8

5

s
im

=
0
.9

s
im

=
0
.9

5

APAN JODIE TGN APAN JODIE TGN APAN JODIE TGN

WIKI REDDIT WIKI-TALK

Normalized Latency Normalized Val Loss

(a) (b) (c)

Figure 13. (a) Latency and validation loss of Cascade under different similarity threshold for SG-Filter (i.e., 𝜃𝑠𝑖𝑚). (b) The
latency breakdown in Cascade. (c) The space consumption ratio in Cascade (DT as dependency Table, SF as node stable flag).

moderate-sized graphs, which is far less than the model train-
ing time—compared to the original model training latency in
baselines, the overhead is less than 10%. Building the depen-
dency table causes ignorable overheads, which are as low
as 0.1% on average, as it is only conducted once throughout
the training process. In contrast, the batching Event_lookup
takes a heavier part of the overheads, which takes 16% la-
tency on average. This is because we need to compare the last
event for each node and then update their pointers in each
batch. The node stable flag checking and updating causes ig-
norable overhead since similarity computing is considerably
faster on GPUs. In terms of the space overhead, as shown in
Figure 13(c), the dependency table (DF) and the node stable
flag (SF) takes less than 3% space overhead in total—even in
large graphs such as WIKI_TALK, they consume much less
space than the edge Feature, which takes the majority of
the space consumption. Adaptive batching (ABS) introduces
two minimal overheads: (i) profiling costs for detecting max,
min, and average revisit limits, which are negligible (<1% in
preprocessing) as they involve sampling a few batches (50
in our implementation) and checking node-related events
without computation; and (ii) reconfiguration costs for cal-
culating and assigning new𝑀𝑎𝑥𝑟 , which are minimal (a few
cycles) as they require only a few scalar operations.

5.5 Scalability on Large-scale Graphs
We compared Cascade to the baseline on two billion-event
datasets: GDELT and MAG, and report the results in Figure 14.
For MAG dataset, APAN throws out-of-memory (OOM) errors
in both baseline and Cascade as it stores the ten most recent

neighbors for each node. From the Figure 14(a), Cascade
(second bar) achieves average speedups of 1.7× on GDELT
and 1.3× on MAG over the baseline. As shown in Figure 14(b),
the resulting models have validation losses of 97.9% and
99.0% compared to the baseline, respectively. These results
demonstrate that Cascade remains effective on large graphs.

However, one can observe that performance gain is lower
on large-scale graphs than moderate-sized graphs (i.e., 1.7×
on GDELT and 1.3× on MAG compared to an average of 2.3×
in moderate-sized graphs in Figure 10). The reason is that
the pre-processing overheads significantly increase in large-
scale graphs.We report the latency breakdown in Figure 14(c).
As one can observe, the pro-processing overheads can ac-
count for 36.6% of the entire execution time in large graphs
(which is less than 1% in moderate-sized graphs).

To improve the scalability of Cascade on large-scale graphs,
we propose an optimization by enabling chunk-based prepro-
cessing described in detail in Section 4.2. In our experiment,
we set the chunk size as one million events. We report the
speedup, validation loss, and pre-processing overheads in
Figure 14 labeled as Cascade_EX. Specifically, Cascade_EX
achieves speedups of 2× on GDELT and 1.7× on MAG without
increasing validation losses. This is higher than the speedups
(i.e., 1.7× on GDELT and 1.3× on MAG) without chunk-based
preprocessing. The reason is that this optimization signif-
icantly reduces the cache misses in table building and is
able to pipeline and overlap the table building with model
training, as we elaborated in Section 4.2. Results show that
Cascade_EX reduces the preprocessing overhead by an aver-
age of 35% in two large-scale graphs.

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0

0.5

1

1.5

2

2.5

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

GDELT MAG

S
p

e
e
d

u
p

TGL Cascade Cascade_EX

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

GDELT MAG

N
o

rm
 V

a
l
L

o
s
s

TGL Cascade Cascade_EX

0%
20%
40%
60%
80%

100%

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

C
a

s
c

a
d

e
C

a
s

c
a

d
e

_
E

X

APAN DySAT JODIE TGAT TGN APAN DySAT JODIE TGAT TGN

GDELT MAG

L
a
te

n
c
y
 B

re
a
k
d

o
w

n

Build Table Event_Lookup&Updating Model Training

O
O

M

O
O

M

O
O

M
O

O
M

(a) (b) (c)

Figure 14. The evaluation results on GDELT and MAG including (a) The speedup and (b) resulting TGNNs’ validation losses in
Cascade and its optimized version with chunk_based optimization Cascade_EX over the baseline. (c) The latency breakdowns.

