
• Benchmark
Ø Training	on	COCO	(118,287	images,	591,435	captions)
Ø Training	on	Flickr30K	(31,783	images,	158,915	captions)
Ø Evaluate	on	Pascal	VOC	and	COCO	(mAP@0.5)

• Baselines
Ø GT-LABELS	(upper	bound):	Using	ground-truth	labels
Ø EXACTMATCH:	Lexical	matching	method
Ø EXTENDVOCAB:	Using	a	manually	constructed,	hence	expensive	

COCO	synonym	mapping	dictionary
Ø GLOVEPSEUDO:	Assigning	pseudo-labels	based	on	word	embedding	

distance
Ø LEARNEDGLOVE:	Same	as	the	previous	one,	but	we	learn	the	word	

embedding	based	on	an	image-text	ranking	loss
Ø TEXTCLSF:	Using	the	label	inference	module	trained	on	COCO
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Experiments

• Use	pseudo	labels	extracted	from	the	free-form	text	as	supervision

• Label	inference	module
Ø It	amplifies	the	supervision	signal	that	captions	provide,	and	squeezes	more	accurate	

information	out	of	them
Ø It	performs	basic	reasoning	based	on	the	textual	context

• Multiple	instance	detection	module
Ø It	predicts	detection	/	classification	scores	based	on	proposal	features:

• Detection	score	– weight	of	the	i-th proposal	for	predicting	class	c
• Classification	score	– probability	that	the	proposal	i belongs	to	class	c

Ø It	aggregates	image-level	prediction	using	an	attention	mechanism
• Attention:	focus	more	on	the	regions	with	high	detection	scores

• Online	refinement	module	[Tang	2017]
Ø Iterative	refining	– previous	instance	predictions	are	used	as	ground-truth	to	supervise	

learning	in	the	next	iteration

• Fully-supervised	object	detection	requires	instance-level	
annotations,	which	are	labor-expensive

• Weakly-supervised	object	detection	(WSOD)	still	requires	an	
unnatural,	crowdsourced	environment
Ø It	requires	only	image-level	annotations,	which	alleviates	the	

burden	to	a	certain	extent
Ø Its	use	of	Multiple	Instance	Learning	(MIL)	requires	precise	labels,	

but	in	the	wild,	some	objects	in	the	image	may	not	be	mentioned
• Our	proposed	method	utilizes	free-form	captions;	these	pose	a	

challenge:

• Contributions
Ø New	task:	Learning	from	noisy	caption	annotations
Ø Benchmark	and	baseline:	We	show	that	predicting	what	truly	is	

in	an	image	(by	training	a	robust	text	classifier)	is	a	good	way	to	
mediate	the	reporting	bias	[Misra 2016],	as	compared	to	text	
matching

Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection
Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Danfeng Qin, Jesse Berent
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A	woman	standing	at	a	kitchen	counter	
with	a	child	and	a	dog	is	behind	her.
An	older	image	of	a	toddler,	dog,	and	
adult	doing	dishes.
An	adult	is	cooking	at	the	kitchen	
counter	near	a	baby	and	a	dog.
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Image	input:

Text	annotation:

n People	watch	a	man	delivering	a	lecture on	a	screen	
n A	large	screen	showing	a	person	wearing	a	suit
n An	audience	is	looking	at	a	film	of	a	man	talking	that	

is	projected	onto	a	wall	

GROUNDTRUTH	objects:	person,	tie,	bottle

In	this	example,	the	object	“tie”	cannot	be	extracted	using	a	lexical	matching	method,	but	
it	can	be	inferred	through	reasoning	(ties	are	worn	at	formal	events)

Method

Training on COCO Training on 
Flickr30K

Training on 
Flickr200K

EVALUATE ON (mAP@.5) VOC 07 COCO 17 VOC 07 VOC07
GT-LABEL 46.3 23.4 - -
EXACT MATCH(EM) 39.9 19.7 31.0 -
EM + EXTENDVOCAB 42.5 19.4 29.3 -
EM + GLOVEPSEUDO 40.5 19.0 - -
EM + LEARNEDGLOVE 41.7 19.7 - -
EM + TEXTCLSF 43.1 20.2 33.6 40.4

Introduction

What	humans	
mention

What	truly	is	in	
an	imagevs

Supervised	detection:
bowl,	bottle,	person

WSOD:	
There	are	bowl,	bottle,	
person	in	the	image.

Free-form	caption:
A	man	is	in	a	kitchen	

making	pizzas.

Lexical	matching	cannot	provide	
reliable	supervision;	

it	is	still	a	challenge	to	recall	non-
mentioned	classes	such	as	“plant”

A	good	text	classifier	is	achieved	
even	with	5%	of	COCO	caption-label	

annotations

Our	model	benefits	from	larger-
scale	annotations	from	Flickr	images

Our	label	inference	module	
generalizes	well	across	domains


