ADVISE: Symbolism and External Knowledge for Decoding Advertisements

Adriana Kovashka Keren Ye Department of Computer Science, University of Pittsburgh

Introduction

- Advertisements embed references to outside knowledge, and inspire us to ask:
 - ✓ How to utilize symbolic references and knowledge to understand the meaning of an ad?

- We formulate the ad understanding task as matching an ad image to human-written statements about the ad's message.
- We interpret an ad using symbolic region proposals and apply bottom-up attention to aggregate information.
- We use external knowledge as a constraint to regularize the model, and incorporate discovered object-symbol mappings.

Dataset

We use the PITT image ads dataset (Hussain et al., CVPR 2017)

statement	202,090	symbol	64,131	topic	204,340
sentiment	102,340	slogan	11,130	strategy	20,000

✓ We use the action-reason statements, and require the model to rank the 3 statements paired w/ the image higher than 47 statements for other images

because it causes love

Method

- Basic image-text triplet embedding
- ✓ The distance between an image and its corresponding statement should be smaller than the distance between that image and any other statement, or between other images and that statement.

- Image embedding using symbol regions
- ✓ We use *Huang et al., 2017* to train a region proposal network and fine-tune on symbol box annotations of Hussain et al., 2017
- We use the bottom-up attention mechanism (Anderson et al., 2017) to aggregate features from different proposals.

- Constrains via symbols and external captions
- ✓ We use these external resources as pivots to enforce similar examples to be closer.
- Symbols are abstract words such as "danger" and "strength"

- External captions are descriptions of the image regions extracted using the DenseCap model (Johnson et al., 2016)
- Additive external knowledge (knowledge branch)
- KB Symbols uses an external classifier to link certain visuals to symbolic concepts, then embeds them into the same feature space
- KB Objects infers symbols from real-world objects first, then maps symbols to the same space as the images and statements

Experiments

- Evaluate on the main ranking task
- Rank of the highest-ranked true matching statement
- Recall@3: number of correct statements ranked in the Top-3

	Rank		Recall@3	
Method	PSA	Product	PSA	Product
2-WAY NETS (Eisenschtat et al., 2017)	4.836	4.170	0.923	1.212
VSE (<i>Kiros et al., 2015</i>)	4.155	3.202	1.146	1.447
VSE++ (<i>Faghri, et al., 2017</i>)	4.139	3.110	1.197	1.510
HUSSAIN (Hussain et al., 2017)	3.854	3.093	1.258	1.515
ADVISE (Ours)	3.013	2.469	1.509	1.725

- We show the top-5 ranked statements from the 50 candidates
- Statements in **bold** are the ones written for the image

Synonyms learnt by the extra constraints

Symbol	Statement	DenseCap			
comfort	couch, sofa, soft	pillow, bed, blanket			
speed, excitement, adventure	cool	sunglasses, sleeve, jacket			
safety, danger, injury	driving	car, windshield, van			
delicious, hot, food	ketchup	beer, pepper, sauce			
environment, nature, adventure	wilderness, outdoors, terrain rock				
food, healthy, hunger	salads, food, salad tomato				

Ablation study (% improvement over basic embedding)

	PSA		Product	
Method	Rank	Recall@3	Rank	Recall@3
GENERIC REGION	17%	15%	15%	11%
SYMBOL REGION	8%	5%	4%	2%
+ATTENTION	-3%	-1%	2%	2%
+SYMBOL/OBJECT	3%	3%	1%	<1%
+KB OBJECTS	1%	1%	<1%	<1%
+KB SYMBOLS	4%	3%	<1%	<1%

- Results on hard-statements, slogan ranking, clustering
 - ✓ Hard-statements: negatives are chosen from the same ad topic
- ✓ Slogan: rank the creative captions from the PITT ads dataset
- ✓ Topic clustering: how well the models clusters ad images, wrt ground-truth clustering defined by the topics of the ads

Method	Hard statements (Rank)	Slogans (Rank)	Clustering (Homogeneity)
HUSSAIN (Hussain et al., 2017)	5.595	4.082	0.291
VSE++ (Faghri et al., 2017)	5.635	4.102	0.292
ADVISE (Ours)	4.827	3.331	0.355

- Association of image regions and words
 - ✓ Given the query words, we use k-NN to retrieve the most related image regions from the test images

Acknowledgement

Google

hardware grant

Grant Nr 1566270 Faculty Research Award