Story Understanding in Video Advertisements

Keren Ye, Kyle Buettner, Adriana Kovashka Department of Computer Science, University of Pittsburgh

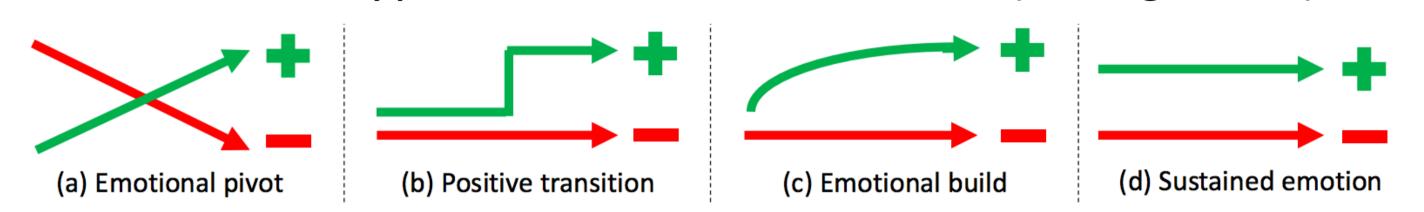
Introduction

 Creative narrative techniques are used in advertisements, which inspire our project.

Freytag's pyramid:

exposition, rising action, climax, denouement

Four archetypes of dramatic structure (Young 2008):



- We crowdsource climax annotations on 1,149 videos.
- We develop unsupervised and supervised methods to predict the climax.
- We build a sentiment prediction model based on the predicted climax and other semantically meaningful features.

Dataset

We base our work on the PITT video ads dataset (Hussain et al., CVPR 2017).

We use both the topic and sentiment annotations.

 Topic
 17,345
 Sentiment
 17,345
 ...

We gather additional climax annotations for 1,149 videos.
 Q: When does the climax occur?

A: 1 min 20 secs

Climax 01:20

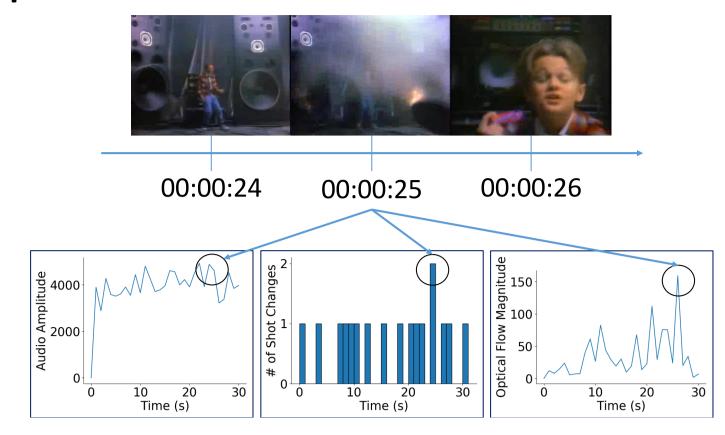
We choose workers with at least 98% approval rate. Each video is annotated by four workers. We end up with 1,149 videos.

Method

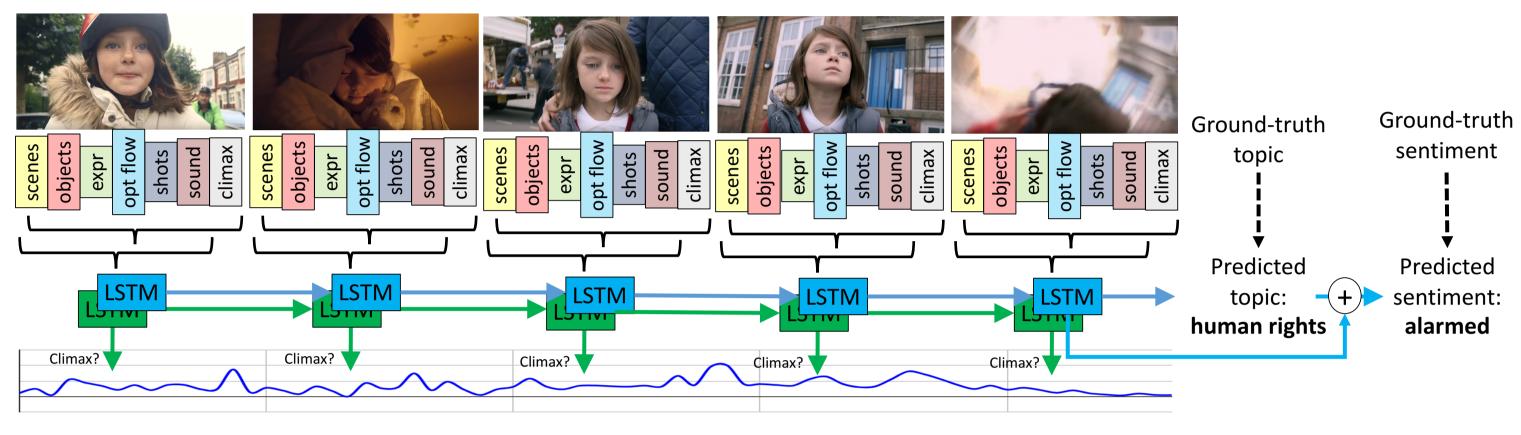
• Feature indicators (processed one frame per second)

