FUNDAMENTAL CONCEPTS IN COMMUNICATION

Communication Network And Switching

Types of Communication Networks

- Traditional
 - Traditional local area network (LAN)
 - Traditional wide area network (WAN)
- Higher-speed
 - High-speed local area network (LAN)
 - Metropolitan area network (MAN)
 - High-speed wide area network (WAN)

Characteristics of WAN and LAN

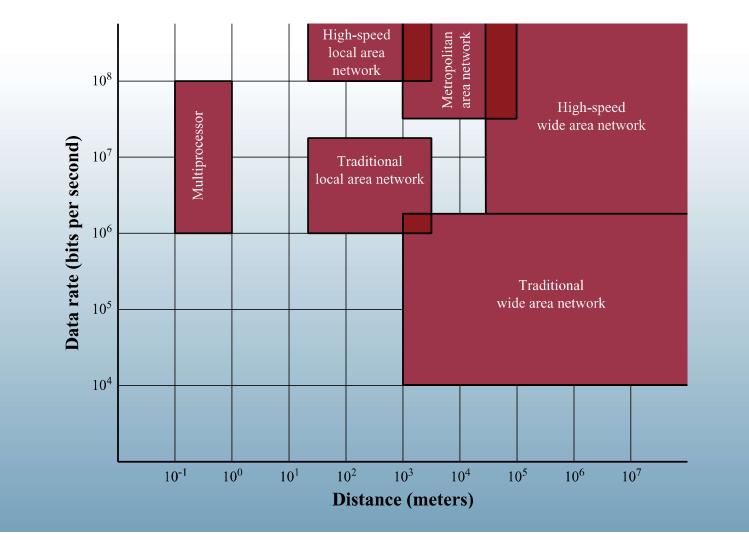
Characteristics of WANS

- Covers large geographical areas
- Consists of interconnected switching nodes
- Traditional WANs provided modest capacity
- Higher-speed WANs use optical fiber and transmission technique known as asynchronous transfer mode (ATM)
 - 10s and 100s of Mbps common

Characteristics of LANS

- LAN interconnects a variety of devices and provides a means for information exchange among them
- Traditional LANs
 - Provided data rates of 1 to 20 Mbps
- High-speed LANS
 - Provide data rates of 100 Mbps to 1 Gbps

Differences between LANs and WANs


Scope of a LAN is smaller

- LAN interconnects devices within a single building or cluster of buildings
- LAN usually owned by organization that owns the attached devices
 - For WANs, most of network assets are not owned by same organization
- Internal data rate of LAN is much greater

The Need for MANs

- Traditional point-to-point and switched network techniques used in WANs are inadequate for growing needs of organizations
- Need for high capacity and low costs over large area
- MAN provides:
 - Service to customers in metropolitan areas
 - Required capacity
 - Lower cost and greater efficiency than equivalent service from telephone company

Comparison of LAN, MAN, and WAN : Illustration

Switching Concept

Switching Nodes:

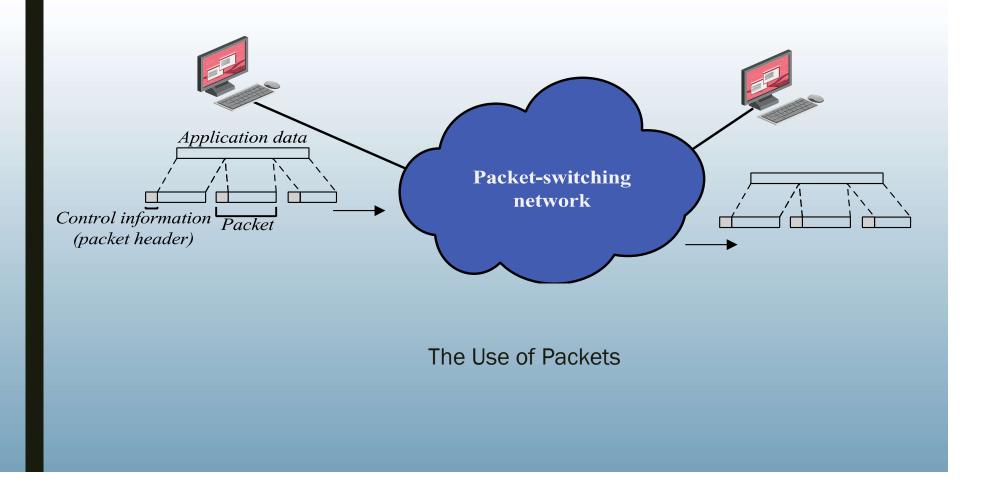
- Intermediate switching device that moves data and doesn't concern with content of data
- Stations:
 - End devices that wish to communicate and connected to a switching node
- Communications Network:
 - A collection of switching nodes

