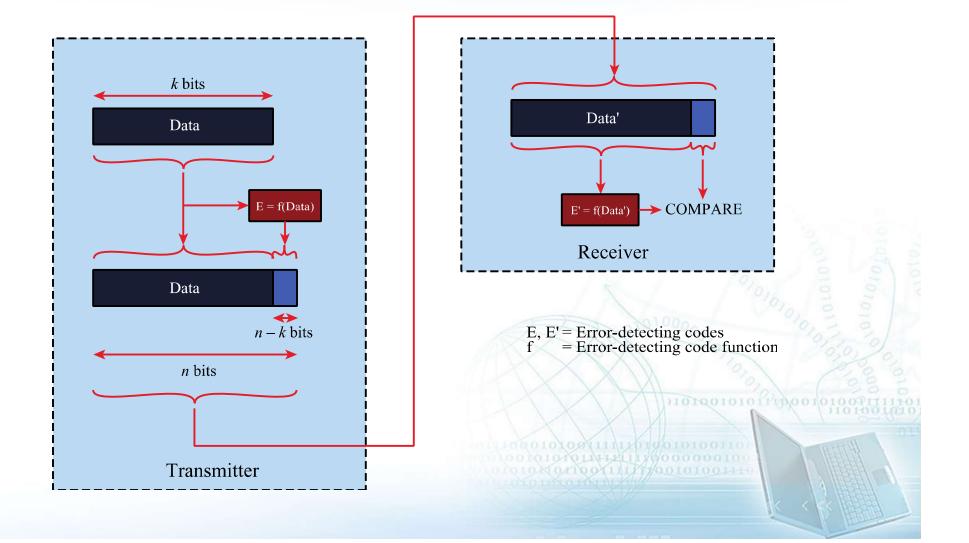


FUNDAMENTAL : Communication Transmission

Week 3 – day 1

Addressing Channel Impairment

- Adaptive Modulation
 - Can be performed adaptively according to channel condition
- Data Encoding :
 - Error Control Coding
 - Adding extra bit into the data so that error can be detected or corrected
- Equalization
 - Counteract the multipath effect of the channel
- Multiple input multiple output (MIMO)
 - The use of multiple antenna either for transmitting and receiving
- Direct sequence spread spectrum
 - Signal occupies large bandwidth, so that problems in parts of it are overcome


Error Control Coding

- Coding and Error Control
 - Applied to digital data
 - Data would be a sequence of bits with certain length, called as frame
 - There are two approaches:
 - Error Detection Codes
 - Error Correction Codes
- Error Detection Codes
 - Simply detect the presence of error bit
 - Transmitter
 - For a given frame, an error-detecting code (check bits) is calculated from data bits
 - Check bits are appended to data bits
 - Receiver
 - Separates incoming frame into data bits and check bits
 - Calculates check bits from received data bits
 - Compares calculated check bits against received check bits
 - Detected error occurs if mismatch
 - Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data

Error Control Coding

- Forward error correction
 - Transmitter adds error-correcting code to data block
 - Block code
 - Convolutional Code
 - Turbo codes
 - Code is a function of the data bits
 - Receiver calculates error-correcting code from incoming data bits
 - If calculated code matches incoming code, no error occurred
 - If error-correcting codes don't match, receiver attempts to determine bits in error and correct

Error Detection Techniques

Error Control Coding

- Parity Check
 - Parity bit appended to a block of data
 - Even parity
 - Added bit ensures an even number of 1s
 - Odd parity
 - Added bit ensures an odd number of 1s
 - Example, 7-bit character [1110001]
 - Even parity [11100010]
 - Odd parity [11100011]
- Cyclic Redundancy Check
 - Transmitter
 - For a k-bit block, transmitter generates an (n-k)-bit frame check sequence (FCS)
 - Resulting frame of *n* bits is exactly divisible by predetermined number
 - Receiver
 - Divides incoming frame by predetermined number
 - If no remainder, assumes no error

Cyclic Redundancy Code (CRC)