0
1
2
3
4
5
6

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

S
p

e
e
d

u
p

TGL NeutronStream ETC Cascade

Figure 15. Training speed-ups introduced by Cascade, NeutronStream, ETC compared to baseline (TGL).

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

A
P

A
N

D
y
S

A
T

J
O

D
IE

T
G

A
T

T
G

N

WIKI REDDIT MOOC WIKI-TALK SX-FULL

N
o

rm
.

V
a
l
L

o
s
s TGL NeutronStream ETC Cascade

Figure 16. Validation losses (normalized to baseline) of TGNN models trained in by Cascade, NeutronStream, ETC.

5.6 Comparison with Prior Dynamic Batching
We compare Cascade with ETC [11] and NeutronStream [5],
and report the results in Figure 15. As all compared ap-
proaches increase batch sizes from a basic batch size, we
set the basic batch size for all approaches as 900 following
the baseline (i.e., TGL [55]) configuration in Section 5.2. This
size strikes a balance between accuracy and efficiency under
fixed-sized batching.

Comparison with NeutronStream: We use the scheme
in NeutronStream to check if the subsequent events are in-
dependent of existing events within the batch, then batch
those independent ones into the current batch. In contrast,
Cascade also employs the same base batch size and increases
batch by batching subsequent events if they are related to
less-frequently involved nodes or stable nodes. Our results
show that Cascade achieves a 3.8× improvement over Neu-
tronStream, with better validation losses on average. The
performance gain is mainly because Cascade yields larger
batch sizes and, therefore, more parallelism than Neutron-
Stream. It is also worth mentioning that NeutronStream
generally performs worse than the baseline as they spend
a lot of time on constructing dependency graphs yet hardly

increase batch sizes. Hence, even if we start with larger ba-
sic batch sizes that are larger than 900, it can hardly bring
more parallelism than the baseline and may introduce more
significant overhead.
Comparison with ETC: For each base batch, ETC ex-

pands by adding subsequent events as long as they do not
increase the information loss (i.e., the total number of ex-
pected node updates) beyond a specified threshold. Specif-
ically, to achieve comparable performances as using small
batches, it automatically detects the information loss in the
pre-defined small batch size (i.e., batch size = 900 in our ex-
periments as the baseline). Then, it uses the upper bound of
the detected information loss as the threshold to ensure that
the information loss of the enlarged batches is not worse
than the baseline. Our results show that Cascade achieves a
1.9× improvement over ETC, with better validation losses
average on average. Similarly, the performance gains come
from larger batch sizes: While Cascade increases the average
batch size to 4255, ETC increases the batch size from 900 to
an average of 1123. The improvements in ETC are limited
since it stops expanding a batch once the information loss
(i.e., the total number of expected node updates) reaches the

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

per-batch threshold. This can lead to situations in which,
when specific high-degree nodes in the current batch are
expected to have frequent updates and trigger the batching
limit, subsequent events cannot be further batched since
these high-degree nodes have raised the total number of
expected updates beyond the threshold. In contrast, Cascade
tracks the endurance score for each node (i.e., look up the
last tolerable event in each node independently). Therefore,
even if some high-degree nodes are already heavily involved
in the current batch, they only raise their own endurance
scores, but not those endurance scores in other nodes. As a
result, Cascade can still include more subsequent events if
they are related to those fresher nodes since the nodes still
have low endurance scores.

6 Related Work
Although extensive studies have been conducted on accel-
erating GNN training [2, 14, 26, 36, 37, 41, 44, 49, 51, 53],
they fail short in addressing the unique challenges in TGNN
training due to their distinct computing diagrams. While
some of the recent studies on TGNN training focus on DTDG
graphs [10, 13, 32, 40], these approaches are tailored to DTDG
contexts, where graph snapshots fixedly determine batches
and whole-graph update are conducted. Noticing the unique
challenge in CTDG-based TGNN training, TGL [55] intro-
duces a parallel sampler to speed the sampling process for
CTDG and proposes a chunk scheduling approach to increase
the resulting models’ accuracy. On top of TGL, DistTGL [55]
further proposes heuristic-guided parallelism to speed up
the distributed TGNN training. More recently, TGLite [45]
provides core abstractions and building blocks for imple-
menting optimized TGNNs. Additionally, ETC [11] and Neu-
tronstream [5] explore adopting dynamic batching in CTDG-
related training. However, none of the prior methods adap-
tively quantify and leverage the spatial and temporal rela-
tionships between events to dynamically increase batch sizes,
thereby limiting their ability to enhance parallelism without
significant information loss.

7 Conclusion
In this work, we proposed an efficient TGNN training frame-
work, Cascade, to speed up temporal graph neural network
(TGNN) training by adaptively increasing training batch
sizes without breaking input dependency. Experimental re-
sults show Cascade can achieve up to 5.1× speedup over the
state-of-the-art TGNN training frameworks.

