A Case study of the Shortcut Effects in Visual Commonsense Reasoning

Keren Ye, Adriana Kovashka

Introduction

- Nature of supervised training
$>$ Methods are rewarded for finding any connection between inputs and outputs
- An example from VCR dataset
$>$ What does [person1] think of [person2]'s dress?

[person1] thinks [person2] looks stunning in her dress.

She does not approve [person2] is a girl and
girls like to wear makeup. : [person1] is confused and annoyed by [person2] following her in the store.
The correct option has the most overlap with the question

- Shortcuts
$>$ DEFINITION: A way of achieving the correct answer by simply matching repeated references to the same entities in the question and answer options.
$>$ Mainly present in the multi-choice VQA tasks, which requires choosing an answer from multiple options best responding to the question-image pair
* E.g., VCR (Zellers et al. 2019), MovieQA (Tapaswi et al. 2016), SociallQ (Zadeh et al. 2019)

Department of Computer Science, University of Pittsburgh

Contributions

- Point out the detrimental shortcuts in multi-choice VQA
- Quantify the impact of shortcuts on SOTA models
- Propose a curriculum masking technique for robust training

Approach

- Quantifying the shortcut effects (in VCR)
$>$ Intuition: highlighting shortcuts, testing models' capability of utilizing comprehensive features
* If a model relies on shortcuts, will observe performance
drop in generalized settings
$>$ Tested four models
* R2C (Zellers et al. 2019), HGL (Yu et al. 2019), TAB-VCR (Lin et al. 2019), B2T2 (Alberti et al. 2019)
Two methods to highlight misleading shortcuts
Rule-based modification
\checkmark More realistic, less inflated
\checkmark Measure precisely how much different methods rely on person tag shortcuts
Adversarial modification $\begin{array}{r}\operatorname{argmax}_{i \in[1, a) \mid]}[-\mathcal{C}(v, \boldsymbol{q}, a) \log \mathcal{P}(v, \boldsymbol{q}, \Psi(a, i) ; \boldsymbol{\theta}) \\ -(1-\mathcal{C}(v, \boldsymbol{q}, a)) \log (1-\mathcal{P}(v, \boldsymbol{q}, \Psi(a, i) ; \boldsymbol{\theta}]\end{array}$
* What words cause performance to drop the most when masked; models rely on content-free hints
- Robust training with curriculum masking
$>$ Masking - randomly hide information to force the model to squeeze more. A tradeoff between: * Masking to increase robustness
* Maintaining the required information
$>$ Curriculum masking
* Slowly decays the amount of masking that is applied

Experiments

Underline - ground truth; bold - R2C's choice
R2C made incorrect choices on the trivially modified options

Q : Where is [2] going ?
$\mathrm{AO}[2]$ is going into the store. A1 [2] is getting into a carriage A2 [1] is going to the bathroom A3 [1] is going outside to play after the conversation with [2] is over.
Modified by rule: \quad Modified by an adversarial model:
AO He is going into the store.
A1 [2] is getting into a carriage
A2 [2] is going to the bathroom
A3 [1] is going outside to play after the conversation with [2] is over .

AO [MASK] is going into the store
A1 [2] is getting into a [MASK]
A2 [MASK] is going to the bathroom. A3 [1] is [MASK] outside to play after. the conversation with [2] is over

Questions regarding	Count	AVG. PERF. DROP ON Q \rightarrow A	AVG. PERF. DROP ON QA $\rightarrow \mathrm{R}$
E.g., Where is [2] going ? (RULE-SInGULAR)	16,154	-5%	-6%
E.g., What are [1,2] feeling? (RULE-PLURAL)	3,657	-2%	-1%

Token x	p (mask x)	$\begin{gathered} \hline \mathrm{p}(\text { mask } \mathrm{x} \mid \\ \text { exist } \mathrm{x}) \end{gathered}$	Token x	p(mask x)	p(mask x\| exist x)
\#PERSON	25.71\%	27.84\%	not	1.29\%	24.36\%
	3.82\%	3.79\%	she	1.20\%	12.86\%
he	2.53\%	12.09\%	yes	0.86\%	22.47\%
is	1.56\%	2.78\%	the	0.82\%	2.97\%
they	1.54\%	11.70\%	a	0.80\%	3.06\%
Remove a shortcut		$\begin{gathered} \text { AVG. PERF. DROP } \\ \text { ON } \mathrm{Q} \rightarrow \mathrm{~A} \end{gathered}$		$\begin{gathered} \text { AVG. PERF. DROP } \\ \text { ON QA } \rightarrow \mathrm{R} \end{gathered}$	
ADV-Top 1		-19\%		-23\%	

Method	$\mathrm{Q} \rightarrow A$			
	STD VAL	RULE-SINGULAR	RULE-PLURAL	ADVTOP-1
BASELINE	68.5	63.3	65.3	37.0
MASKING	69.3	63.9	66.0	48.8
CURRICULUM MASKING	$\mathbf{6 9 . 9}$	$\mathbf{6 5 . 9}$	$\mathbf{6 6 . 8}$	$\mathbf{5 4 . 5}$

