
CS 1550
Week 6 – Project 2

Teaching Assistant

Xiaoyu (Veronica) Liang



CS 1550 – Project 2

• Due: Friday, October 18th @11:59pm

• Late: Sunday, October 20th@11:59pm with 10% reduction per late day



Create a new process – fork()

• int fork(void) 
• Create a new process

• No argument

• Returns 0 to the child process 

• Returns child’s pid to the parent process (>0) 

• After creation of the process, both parent and child processes start execution 
from the next instruction following the fork() system call. 



Create a new process – fork()
int pid = fork();

if (pid < 0) { 

fprintf(stderr, "Fork failed\n");

exit(1); 

} 

if (pid == 0) { 

printf(“This is the child\n"); 

exit(0); 

} 

if (pid > 0) { 

printf(“This is parent. The 

child's pid is %d\n", pid); 

exit(0); 

}



Create a new process – fork() Example

• See whiteboard, demo



Project 2 – constraints 

• Safe apartment inspection problem
• A tenant cannot view an apartment without an agent
• An agent cannot open the apartment without a tenant
• An agent leaves when no more tenants are in the apartment
• An agent cannot leave until all tenants in the apartment leave
• Once an agent opens the apartment, she can show the apartment to at most ten 

tenants, and
• At most one agent can open the apartment at a time

• Always satisfies the above constraints

• Under no conditions will a deadlock occur 



Project 2

• The tenant process

• The agent process

• Tenant arrival process

• Agent arrival process

• tenantArrives()

• viewApt()

• tenantLeaves()

• agentArrives()

• openApt()

• agentLeaves()



Project 2 – arguments

• Command-line arguments:
• -m: number of tenants

• -k: number of agents

• -pt: probability of a tenant immediately following another tenant

• -dt: delay in seconds when a tenant does not immediately follow another 
tenant

• -st: random seed for the tenant arrival process

• -pa: probability of an agent immediately following another agent

• -da: delay in seconds when an agent does not immediately follow another
agent

• -sa: random seed for the agent arrival process



Project 2 – Testing your program
• You can find a modified kernel with semaphore implementation in the following 

files (also can be found in course web, TA’s webpage):
• /u/OSLab/original/bzImage
• /u/OSLab/original/System.map
• /u/OSLab/original/sem.h
• /u/OSLab/original/unistd.h (to compile your programs against) 

• cp unistd.h to linux-2.6.23.1/include/asm/

• Compile aptsim.c (the same way how you compile trafficsim)
• gcc –m32 –o aptsim –I /PATH/TO/linux-2.6.23.1/include aptsim.c

• Log in your QEMU virtual machine:
• Copy the kernel image with cs1550 semaphore implementation (System.map and bzImage) to 

QEMU (/boot/bzImage-devel, /boot/System.map-devel)
• lilo
• Reboot, select devel mode from the boot loader menu. 

• Copy aptsim to QEMU and run the program by
• ./aptsim



Project 2 – Submission

• Well commented aptsim.c file

• A brief, intuitive explanation of why your solution is 
• fair (maximum 10 tenants per agent), 

• deadlock, and 

• starvation free.



CS 1550
Week 6 – Project 2 

Teaching Assistant

Xiaoyu (Veronica) Liang