Observation of the Figure

- Some nodes connect only to other nodes (e.g., 5 and
 7)
- Some nodes connect to one or more stations
- Node-station links usually dedicated point-to-point links
- Node-node links usually multiplexed links
 - Frequency-division multiplexing (FDM)
 - Time-division multiplexing (TDM)
- Not a direct link between every node pair

Techniques Used in Switched Networks

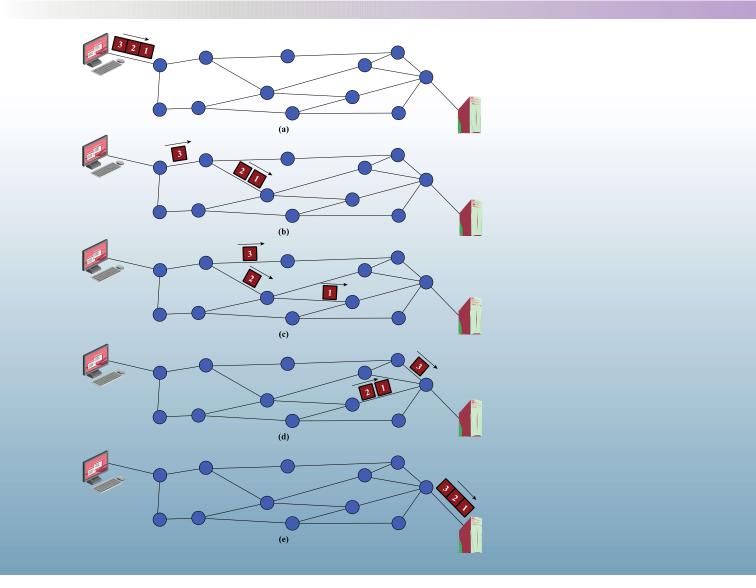
Circuit switching


- Dedicated communications path between two stations, E.g., public telephone network
- Phases :
 - Circuit establishment
 - An end to end circuit is established through switching nodes
 - Information Transfer
 - Information transmitted through the network
 - Data may be analog voice, digitized voice, or binary data
 - Circuit disconnect
 - Circuit is terminated
 - Each node deallocates dedicated resources

Techniques Used in Switched Networks

Packet switching

- Message is broken into a series of packets before being sent
 - Typical packet length is 1000 octets (bytes)
 - Packets consists of a portion of data plus a packet header that includes control information
- Each node determines next leg of transmission for each packet
 - At each node en-route, packet is received, stored briefly and passed to the next node


Techniques Used in Switched Networks

Packet Switching- Datagram Network

- Each packet treated independently, without reference to previous packets
- Each node chooses next node on packet's path
- Packets don't necessarily follow same route and may arrive out of sequence
- Exit node restores packets to original order
- Responsibility of exit node or destination to detect loss of packet and how to recover

