FUNDAMENTAL CONCEPTS IN COMMUNICATION

Communication Network And Switching

Types of Communication Networks

- Traditional
- Traditional local area network (LAN)
- Traditional wide area network (WAN)
- Higher-speed
- High-speed local area network (LAN)
- Metropolitan area network (MAN)
- High-speed wide area network (WAN)

Characteristics of WAN and LAN

- Characteristics of WANS
- Covers large geographical areas
- Consists of interconnected switching nodes
- Traditional WANs provided modest capacity
- Higher-speed WANs use optical fiber and transmission technique known as asynchronous transfer mode (ATM)
- 10s and 100s of Mbps common
- Characteristics of LANS
- LAN interconnects a variety of devices and provides a means for information exchange among them
- Traditional LANs
- Provided data rates of 1 to 20 Mbps
- High-speed LANS
- Provide data rates of 100 Mbps to 1 Gbps

Differences between LANs and WANs

■ Scope of a LAN is smaller

- LAN interconnects devices within a single building or cluster of buildings
- LAN usually owned by organization that owns the attached devices
- For WANs, most of network assets are not owned by same organization
- Internal data rate of LAN is much greater

The Need for MANs

■ Traditional point-to-point and switched network techniques used in WANs are inadequate for growing needs of organizations

- Need for high capacity and low costs over large area
- MAN provides:
- Service to customers in metropolitan areas
- Required capacity
- Lower cost and greater efficiency than equivalent service from telephone company

Comparison of LAN, MAN, and WAN : Illustration

Switching Concept

- Switching Nodes:
- Intermediate switching device that moves data and doesn't concern with content of data
- Stations:
- End devices that wish to communicate and connected to a switching node
- Communications Network:
- A collection of switching nodes

Observation of the Figure

- Some nodes connect only to other nodes (e.g., 5 and 7)
- Some nodes connect to one or more stations
- Node-station links usually dedicated point-to-point links

■ Node-node links usually multiplexed links

- Frequency-division multiplexing (FDM)
- Time-division multiplexing (TDM)
- Not a direct link between every node pair

Techniques Used in Switched Networks

- Circuit switching
- Dedicated communications path between two stations, E.g., public telephone network
- Phases:
- Circuit establishment
- An end to end circuit is established through switching nodes
- Information Transfer
- Information transmitted through the network
- Data may be analog voice, digitized voice, or binary data
- Circuit disconnect
- Circuit is terminated
- Each node deallocates dedicated resources

Techniques Used in Switched Networks

- Packet switching
- Message is broken into a series of packets before being sent
- Typical packet length is 1000 octets (bytes)
- Packets consists of a portion of data plus a packet header that includes control information
- Each node determines next leg of transmission for each packet
- At each node en-route, packet is received, stored briefly and passed to the next node

Techniques Used in Switched Networks

The Use of Packets

Packet Switching- Datagram Network

- Each packet treated independently, without reference to previous packets
■ Each node chooses next node on packet's path
- Packets don't necessarily follow same route and may arrive out of sequence
- Exit node restores packets to original order
- Responsibility of exit node or destination to detect loss of packet and how to recover

Packet Switching- Datagram Network

Circuit Switching

- Advantages
- Once established, network is transparent to users
- Information transmitted at fixed data rate with only propagation delay

■ Disadvantages

- Circuit Switching can be inefficient : Channel capacity dedicated for duration of connection
- Utilization not 100%
- Delay prior to signal transfer for establishment
- If circuit is not established, then the call would be blocked

Packet Switching

- Advantages
- Line efficiency is greater
- Many packets over time can dynamically share the same node to node link
- Packet-switching networks can carry out data-rate conversion
■ Two stations with different data rates can exchange information
- Unlike circuit-switching networks that block calls when traffic is heavy, packet-switching still accepts packets, but with increased delivery delay
- Priorities can be used
- For Datagram Packet switching :
- Call setup phase is avoided
- Because it's more primitive, it's more flexible
- Datagram delivery is more reliable

Event Timing Diagram

- Circuit and datagram packet switching

Source

Source

Destination

Processing or queuing
delay

Transmission delaıy
Propagation delay (time) $=$

$$
t_{\text {prop }}=\frac{s}{c}
$$

where S denotes the length of the link and c denotes the speed of the light $=$ $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

Transmission delay $($ time $)=$

$$
t_{t r}=\frac{L}{R}
$$

where L denotes the length of the frame (in bits) and R denotes the transmission rate (in ${ }^{\text {bit }} / \mathrm{sec}$)

Effect on Packet Size

(a) 1-packet message

(b) 2-packet messa

(c) 5-packet message
 (d) 10-packet message

- Typically, a switching node treats each packet as "store and forward"
- Each packet is independent, so that allowing the node to do store and forward simultaneously for different packet
- Breaking up packets decreases transmission time because transmission is allowed to overlap

Effect on Packet Size : Example

■ Suppose a node wants to transmit 40 bytes message through a packet switching network (datagram), with transmission rate of R bytes/second. Three bytes of header information are added into every packet transmitted over the network. Four nodes are assumed involved in this network. Propagation time is ignored in this case.

- Case 1 : Entire message is set into one packet. Total packet size is $L=40+3=43$ bytes. Transmission time would be 43/R second for each hop. Total time is $129 / \mathrm{R}$ seconds (See the left figure in slide 17)

Effect on Packet Size : Example

- Case 2 : Entire message is split into two packets. Each packet has size of $\mathrm{L}=20+3=23$ bytes. Packet transmission time of each node would be 46/R seconds. Since each nodes can store and forward in the same time, then total transmission time would be $46 / R+23 / R+23 / R=92 / R$ seconds (see the second left figure in slide 17)
- Case 3 : Entire message is split into 5 packets. Each packet has size of $L=8+3=11$ bytes. Total transmission time to send entire message through network is $55 / R+11 / R+11 / R=77 / R$ seconds (see the third left figure in slide 17)
- Case 4 : Entire message is split into 10 packets. Each packet has size of $L=7$ bytes. Total transmission time is 84/R seconds (longer than Case 3 !), (see the right figure in slide 17)