Acknowledgments
The authors would like to thank the anonymous ASPLOS re-
viewers for their constructive feedback and suggestions. This
work is supported in part by NSF grants #2154973, #2334628,
and #2312157.

References
[1] Luca Belli, Sofia Ira Ktena, Alykhan Tejani, Alexandre Lung-Yut-Fon,

Frank Portman, Xiao Zhu, Yuanpu Xie, Akshay Gupta, Michael Bron-
stein, Amra Delić, et al. Privacy-preserving recommender systems
challenge on twitter’s home timeline. arXiv preprint arXiv:2004.13715,
2020.

[2] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan
Yu. Dgcl: An efficient communication library for distributed gnn train-
ing. In Proceedings of the Sixteenth European Conference on Computer
Systems, pages 130–144, 2021.

[3] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot,
Richard Gass, and James Scott. Impact of human mobility on op-
portunistic forwarding algorithms. IEEE Transactions on Mobile Com-
puting, 6(6):606–620, 2007.

[4] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann,
2001.

[5] Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo
Fu, Xuecang Zhang, Junhua Zhu, Yu Gu, and Ge Yu. Neutronstream:
A dynamic gnn training framework with sliding window for graph
streams. Proceedings of the VLDB Endowment, 17(3):455–468, 2023.

[6] Jinyin Chen, Jian Zhang, Xuanheng Xu, Chenbo Fu, Dan Zhang, Qing-
peng Zhang, and Qi Xuan. E-lstm-d: A deep learning framework for
dynamic network link prediction. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 51(6):3699–3712, 2019.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[8] YueDai, Xulong Tang, and Youtao Zhang. Flexgm: An adaptive runtime
system to accelerate graph matching networks on gpus. In 2023 IEEE
41st International Conference on Computer Design (ICCD), pages 348–
356. IEEE, 2023.

[9] Yue Dai, Youtao Zhang, and Xulong Tang. Cegma: Coordinated elas-
tic graph matching acceleration for graph matching networks. In
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 584–597. IEEE, 2023.

[10] Kaihua Fu, Quan Chen, Yuzhuo Yang, Jiuchen Shi, Chao Li, and Minyi
Guo. Blad: Adaptive load balanced scheduling and operator overlap
pipeline for accelerating the dynamic gnn training. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13, 2023.

[11] Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. Etc:
Efficient training of temporal graph neural networks over large-scale
dynamic graphs. Proceedings of the VLDB Endowment, 17(5):1060–1072,
2024.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT Press, 2016.

[13] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph:
dynamic graph neural networks at scale. In Proceedings of the 5th ACM
SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA),
pages 1–10, 2022.

[14] Deniz Gurevin, Caiwen Ding, and Omer Khan. Exploiting intrinsic
redundancies in dynamic graph neural networks for processing effi-
ciency. IEEE Computer Architecture Letters, 2023.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Advances in neural information
processing systems, pages 1024–1034, 2017.

[16] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen,
and Gerhard Weikum. Tequila: Temporal question answering over
knowledge bases. In Proceedings of the 27th ACM international con-
ference on information and knowledge management, pages 1807–1810,
2018.

[17] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for

Cascade: A Dependency-Aware Efficient Training Framework for TGNNs ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

dynamic graphs: A survey. The Journal of Machine Learning Research,
21(1):2648–2720, 2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[20] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky.
Community interaction and conflict on the web. In Proceedings of the
2018 world wide web conference, pages 933–943, 2018.

[21] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic
embedding trajectory in temporal interaction networks. In Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1269–1278, 2019.

[22] Julien Leblay and Melisachew Wudage Chekol. Deriving validity
time in knowledge graph. In Companion Proceedings of the The Web
Conference 2018, pages 1771–1776, 2018.

[23] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed net-
works in social media. In Proceedings of the SIGCHI conference on
human factors in computing systems, pages 1361–1370, 2010.

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 177–187, 2005.

[25] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analy-
sis and graph-mining library. ACM Transactions on Intelligent Systems
and Technology (TIST), 8(1):1–20, 2016.

[26] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Pa-
graph: Scaling gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on Cloud Comput-
ing, pages 401–415, 2020.

[27] Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller. Neural
networks: tricks of the trade, volume 7700. springer, 2012.

[28] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda: Is cuda the parallel programming
model that application developers have been waiting for? Queue,
6(2):40–53, 2008.

[29] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles
Leiserson. Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 5363–5370, 2020.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

[31] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637,
2020.

[32] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopou-
los, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres,
Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric tempo-
ral: Spatiotemporal signal processing with neural machine learning
models. In Proceedings of the 30th ACM international conference on
information & knowledge management, pages 4564–4573, 2021.

