
CS 1550
Week 11 – Lab 4

Teaching Assistant

Xiaoyu(Veronica) Liang

Memory layout

Kernel Space

Stack

Heap

BSS

Data

Text/Code instructions

initialized globals and statics

uninitialized globals and statics

malloc()

High address

Low address

Stack/local

int t = 0; // Data
int m; // BSS
…
int main() {

…
int i; // Stack
static int j; // BSS

// ptr: Stack
// 4B pointed by ptr: Heap
char * ptr = (char*)malloc(4);

// mptr: Stack
// 4K pointed by mptr: memory Mapping
char * mptr = (char*)mmap(…,4096,…);
…

}

Mapping mmap()

Program Break

Kernel Space

Stack

BSS

Data

Text/Code

High address

Low address

Mapping

• Program break marks the end of
the uninitialized data

0x7000000Program break

Program Break

Kernel Space

Stack

Heap

BSS

Data

Text/Code

High address

Low address

Mapping

• Program break marks the end of
the uninitialized data

0x8000000Program break

The Syscall sbrk

Kernel Space

Stack

Heap

BSS

Data

Text/Code

High address

Low address

Mapping

0x8000000Program break

• Sbrk adds a size to the end of
cur_brk

void *cur_brk = sbrk(0);

void *old_brk = sbrk(4096);

void *new_brk = sbrk(0);

The Syscall sbrk

Kernel Space

Stack

Heap

BSS

Data

Text/Code

High address

Low address

Mapping

Program break

• Sbrk adds a size to the end of
cur_brk

void *cur_brk = sbrk(0);

void *old_brk = sbrk(4096);

void *new_brk = sbrk(0); cur_brk: 0x8000000

The Syscall sbrk

Kernel Space

Stack

Heap

BSS

Data

Text/Code

High address

Low address

Mapping

Program break

• Sbrk adds a size to the end of
cur_brk

void *cur_brk = sbrk(0);

void *old_brk = sbrk(4096);

void *new_brk = sbrk(0);

0x8001000: increase 0x8000000 by 4K

old_brk, cur_brk: 0x8000000

The Syscall sbrk

Kernel Space

Stack

Heap

BSS

Data

Text/Code

High address

Low address

Mapping

Program break

• Sbrk adds a size to the end of
cur_brk

void *cur_brk = sbrk(0);

void *old_brk = sbrk(4096);

void *new_brk = sbrk(0);

new_brk: 0x8001000

old_brk, cur_brk: 0x8000000

sbrk on XV6

The sys_sbrk() in sysproc.c is the XV-6 implementation for sbrk.

Get the current heapsize

Increase heapsize by n

growproc on XV6

The growproc() is in proc.c:

Allocates physical page,
updates page table

Deallocation, updates page
table, free physical page

Physical Memory Allocation

Given 4KB per page and allocating an array with size of 100 pages:

char * ptr = (char*) malloc (4096 * 100);

• This only allocates virtual memory: ptr to ptr+4096*100

• How about physical memory?

XV6: Immediately allocate all 100 physical page frames

allocuvm on xv6
The allocuvm() is in vm.c

Allocate page tables and physical
memory to grow process from oldsz to
newsz. Return newsz if succeed, 0
otherwise

Round the address to the
higher multiple of PGSIZE

Fill a block of memory with
a particular value

mappages(pde_t *pgdir, void *va, unit
size, unit pa, int perm)

Creates translations from va (virtual address) to pa
(physical address) in existing page table pgdir.
Returns 0 if successful, -1 if not.

Process page table

Virtual address

Default page size

Translating virtual address

to physical address

Flags the page as

writeable and to be used

by programs (otherwise

only the kernel can access

it).

Physical Memory Allocation

Given 4KB per page and allocating an array with size of 100 pages:

char * ptr = (char*) malloc (4096 * 100);

• This only allocates virtual memory: ptr to ptr+4096*100

• How about physical memory?

XV6: Immediately allocate all 100 physical page frames

Lab 4: allocate one physical page frame upon the 1st access on that page.

allocate one physical page frame when page fault happens.

Lab 4 – Part 1 Eliminate Allocation from sbrk()

• Just increment the process’s size (proc->sz) by n and return the old
size.

• Delete the call to growproc()

Comment out

Lab 4 – Part 2 Lazy Allocation

• Hint: find the virtual address that caused the page fault
• In trap.c, find the cprintf arguments for “pid XX XX: trap XX err X on cpu X eip …”

• Hint: you can check whether a fault is a page fault by
• By checking if tf->trapno is equal to T_PGFLT

• Hint: reference the logic of allocuvm() in vm.c

• Hint: use PGROUNDDOWN(va) to round the faulting virtual address down
to a page

• Hint: break or return in order to avoid the cprintf and the proc->killed = 1

• Hint: call int mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
• Delete the “static” in the declaration of mappages() in vm.c
• Declare mappages() in trap.c

Lab 4

If all goes well, your lazy allocation code should result in “echo hi”
working.

This is not a fully correct implementation. See the challenges in the lab
description for a list of problems.

Don’t worry about these for this lab.

CS 1550 – Lab 4

• Due: Friday, November 15th, 2019 @11:59pm

