

CS/COE 1550 – Introduction to Operating Systems

 1

Project 2: Process Synchronization

Due: Friday, October 18, 2019 @11:59pm
Late: Sunday, October 20, 2019 @11:59pm with 10% reduction per late day

Table of Contents

PROJECT OVERVIEW .. 2

PROJECT DETAILS ... 2

TENANTARRIVES() AND AGENTARRIVES() .. 2
VIEWAPT() AND OPENAPT() ... 3
TENANTLEAVES() AND AGENTLEAVES() ... 3
TENANT ARRIVAL PROCESS .. 3
AGENT ARRIVAL PROCESS .. 4
REQUIREMENTS ... 4
TESTING ... 4
PROGRAM AND OUTPUT SPECS .. 4
SHARED MEMORY IN OUR SIMULATION .. 5
BUILDING AND RUNNING APTSIM ... 6

SUBMISSION .. 6

GRADING SHEET/RUBRIC ... 6

CS/COE 1550 – Introduction to Operating Systems

 2

Project Overview

Anytime we share data between two or more processes or threads, we run the risk of having a race
condition where our data could become corrupted. In order to avoid these situations, we have discussed
various mechanisms to ensure that one program’s critical regions are guarded from another’s.

One place that we might use parallelism is to simulate real-world situations that involve multiple
independently acting entities, such as people. In this project, you will use the semaphore
implementation in Project 1 to model the safe apartment inspection problem, whereby (potential)
tenants and real-estate agents synchronize so that:

• a tenant cannot view an apartment without an agent,

• an agent cannot open the apartment without a tenant,

• an agent leaves when no more tenants are in the apartment,

• an agent cannot leave until all tenants in the apartment leave,

• once an agent opens the apartment, she can show the apartment to at most ten tenants, and

• at most one agent can open the apartment at a time.

Your job is to write a program that (a) always satisfies the above constraints and (b) where under no
conditions will a deadlock occur. A deadlock happens, for example, when the apartment is empty, an
agent and a tenant arrive, but cannot enter.

You can find a modified kernel with semaphore implementation in the following files:

• /u/OSLab/original/bzImage

• /u/OSLab/original/System.map

• /u/OSLab/original/sem.h

• /u/OSLab/original/unistd.h (to compile your programs against).

Project Details

You are to write (a) the tenant process, (b) the agent process, and (c) six functions called by these
processes: (c1) tenantArrives(), (c2) viewApt(), (c3) tenantLeaves(), (c4) agentArrives(), (c5) openApt(),
and (c6) agentLeaves(). You will also write two processes, (d) one for simulating agent arrival and (e) the
other for simulating tenant arrival.

tenantArrives() and agentArrives()

In order to open an apartment for inspection, you need at least two people to be present
simultaneously, the agent and the tenant(s) (each is represented by a process). tenantArrives() is called
by a tenant process that wishes to view the apartment, and agentArrives() is called by an agent process
that wishes to show the apartment. The functions must block until an agent and a tenant are both
present.

CS/COE 1550 – Introduction to Operating Systems

 3

When an agent arrives, the following message is printed to the screen:

Agent %d arrives at time %d.

When a tenant arrives, the following message is printed to the screen:

Tenant %d arrives at time %d.

viewApt() and openApt()

After an agent and at least one tenant are present simultaneously, the agent calls openApt() and the
tenant calls viewApt(). Each tenant takes 2 seconds (by calling nanosleep or sleep) to view the
apartment. When an agent opens the apartment, the following message is printed to the screen:

Agent %d opens the apartment for inspection at time %d.

When a tenant views the apartment, the following message is printed to the screen:

Tenant %d inspects the apartment at time %d.

tenantLeaves() and agentLeaves()

While the agent is still there, other tenants may arrive (i.e., call tenantArrives()), and as long as less than
ten tenants have viewed the apartment while the agent is there, the tenants should immediately call
viewApt() --- that is, multiple tenants can view the apartment concurrently.

If another agent arrives, s/he must wait until the tenants and agent currently in the apartment leave.
Then s/he should wait until more tenants arrive.

When an agent leaves, the following message should be printed to the screen:

Agent %d leaves the apartment at time %d

When a tenant leaves, the following message should be printed to the screen:

Tenant %d leaves the apartment at time %d

Tenant Arrival Process

The tenant arrival process creates m tenant processes. The number of tenants, m, is read from a
command-line argument (e.g., ./aptsim -m 10). Tenants arrive in bursts. When a tenant arrives, there is
a pt (e.g., 70%) chance another tenant is immediately arriving after her, but once no tenant comes,
there is a dt second delay before any new tenant will come. The probability pt and the delay dt are to be
read from the command-line (e.g., ./aptsim -pt 70 -dt 20).