- \checkmark Audio amplitude (a^k), max amplitude of audio in the k-th frame.
- Shot boundary indicator (b^k), 0 or 1 depending on whether a shot boundary occurs in the frame
- ✓ Optical flow magnitude (o^k), a scalar value denoting average optical flow magnitude in the k-th frame (using the implementation of *Ranjan et al.*, 2017)
- ✓ Type of place / scene (*pl^k*), a 365-way scene distribution predicted by Place365 model (*Zhou et al., 2017*)
- ✓ Object (ob^k), a 80-D vector capturing the presence of COCO objects, aggregated by max-pooling of the detection result (using *Huang et al., 2017*)
- ✓ Facial expressions (fa^k), 8 facial expressions and valencearousal values predicted by a deep model trained on AffectNet data (Mollahosseini et al., 2017). We use the OpenFace (Amos et al., 2016) to detect faces in the frame.
- ✓ Topic, a 38-D video level topic distribution distilled using topic annotation of PITT video ads dataset

 Unsupervised climax prediction: we directly use audio amplitude, shot boundary frequency, and optical flow magnitude to predict climax.



- Supervised climax prediction: we predict climax using an LSTM (64 hidden units) that outputs 0/1 for each frame.
- Supervised sentiment prediction: we use an LSTM (64 hidden units) to encode the frames.
 - ✓ We also add the predicted climax (1D) as extra information.
 - ✓ Multi-task learning: topic prediction (38D)



Evaluation

Climax prediction

✓ Accuracy: we treat the prediction as correct if groundtruth climax is close (within 0, 1, 2 sec)

	top-1 prediction			top-3 prediction		
Method	w/in 0 s	w/in 1 s	w/in 2 s	w/in 0 s	w/in 1 s	w/in 2 s
heuristic-guess	0.031	0.083	0.121	0.122	0.299	0.430
shot boundary (unsup)	0.068	0.179	0.265	0.221	0.457	0.588
optical flow (unsup)	0.064	0.152	0.220	0.163	0.380	0.513
audio (unsup)	0.077	0.171	0.255	0.178	0.403	0.534
LSTM, ResNet only	0.071	0.206	0.290	0.190	0.400	0.523
LSTM, all feats (Ours)	0.077	0.209	0.287	0.226	0.439	0.546

Sentiment prediction

- ✓ Mean Average Precision (mAP): average precision over evenly spaced recall levels
- ✓ Accuracy@1: fraction of correct top-1 predictions
- ✓ Agree with k: assign a ground-truth label to a video only if at least k annotators agree on the sentiment

	Agree with 1		Agree with 2		Agree with 3	
Method	mAP	acc@1	mAP	acc@1	mAP	acc@1
Hussain et al.	0.283	0.664	0.135	0.435	0.075	0.243
Our model	0.313	0.712	0.160	0.449	0.094	0.241

Ablation studies

- ✓ We show improvement over the baseline that uses only the CNN feature
- Each experiment uses the CNN feature combined with a specific feature indicator

Improvement	creative	educated	alarmed	fashionable	emotional	angry
sound	96.0%	110.5%	106.4%	122.7%	85.7%	165.6%
shots	94.5%	99.8%	108.2%	140.9%	84.8%	61.4%
opt flow	99.5%	106.3%	113.1%	120.5%	77.8%	112.9%
scenes	83.2%	122.0%	121.8%	140.4%	80.7%	84.6%
objects	94.1%	107.3%	114.3%	127.2%	102.1%	67.2%
expr	92.2%	104.6%	112.8%	119.5%	129.4%	87.7%
topic	121.3%	110.9%	110.9%	158.8%	77.2%	148.5%

Acknowledgement

NVIDIA hardware grant