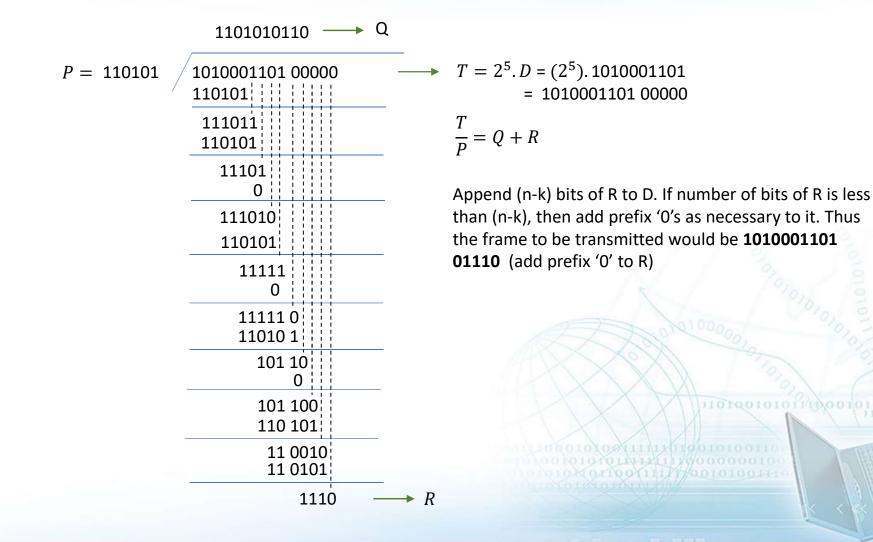
- Modulo 2 arithmetic
 - Since it is a digital data, where only two values are involved in each bit ('0' or '1')
 - Use operation of addition, division, multiplication with no carrier bit
 - In computer logic, implementation of these operations uses XOR gates and shift register
 - Example : 1111

```
<u>0110 +</u>
```

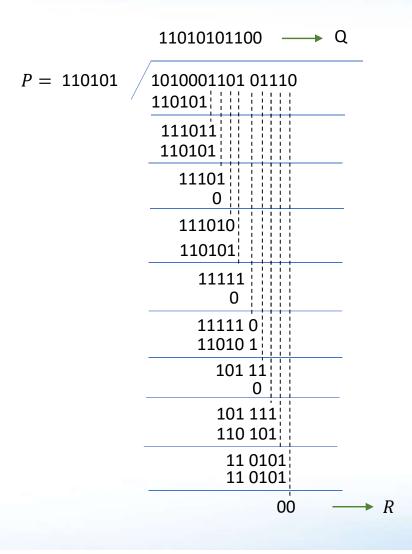
```
1001 (NOT 10101)
```

The idea is following: A result of division operation between two integer numbers can be expressed as them summation of quotient and remainder. In general, it can be written as follows

 $\frac{T}{P} = Q + R$, where T and P are integer numbers, Q is quotient and R is remainder.


Any change on T would change the remainder

Generating CRC


• Append CRC bit into data bit

- Suppose following bit sequence represent data, whose value is denoted by D, and pattern (or polynomial generator in CRC context), whose value is denoted by P respectively
 - D= 1010001101 (width equals to k=10 bits) and P=110101 (width equals to p=6 bits)
 - Number of bits to be added : (n-k)=p-1, thus total number of bits is n=k+p-1
- Find remainder R as follows
 - Multiply D with $2^{(n-k)}$, yielding 101000110100000
 - Divided the product with P, which then yielding R (illustration is given in the next slide)
- Append R to D (thus total frame length, n, equals to n=k+p-1=15)

Modulo 2 Division Illustrated

Modulo 2 Division Illustrated

If received frame is T'= **1010001101 01110** (which means no error occurs), then find

$$\frac{T'}{P} = Q' + R$$

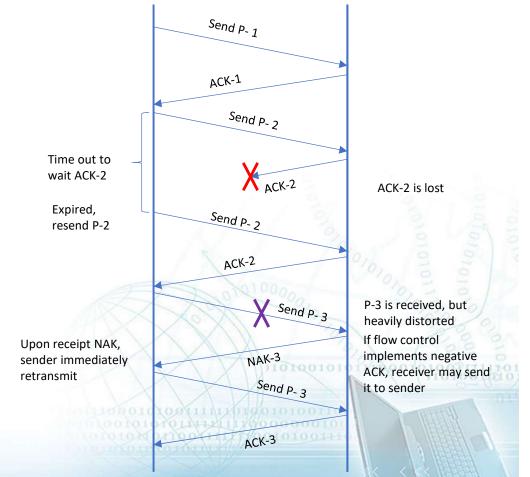
If R = 0 means no error occurs

Check R again if any of one bit is flipped !