CS/COE 1550 – Introduction to Operating Systems

 4

Agent Arrival Process

The agent arrival process creates k agent processes. The number of agents, k, is read from a command-
line argument (e.g., ./aptsim -k 10). Agents arrive in bursts. When an agent arrives, there is a pa (e.g.,
30%) chance another agent is immediately arriving after1 her, but once no agent comes, there is a da
second delay before any new agent will come. The probability pa and the delay da are to be read from
the command-line (e.g., ./aptsim -pa 30 -da 30).

Requirements

Your solution must use binary semaphores, should not use busy waiting, and should be deadlock-free.

Testing

Make sure to run various test cases against your solutions to these problems; for instance, create k
agents and m tenants (with various values of k and m, for example k > m, m > k, k = m, etc.), different
values for the probabilities and delays, etc. Note that the output can vary, within certain boundaries.

Program and Output Specs

Create a program, aptsim, which runs the simulation. Your program should run as follows.

• Create a process for tenant arrival and a process for agent arrival, each creating tenants and
agents, respectively, at the appropriate times.

• Create process for each tenant and agent.

• To get an 80% chance of something, you can generate a random number modulo 10, and see if
its value is less than 8. It’s like flipping an unfair coin. You may refer to CS 449 materials for how
to generate a random number. The random seeds have to be read from the command-line.

• Use the syscall nanosleep() or sleep() to pause your processes when needed (e.g., when the
tenant is viewing the apartment for two seconds).

• Have the following command-line arguments:

• -m: number of tenants

• -k: number of agents

• -pt: probability of a tenant immediately following another tenant

1 Subsequent agents will have to wait, as at most one agent can be in the apartment at a time.

CS/COE 1550 – Introduction to Operating Systems

 5

• -dt: delay in seconds when a tenant does not immediately follow another tenant

• -st: random seed for the tenant arrival process

• -pa: probability of an agent immediately following another agent

• -da: delay in seconds when an agent does not immediately follow another agent

• -sa: random seed for the agent arrival process

Make sure that your output shows all of the necessary events. You can sequentially number each tenant
and agent. Tenant numbers are independent of agent numbers. Display when the apartment is empty.

Print out messages in the form:

The apartment is now empty.

Agent %d arrives at time %d.

Tenant %d arrives at time %d.

Agent %d opens the apartment for inspection at time %d.

Tenant %d inspects the apartment at time %d.

Tenant %d arrives at time %d.

Tenant %d inspects the apartment at time %d.

Tenant %d leaves the apartment at time %d.

Tenant %d leaves the apartment at time %d.

Agent %d leaves the apartment at time %d

The printed time is in seconds since the start of the program.

Shared Memory in our simulation

To make our shared data and our semaphores, what we need is for multiple processes to be able to
share the same memory region. We can ask for N bytes of RAM from the OS directly by using mmap():

void *ptr = mmap(NULL, N, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, 0, 0);

The return value will be an address to the start of this page in RAM. We can then steal portions of that
page to hold our variables much like the malloc() project from 449. For example, if we wanted two
integers to be stored in the page, we could do the following:

CS/COE 1550 – Introduction to Operating Systems

 6

int *first_sem;
int *second_sem;
first = ptr;
second_sem = first_sem + 1;
*first_sem = 0;
*second_sem = 0;

to allocate them and initialize them.

At this point we have one process and some RAM that contains our variables. But we now need to share
that memory region/variables with other processes. The good news is that a mmap’ed region (with the
MAP_SHARED flag) remains accessible in the child process after a fork(). Therefore, do the mmap() in
main before fork() and then use the variables in the appropriate way afterwards.

Building and Running aptsim

Please use the instructions in Project 1 for building and running the test programs (named trafficsim in
Project 1) to build and run aptsim.

Submission

You need to submit the following to Gradescope by the deadline:

• Your well-commented aptsim.c program’s source

• A brief, intuitive explanation of why your solution is

• fair (maximum 10 tenants per agent),

• deadlock, and

• starvation free.

Grading Sheet/Rubric

Item Grade
Test cases on the autograder 80%
Comments and style 10%
Explanation report 10%

