T

-

o

o’

g

-
e

-
_

CS 1550

Week 5 — Lab 2 Synchronization with XV6

Teaching Assistant
Xiaoyu (Veronica) Liang

CS 1550 — Lab 2

* Due: Friday, October 4t @11:59pm

Locks — Processes without sharing CPU

* OS chooses another processes to execute once the first finishes

CPU

Time

Locks — Processes without sharing CPU

 What if P1 is a big process?

—

Time

Locks — Processes sharing CPU

 Solution switch processes during their execution.

CPU

What is the little gap?
The OS Scheduler

Locks — Processes sharing CPU

 What happens in Parent-Child Process scenario?
* How to keep integrity/correctness on race conditions?

CPU Child P2 P1 CP2

Time

Locks — Processes sharing CPU

struct list {
int data;
struct list *next;

};
struct list *1list = 0;

void

insert (int data) {
struct list *1;
1 = malloc(sizeof *1);
l1->data = data;
l->next = list;
list = 1;

Locks — Processes sharing CPU

struct list {
int data;
struct list *next;

};

struct list *list = 0; CPU

void

insert (int data) {

struct 1list *1;
= malloc (sizeof *

1->data data;

P1 stops here the
OS switches to P2

1->next list;
list =

Locks — Processes sharing CPU

struct list {
int data;
struct list *next;

};

struct list *list = O0; CPU

void
insert (int data) {
struct list *1;
: P2 gets the same
= malloc(sizeof *1); reference to the
1->data data;| same block of

1->next list; data of list and
list = . overwrites it

Locks — Processes sharing CPU

struct list {
int data;
struct list *next;

};

struct list *list = O0; CPU

void
insert (int data) {

struct list *1; o
: When P1 comes back it will have
1 = malloc(sizeof *1); .
written the wrong data

1->data = data;
LCP2 stoppet lT>ne>_<t = list;] Race condition: A race condition is an undesirable
list = condition that happened when having multiple
} processes running on a piece of data which does not

use any exclusive locks to control access.

Locks — Processes sharing CPU

e Sharing CPU among processes
* Ensuring data integrity/correctness

* Ensure that a critical section of your code is only executed by one
process

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

Légguire(&listlock);l
1l = malloc(sizeof *1);
l->data = data;
l->next = list;
list = 1;
Irelease(&listlock);l

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

Légguire(&listlock);
1l = malloc(sizeof *1);
1->data = data; P1 gets locks the lock
l->next = list;
list = 1;
Irelease(&listlock);l

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

Légguire(&listlock);l
1l = malloc(sizeof *
1->data = data; P1 gets locks the lock
l->next = list;
list = 1;

Irelease(&listlock);l

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{

struct list *1;

|acquire(&listlock);|
1l = malloc(sizeof *1); When the OS schedule CP2
| P1stopped 1->data = data; I

1->next = list;
list = 1;
Irelease(&listlock);l

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

|acquire(&listlock);

1l = malloc(sizeof *1);
| P1stopped 1->data = data; I It will try to get the lock but won’t.
l->next = 1list;
list = 1; It w.iII be consta.ntly try to getit (in a loop).
Irelease(&listlock);l Until the OS switches back to P1

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

| CP2 stopped acquire (&listlock) ;|
1l = malloc(sizeof *1);
l->data = data;
l->next = list;
list = 1;
Irelease(&listlock);

P1 release the lock P2 will finally be
able to execute, once scheduled

Locks — Processes sharing CPU

struct list *1list = 0;
Ftruct lock listlock;|

void
insert (int data)

{ CPU
struct list *1;

| CP2 proceeds acquire (&listlock) ;
1l = malloc(sizeof *1);
l->data = data;
l->next = list;
list = 1;
Irelease(&listlock);l

P1 release the lock P2 will finally be
able to execute, once scheduled

Locks — Processes sharing CPU

* SpinLock

void Keep spinning until find
acquire (struct spinlock *1k)

{ lock is released
while (!'lk->locked)

; /* busy wait */ e But we can have the same issue
lk->locked = 1;
} as before

e We need to check and
lock atomically

Locks — Processes sharing CPU

* XV6 relies on a special 386 hardware instruction, xchg

e Atomically check and change a register value
* xchg(&lk—->locked, 1)

Locks — Processes sharing CPU

void
° Swap a Word N memory W|th acquire (struct spinlock *1k)
. {
the contents of a register pushcli(); // disable interrupts to
: : i lock.

* In acquire function: Rvoid deadioc

* loop xchg instruction

. . // The xchg is atomic.

g?w(c:jhsre?’ip\g f;gln'galuy read lock while (xchg (s1k->locked, 1) !'= 0);

// Record info about lock acquisition for
debugging.

lk->cpu = mycpu() ;

getcallerpcs(&lk, lk->pcs);

Locks — Processes sharing CPU

e But the we have another issue
* Busy waiting

Lost CPU time Lost CPU time

CPU

Locks — Processes sharing CPU

* Spin Lock
* Busy waiting
» Useful for short critical sections
¢ E.g. increment a counter, access an array eIement, etc.

* Not useful, when the period of wait is unpredictable or will take a long time
* E.g. read page from disk

Locks — Processes sharing CPU

 Sleep Locks
* For code need to hold a lock for a long time (read/write to disk)

* Avoids the schedule of “spin locked” processes

Locks — Processes sharing CPU

 Sleep Locks
* For code need to hold a lock for a long time (read/write to disk)

* Avoids the schedule of “spin locked” processes

void void
acquiresleep (struct sleeplock *1k) releasesleep (struct sleeplock *1k)
{ {

acquire (&lk->1k) ; acquire (&lk->1k) ;

while (lk—>locked) { lk—=>1ocked = 0;

sleep(lk, &lk->1k); lk->pid = 0;

} wakeup (1k) ;

lk—>1locked = 1; release (&lk—>1k) ;

lk—>pid = myproc ()->pid; }

release (&lk—>1k) ;

Locks — Processes sharing CPU

* Put one process to sleep waiting

f t void
or even sleep (void *chan, struct spinlock *1k)
{
struct proc *p = myproc();
* Mark current process as sleeping
p—>state = SLEEPING;
sched () ;
* Call sched() to release the

Processor

Sanity Checks

* Must be a current process
* Must have been passed a lock

* Put one process to sleep waiting

for event

* Mark current process as sleeping

* Call sched() to release the

Processor

void

sleep (void *chan, struct spinlock *1k)

{

struct proc *p = myproc|();

T~ |if(p == 0)

panic("sleep");

1if(lk == 0)
panic ("sleep without 1k");

1f(lk !'= &ptable.lock) {
acquire (&ptable.lock);

| 2ooase L0/ e [Hold the ptablelock
it is safe to release lk

p—>chan = chan;
p—>state = SLEEPING;

sched () ;
p—->chan = 0
1f(lk != &ptable.lock

{
) ;

7

)
release (&ptable.lock
acquire (1lk) ;

}

Locks — Processes sharing CPU

* Wake up process when
* Mark a waiting process

static void
wakeup (void *chan)
event happened |,
acquilre (&ptable.lock) ;
wakeupl (chan) ;

release (&ptable.lock) ;

as runnable

static void
wakeupl (void *chan)

{

struct proc *p;

if (p—>state
p—>state

for (p = ptable.proc; p < &ptable.proc[NPROC]; p++)

== SLEEPING && p—>chan == chan)
= RUNNABLE;

T

-

o

o’

g

-
e

-
_

CS 1550

Week 5 — Lab 2 Synchronization with XV6

Teaching Assistant

Xiaoyu (Veronica) Liang

