

A Case study of the Shortcut Effects in Visual Commonsense Reasoning

Keren Ye, Adriana Kovashka Department of Computer Science, University of Pittsburgh

Introduction

- Nature of supervised training
- ➤ Methods are rewarded for finding any connection between inputs and outputs
- An example from VCR dataset
- ➤ What does [person1] think of [person2]'s dress?

Correct answer: [person1] thinks [person2] looks stunning in her dress.

Incorrect #1: She does not approve.
Incorrect #2: [person2] is a girl and girls like to wear makeup.

Incorrect #3: [person1] is confused and annoyed by [person2] following her in the store.

The correct option has the most overlap with the question

- Shortcuts
- DEFINITION: A way of achieving the correct answer by simply matching repeated references to the same entities in the question and answer options.
- Mainly present in the <u>multi-choice VQA</u> tasks, which requires choosing an answer from multiple options best responding to the question-image pair
 - E.g., VCR (Zellers et al. 2019), MovieQA (Tapaswi et al. 2016), SocialIQ (Zadeh et al. 2019)

Contributions

- Point out the detrimental shortcuts in multi-choice VQA
- Quantify the impact of shortcuts on SOTA models
- Propose a curriculum masking technique for robust training

Approach

- Quantifying the shortcut effects (in VCR)
- ➤ <u>Intuition</u>: highlighting shortcuts, testing models' capability of utilizing comprehensive features
- If a model relies on shortcuts, will observe <u>performance</u>
 drop in generalized settings
- > Tested four models
- R2C (Zellers et al. 2019), HGL (Yu et al. 2019), TAB-VCR (Lin et al. 2019), B2T2 (Alberti et al. 2019)
- Two methods to highlight misleading shortcuts Rule-based modification
 - ✓ More realistic, less inflated
 - ✓ Measure precisely how much different methods rely on person tag shortcuts $\arg\max_{x \in [1,1], |x| = C(v, a, a) \log P(v, a, \Psi(a, i))}$

Adversarial modification

 $\begin{aligned} \mathbf{argmax}_{i \in [1, |\boldsymbol{a}|)]} [-\mathcal{C}(\boldsymbol{v}, \boldsymbol{q}, \boldsymbol{a}) \log \mathcal{P}(\boldsymbol{v}, \boldsymbol{q}, \boldsymbol{\Psi}(\boldsymbol{a}, i); \boldsymbol{\theta}) \\ -(1 - \mathcal{C}(\boldsymbol{v}, \boldsymbol{q}, \boldsymbol{a})) \log (1 - \mathcal{P}(\boldsymbol{v}, \boldsymbol{q}, \boldsymbol{\Psi}(\boldsymbol{a}, i); \boldsymbol{\theta})] \end{aligned}$

- What words cause performance to drop the most when masked; models rely on <u>content-free hints</u>
- Robust training with curriculum masking
- Masking randomly hide information to force the model to squeeze more. A tradeoff between:
- Masking to increase robustness
- Maintaining the required information
- > Curriculum masking
- Slowly *decays* the amount of masking that is applied

Experiments

<u>Underline</u> – ground truth; **bold** – R2C's choice R2C made incorrect choices on the trivially modified options

Modified by rule:

A0 He is going into the store.

A1 [2] is getting into a carriage.

A2 [2] is going to the bathroom.

A3 [1] is going outside to play after the conversation with [2] is over .

the trivially modified optic

Q: Where is [2] going?

A0 [2] is going into the store.

A1 [2] is getting into a carriage.
A2 [1] is going to the bathroom.
A3 [1] is going outside to play after the conversation with [2] is over.

Modified by an adversarial model:

A0 [MASK] is going into the store. A1 [2] is getting into a [MASK].

A2 [MASK] is going to the bathroom.

A3 [1] is [MASK] outside to play after

A3 [1] is [MASK] outside to play after the conversation with [2] is over .

QUESTIONS REGARDING	Count	AVG. PERF. DROP ON $Q \rightarrow A$	AVG. PERF. Drop on QA→R
E.g., Where is [2] going? (RULE-SINGULAR)	16,154	-5%	-6%
E.g., What are [1,2] feeling? (RULE-PLURAL)	3,657	-2%	-1%

Token x	p(mask x)	p(mask x	Token x	p(mask x)	p(mask x	
		exist x)			exist x)	
#PERSON	25.71%	27.84%	not	1.29%	24.36%	
•	3.82%	3.79%	she	1.20%	12.86%	
he	2.53%	12.09%	yes	0.86%	22.47%	
is	1.56%	2.78%	the	0.82%	2.97%	
they	1.54%	11.70%	a	0.80%	3.06%	
REMOVE A SHORTCUT		AVG. I	AVG. PERF. DROP		AVG. PERF. DROP	
		ON	on $Q \rightarrow A$		on QA→R	
ADV-TOP1			-19%		-23%	

Method	$\mathbf{Q} \rightarrow A$				
	STD VAL	Rule-Singular	Rule-Plural	ADVTOP-1	
BASELINE	68.5	63.3	65.3	37.0	
MASKING	69.3	63.9	66.0	48.8	
CURRICULUM MASKING	69.9	65.9	66.8	54.5	