[33] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
Dysat: Deep neural representation learning on dynamic graphs via self-
attention networks. In Proceedings of the 13th international conference
on web search and data mining, pages 519–527, 2020.

[34] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE transactions on Signal Processing, 45(11):2673–2681,
1997.

[35] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates
with sublinear memory cost. In International Conference on Machine

Learning, pages 4596–4604. PMLR, 2018.
[36] Nishil Talati, Di Jin, Haojie Ye, Ajay Brahmakshatriya, Ganesh Dasika,

SamanAmarasinghe, TrevorMudge, Danai Koutra, and Ronald Dreslin-
ski. A deep dive into understanding the random walk-based temporal
graph learning. In 2021 IEEE International Symposium on Workload
Characterization (IISWC), pages 87–100. IEEE, 2021.

[37] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou
Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim,
et al. Dorylus: Affordable, scalable, and accurate {GNN} training with
distributed {CPU} servers and serverless threads. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), pages 495–514, 2021.

[38] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. Dyrep: Learning representations over dynamic graphs. In Inter-
national conference on learning representations, 2019.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

[40] Chunyang Wang, Desen Sun, and Yuebin Bai. Pipad: pipelined and
parallel dynamic gnn training on gpus. In Proceedings of the 28th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, pages 405–418, 2023.

[41] Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan
Yu, Zihang Yao, and Jingren Zhou. Flexgraph: a flexible and efficient
distributed framework for gnn training. In Proceedings of the Sixteenth
European Conference on Computer Systems, pages 67–82, 2021.

[42] Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix
Wu. Attack graph convolutional networks by adding fake nodes. arXiv
preprint arXiv:1810.10751, 2018.

[43] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen
Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan:
Asynchronous propagation attention network for real-time temporal
graph embedding. In Proceedings of the 2021 international conference
on management of data, pages 2628–2638, 2021.

[44] Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware opti-
mizations for temporal graph attention networks. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, pages 354–368, 2023.

[45] Yufeng Wang and Charith Mendis. Tglite: A lightweight programming
framework for continuous-time temporal graph neural networks. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
pages 1183–1199, 2024.

[46] Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang, Xiaobo Zhou,
and Dazhao Cheng. Redundancy-free high-performance dynamic
gnn training with hierarchical pipeline parallelism. In Proceedings of
the 32nd International Symposium on High-Performance Parallel and
Distributed Computing, pages 17–30, 2023.

[47] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv
preprint arXiv:2002.07962, 2020.

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

[49] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong
Chen, Wenyuan Yu, and Jingren Zhou. Gnnlab: a factored system for
sample-based gnn training over gpus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 417–434, 2022.

[50] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning
framework for dynamic graphs. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 2358–2366,
2022.

[51] Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and
Shuiwang Ji. Graphfm: Improving large-scale gnn training via feature

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yue Dai, Xulong Tang, and Youtao Zhang

momentum. In International Conference on Machine Learning, pages
25684–25701. PMLR, 2022.

[52] Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin,
Xuehao Zheng, and Yangyong Zhu. Tiger: Temporal interaction graph
embedding with restarts. arXiv preprint arXiv:2302.06057, 2023.

[53] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song,
Yifan Wu, Changji Li, James Cheng, Hao Yang, and Shuai Zhang.
Bytegnn: efficient graph neural network training at large scale. Pro-
ceedings of the VLDB Endowment, 15(6):1228–1242, 2022.

[54] Ying Zhong and Chenze Huang. A dynamic graph representation
learning based on temporal graph transformer. Alexandria Engineering

Journal, 63:359–369, 2023.
[55] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang

Song, and George Karypis. Tgl: A general framework for temporal
gnn training on billion-scale graphs. arXiv preprint arXiv:2203.14883,
2022.

[56] Hongkuan Zhou, Da Zheng, Xiang Song, George Karypis, and Viktor
Prasanna. Disttgl: Distributed memory-based temporal graph neural
network training. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–12, 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Graphs
	2.2 Temporal Graph Neural Networks
	2.3 TGNN Training on CTDG

	3 Motivation
	3.1 Challenge in Batched TGNN Training
	3.2 Spatial-independence in Scattered Events
	3.3 Temporal-independence in Stabilized Memories

	4 Design
	4.1 Overview of Cascade
	4.2 Topology-Aware Graph Diffuser
	4.3 Similarity-Aware Graph Filter
	4.4 Adaptive Batch Sensor

	5 Evaluation
	5.1 Methodology
	5.2 Overall Performance
	5.3 Optimization Analysis
	5.4 Overhead Analysis
	5.5 Scalability on Large-scale Graphs
	5.6 Comparison with Prior Dynamic Batching

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

