
CS 1550
Week 4 – Project 1 Discussion

Teaching Assistant

Xiaoyu (Veronica) Liang

CS 1550 – Project 1

• Due: Friday, September 27, 2019 @11:59pm

• Submission:
• GradeScope (link is available through courseweb)

• Unlimited attempts until the deadline. It takes about two minutes to grade
your solution.

• Files:
• The three well-commented files: sys.c, syscall_table.S and unitstd.h

• A header file, named sem.h, that contains the declaration of your struct cs1550_sem.

• Test using provided test files.

• Each process operates sequentially

• All is fine until processes want to share data
• Exchange data between multiple processes

• Allow processes to navigate critical regions

• Maintain proper sequencing of actions in multiple processes

• These issues apply to threads as well

• Semaphores is a protected integer variable that can facilitate and
restrict access to shared sources in a multi-processing environment.

Synchronization

• 𝑆 – Integer (non-negative value at initialization)

• 𝑄 – Queue of processes/threads (empty at initialization)

• Two most common kinds of semaphores
• Counting semaphores

• Represent multiple resources

• Binary semaphores
• Represent two possible states (1 or 0 locked or unlocked)

Semaphore

• down() / wait()
• Decrements 𝑆

• If 𝑆 is now negative, the current process is blocked and placed in 𝑄

• up() / signal()
• Increments 𝑆

• If after the increment, 𝑆 is still <= 0, that means there is still some blocked
process in the queue. One of them should be dequeued and becomes
unblocked.

Semaphore – two basic operations

Semaphore – basic mutual exclusion

Process Synchronisation Slides (available on courseweb) -- Page 29

Semaphore – pseudo code

Process Synchronisation Slides (available on courseweb) -- Page 30

Project 1 – Discussion

struct cs1550_sem
{

int value;
//Some queue of your devising

};

• Declare a simple struct that contains an integer value and a queue of processes:

• Make two new system calls that each has the following signatures:

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)
asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)

Project 1 - Discussion

asmlinkage long sys_cs1550_down(struct cs1550_sem *sem)

• Here the process can sleep.
• Mark the task as not ready (but can be awoken by signals)
• set the current stat as “TASK_INTERRUPTIBLE”

set_current_state(TASK_INTERRUPTIBLE);
• Invoke the scheduler to pick a ready task.

schedule();

asmlinkage long sys_cs1550_up(struct cs1550_sem *sem)
• wake_up_process(sleeping_task);

Struct that represents a process put to sleep
by the down() method

Project 1 - Discussion
• The semaphores need to be implemented as part of the kernel
• We need to do our increment or decrement and the following check on it atomically

• We can use spin locks for that

• Create a spinlock with a provided macro:
DEFINE_SPINLOCK(sem_lock);

• We can then surround our critical regions with the following:
spin_lock(&sem_lock);
// critical region
spin_unlock(&sem_lock);

Project 1 - Tips
• Using kmalloc to allocate memory

• Synopsis: void * kmalloc (size_t size, gfp_t flags);
• https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html

• printk(), you may want to use for printing out debugging messages from the kernel.

• In general, you can use some library standard C functions, but not all. If they do an OS call,
they may not work.

https://www.kernel.org/doc/htmldocs/kernel-api/API-kmalloc.html

Project 1 – Building and running test programs

Tell gcc to look for the new include files

Cannot run our test program on thoth.cs.pitt.edu

Test the program under QEMU
• Installed the modified kernel
• Copy the test program to QEMU
• Then just run it

Project 1 – Files for submission

• Syscalls you will modify the files
• Actual implementation

• linux-2.6.23.1/kernel/sys.c

• Syscall Number map
• linux-2.6.23.1/arch/i386/kernel/syscall_table.S

• Exposes syscall number to C programs
• linux-2.6.23.1/include/asm/unistd.h

• A header file named sem.h
• All required declarations into the file.
• Should be in the same folder as the test case file when compiling.

CS 1550
Week 4 – Project 1 Discussion

Teaching Assistant

Xiaoyu (Veronica) Liang

