CS 1550

Week 6 — Project 2

Teaching Assistant

Xiaoyu (Veronica) Liang



CS 1550 — Project 2

* Due: Friday, October 18t @11:59pm
e Late: Sunday, October 20"@11:59pm with 10% reduction per late day



Create a new process — fork()

* int fork(void)

* Create a new process

* No argument

* Returns O to the child process

e Returns child’s pid to the parent process (>0)

» After creation of the process, both parent and child processes start execution
from the next instruction following the fork() system call.



Create a new process — fork()

in

1f

}
1f

}
1f

}

t pid = fork();

(pid < 0) {
fprintf (stderr, "Fork failed\n");
exit (1) ;

(pid == 0) {
printf (“This is the child\n");
exit (0) ;

(pid > 0) |
printf ("“This 1s parent. The
child's pid is %d\n", pid);
exit (0) ;




Create a new process — fork() Example

e See whiteboard, demo



Project 2 — constraints

e Safe apartment inspection problem

* A tenant cannot view an apartment without an agent

e An agent cannot open the apartment without a tenant
An agent leaves when no more tenants are in the apartment
An agent cannot leave until all tenants in the apartment leave

Once an agent opens the apartment, she can show the apartment to at most ten
tenants, and

At most one agent can open the apartment at a time
* Always satisfies the above constraints

e Under no conditions will a deadlock occur



Project 2

* The tenant process * tenantArrives()
* The agent process * viewApt()

* Tenant arrival process * tenantLeaves()
* Agent arrival process e agentArrives()

e openApt()
e agentlLeaves()



Project 2 —arguments

e Command-line arguments:
* -m: number of tenants
* -k: number of agents
* -pt: probability of a tenant immediately following another tenant

e -dt: delay in seconds when a tenant does not immediately follow another
tenant

e -st: random seed for the tenant arrival process
e -pa: probability of an agent immediately following another agent

e -da: delay in seconds when an agent does not immediately follow another
agent

* -sa: random seed for the agent arrival process



Project 2 — Testing your program

* You can find a modified kernel with semaphore implementation in the following
files (also can be found in course web, TA’s webpage):

e /u/OSLab/original/bzimage
» /u/OSLab/original/System.map
» /u/OSLab/original/sem.h

» /u/OSLab/original/unistd.h (to compile your programs against)
* cp unistd.h to linux-2.6.23.1/include/asm/

e Compile aptsim.c (the same way how you compile trafficsim)
e gcc—m32 —o aptsim —| /PATH/TO/linux-2.6.23.1/include aptsim.c

* Log in your QEMU virtual machine:

e Copy the kernel image with cs1550 semaphore implementation (System.map and bzlmage) to
QEMU (/boot/bzimage-devel, /boot/System.map-devel)

* lilo
* Reboot, select devel mode from the boot loader menu.

e Copy aptsim to QEMU and run the program by
e ./aptsim



Project 2 — Submission

* Well commented aptsim.c file

* A brief, intuitive explanation of why your solution is
* fair (maximum 10 tenants per agent),
* deadlock, and
* starvation free.



CS 1550

Week 6 — Project 2

Teaching Assistant

Xiaoyu (Veronica) Liang



