
CS 1550
Lab 1 – xv6 Introduction

Setup and exercise

Teaching Assistant

Xiaoyu (Veronica) Liang

CS 1550 – Kernel Space vs User Space

• Hardware Resources
• CPU

• Memory (Address space)

• I/O devices (Disk, mouse, video card, sound, network, etc.)

• Power and System Management

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• Abstraction
• Hides details of different hardware configurations
• Applications do not need to be tailored for each possible device that might be present on a system

• Arbitration
• Manages access to shared hardware resources
• Enables multiple applications to share the same hardware simultaneously

• OS is just another software

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• OS is just another software

• User applications should not change the kernel(OS software)

Operating System

Hardware

User program

CS 1550 – Kernel Space vs User Space

• User space
• Less privileged memory space where user processes execute

• Kernel space
• Privileged memory space where the OS main process resides

• No User application should be able to change

Kernel SpaceUser Space

Hardware

CS 1550 – Kernel Space vs User Space

Kernel SpaceUser Space

User
process 1

User
process 2

User
process 3 OS process

System calls

• System Call
• User processes have to do system calls to access the OS resources and

Hardware

CS 1550 – Kernel Space vs User Space

Kernel SpaceUser Space Hardware

User
process 1

User
process 2

User
process 3 OS process

CPU

I/O devicesDevice
Driver

System calls

• System Call (OS function)
• User processes have to do system calls to access the OS resources and

Hardware

System Call
-

exercise

CS 1550 – xv6

• Simple Unix-like teaching operating system, developed in 2006.

• Provides basic services to running programs

CS 1550 – xv6

• Has a subset of traditional system calls
• fork() Create process

• exit() Terminate current process

• wait() Wait for a child process

• kill(pid) Terminate process pid

• getpid() Return current process’s id sleep(n)

• Sleep for n time units exec(filename, *argv)

• Load a file and execute it sbrk(n)

• ….

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server
• Since it is an OS how can we run it?

xv6

Run where?

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6
Remote server
linux.cs.pitt.edu

PC hardware
Emulator

(Virtual Machine)

CS 1550 – xv6

• Compile and Run xv6 in a cs pitt server

xv6

Remote server
linux.cs.pitt.edu

PC hardware
Emulator

(Virtual Machine)

CS 1550 – Compile and Run xv6

1. Extend disk Quota, if you have less then 500mb free space
a) Log in to https://my.pitt.edu

b) Click on "Profile" at the top-right corner of the screen

c) Click on "Manage Your Account"

d) Click on “EMAIL & MESSAGING" -> “UNIX QUOTA”

e) Click on "Increase My UNIX Quota"

CS 1550 – xv6

• Log in to linux.cs.pitt.edu
• ssh user_name@linux.cs.pitt.edu

• Download the xv6 source code from github
• git clone git://github.com/mit-pdos/xv6-public.git

• Got into the cloned xv6 source code folder
• cd xv6-public

• Compile and run the code with
• make qemu-nox

• qemu-nox run the console version of the emulator

Compiles and run xv6 with qemu

CS 1550 – xv6

CS 1550 – xv6

• Once in xv6 you can call “ls”

• Will see the entire list of shell commands
available to you.

• The list is very small.

CS 1550 – xv6 – Adding a custom Syscall

• Add a syscall “getday”

• Return the date we hardcoded in the source file.

CS 1550 – xv6 – Adding a custom Syscall

• First, we need to define
our new call and its
number at
• syscall.h

CS 1550 – xv6 – Adding a custom Syscall

• First, we need to define
our new call and its
number at
• syscall.h

• Add
• #define SYS_getday 22

CS 1550 – xv6 – Adding a custom Syscall

• Next we need to map the new
call in the array pointer of
system calls
• syscall.c

• Add
• [SYS_getday] sys_getday,

CS 1550 – xv6 – Adding a custom Syscall

• Next we need to map the
new call in the array pointer
of system calls
• syscall.c

• Add
• [SYS_getday] sys_getday,

• Add
• extern int sys_getday(void);

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls

• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls

• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls

• sysproc.c -> all the other syscalls

CS 1550 – xv6 – Adding a custom Syscall

• Then we need to implement the
actual method

• In xv6 this is organized in two files.
• sysfile.c -> file related system calls
• sysproc.c -> all the other syscalls

int
sys_getday(void)
{

return 6;
}

CS 1550 – xv6 – Adding a custom Syscall

• Afterwards we define the interface for
user programs to call
• Open usys.S

• Add
• SYSCALL(getday)

CS 1550 – xv6 – Adding a custom Syscall

• Finally we open
• user.h

• Add
• int getday(void);

CS 1550 – xv6 – Adding a custom Syscall

• Example user program
• todays_date.c

#include "types.h"
#include "stat.h"
#include "user.h"

int main(void) {
printf(1, "Today is %d\n", getday());
exit();

}

CS 1550 – xv6 – Adding a custom Syscall

• Adding an user program
• Open makefile

• Add
• _todays_date\

CS 1550 – xv6 – Adding a custom Syscall

• Adding an user
program
• Open makefile

• and also add
• todays_date.c\

CS 1550 – xv6 exercise hints

• We need to worry about two things:
• How to count syscalls?

• Implement the method to return counting of syscalls

CS 1550 – xv6 exercise hints

• Syscall calls will need variable to hold the counting values
• Where to write this data structure?

• Which file holds process metadata? proc.c

• Which data structure?
• Each syscall have an id, which could be used as?

• Which basic data structure uses indices for element positions?

• Important method can be found in syscall.c
• syscall(void)->Is called every time any syscall is called

CS 1550 – xv6 exercise hints

The system call numbers match the entries in the

syscalls array, a table of function pointers

CS 1550 – xv6 lab1 hints

• Implementing getcount
• Specify the method and its id in syscall.h
• Specify extern method and pointer

• syscall.c

• Where to implement int sys_getcount(void)?
• sysproc.c

• Add SYSCALL(getcount)
• usys.S

• getcount.c
• Modify proc.c, proc.h according to your method of counting.

• Declare counting array?
• Initialize counting array?

• Makefile

• Submit to GradeScope the files that you have modified within the
source code of xv6.

• You should modify the following files only:
• syscall.h
• syscall.c
• user.h
• usys.S
• proc.h
• proc.c
• sysproc.c
• Makefile

CS 1550 – xv6 lab1 hints

CS 1550 – Reminder

• Lab 1
• Due: Friday, 09/20 @ 11:59pm

• Slides Available:
• http://people.cs.pitt.edu/~xil160/CS1550_Fall2019/

http://people.cs.pitt.edu/~xil160/CS1550_Fall2019/