Packet Switching- Datagram Network

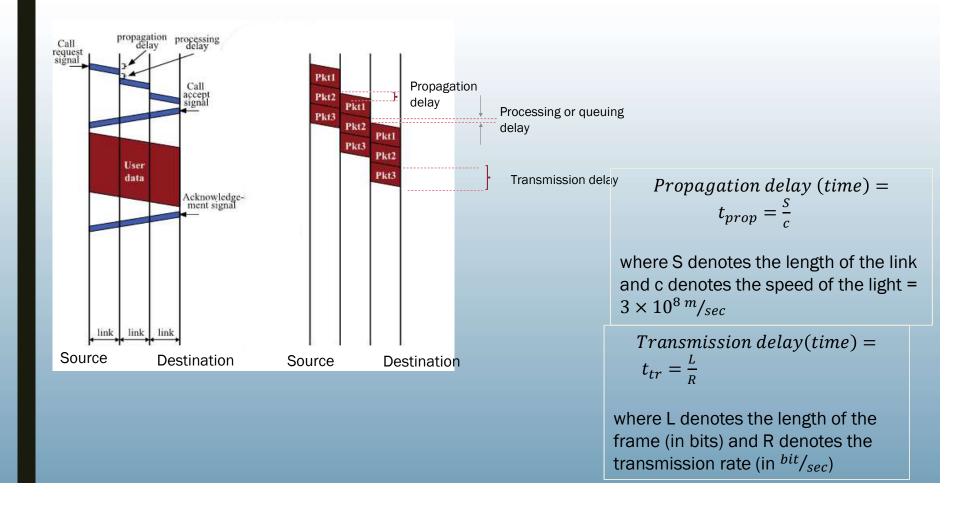
Circuit Switching

Advantages

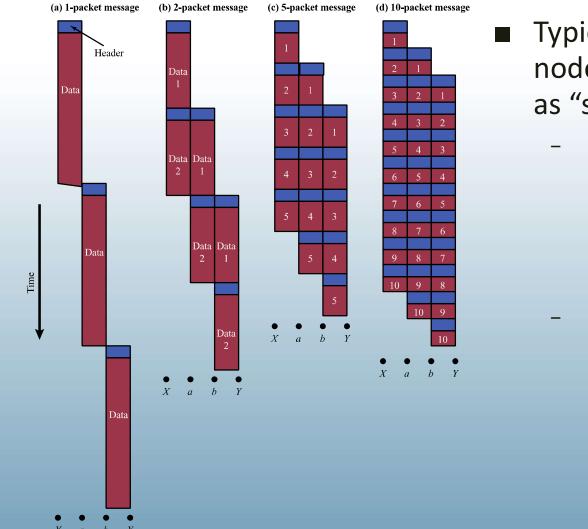
- Once established, network is transparent to users
- Information transmitted at fixed data rate with only propagation delay

Disadvantages

- Circuit Switching can be inefficient : Channel capacity dedicated for duration of connection
- Utilization not 100%
- Delay prior to signal transfer for establishment
- If circuit is not established, then the call would be blocked


Packet Switching

Advantages


- Line efficiency is greater
 - Many packets over time can dynamically share the same node to node link
- Packet-switching networks can carry out data-rate conversion
 - Two stations with different data rates can exchange information
- Unlike circuit-switching networks that block calls when traffic is heavy, packet-switching still accepts packets, but with increased delivery delay
- Priorities can be used
- For Datagram Packet switching :
 - Call setup phase is avoided
 - Because it's more primitive, it's more flexible
 - Datagram delivery is more reliable

Event Timing Diagram

Circuit and datagram packet switching

Effect on Packet Size

- Typically, a switching node treats each packet as "store and forward"
 - Each packet is independent, so that allowing the node to do store and forward simultaneously for different packet
 - Breaking up packets decreases transmission time because transmission is allowed to overlap

Effect on Packet Size : Example

- Suppose a node wants to transmit 40 bytes message through a packet switching network (datagram), with transmission rate of R bytes/second. Three bytes of header information are added into every packet transmitted over the network. Four nodes are assumed involved in this network. Propagation time is ignored in this case.
 - Case 1 : Entire message is set into one packet. Total packet size is L=40+3 =43 bytes. Transmission time would be 43/R second for each hop. Total time is 129/R seconds (See the left figure in slide 17)

Effect on Packet Size : Example

- Case 2 : Entire message is split into two packets. Each packet has size of L=20+3 =23 bytes. Packet transmission time of each node would be 46/R seconds. Since each nodes can store and forward in the same time, then total transmission time would be 46/R+23/R+23/R=92/R seconds (see the second left figure in slide 17)
- Case 3 : Entire message is split into 5 packets. Each packet has size of L=8+3=11 bytes. Total transmission time to send entire message through network is 55/R+11/R+11/R=77/R seconds (see the third left figure in slide 17)
- Case 4 : Entire message is split into 10 packets. Each packet has size of L=7 bytes. Total transmission time is 84/R seconds (longer than Case 3!),(see the right figure in slide 17)