CRC : Polynomial Format

- The data bits, pattern are written in polynomial format
 - D= 1010001101 $\equiv D(x) = x^9 + x^7 + x^3 + x^2 + 1$
 - $T = x^5 \cdot D \equiv T(x) = x^{14} + x^{12} + x^8 + x^7 + x^5$
 - $P=110101 \equiv P(x) = x^5 + x^4 + x^2 + 1$
- Widely used versions of *P*(*x*)
 - CRC-12
 - $X^{12} + X^{11} + X^3 + X^2 + X + 1$
 - CRC-16
 - $X^{16} + X^{15} + X^2 + 1$
 - CRC CCITT
 - $X^{16} + X^{12} + X^5 + 1$
 - CRC 32
 - $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

CRC : Application Notes

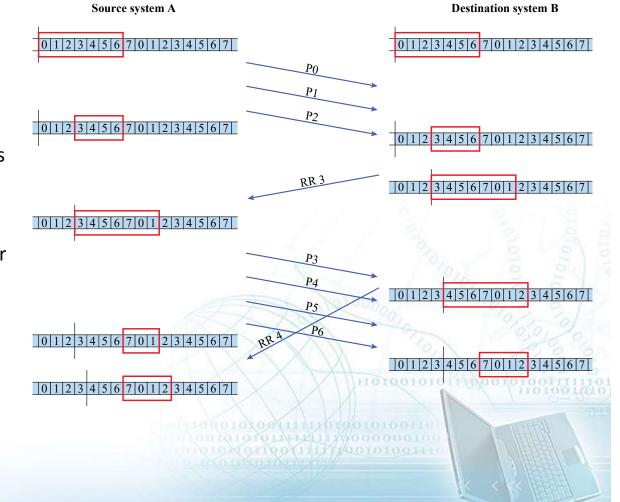

- With suitably chosen of P(x), following pattern of error is detectable
 - All single bit errors, if P(x) has more than one nonzero term
 - All double bit errors, as long as P(x) has a factor with at least three terms
 - Any odd number of errors, as long as P(x) contains a factor (x+1)
 - Any burst error for which the length of the burst is less than or equal to (n-k)
- If an error were detected, then data needs to be retransmitted
 - Channel with low error probability and short propagation delay may benefit from this technique.
 - However, a channel with high error rate or having a long propagation delay, such as wireless link and satellite link. Frequent retransmission may cause inefficient system
 - Forward Error Correction code is exploited

Automatic Repeat Request

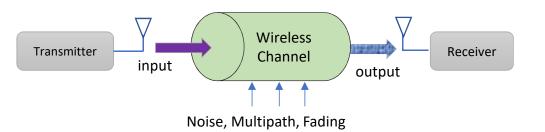
- Applied with conjunction with error detection schemes
 - Sender needs to retransmit the data when the data being received by received suffers from error → ARQ error control
 - Although it works with error detection scheme, ARQ schemes can be viewed from data link layer OR transport layer point of view
 - In multi-hop links, retransmission can be done on per hop basis (which is relevant to data link layer) or end to end retransmission (which is relevant to transport layer)
 - Regardless of these two layers, basic mechanism of ARQ schemes remain the same
 - Work closely with flow control
 - Technique for assuring that a transmitting entity does not overwhelm a receiving entity with data.

Stop & Wait Protocol

- Stop and Wait protocol is a simple example used for ARQ
 - Sender sends one packet and waits for acknowledgement from receiver. It would not transmit subsequent packet unless getting acknowledgement packet from receiver
 - If sender did not get acknowledgement or experience time out, sender may retransmit the packet



Flow Control

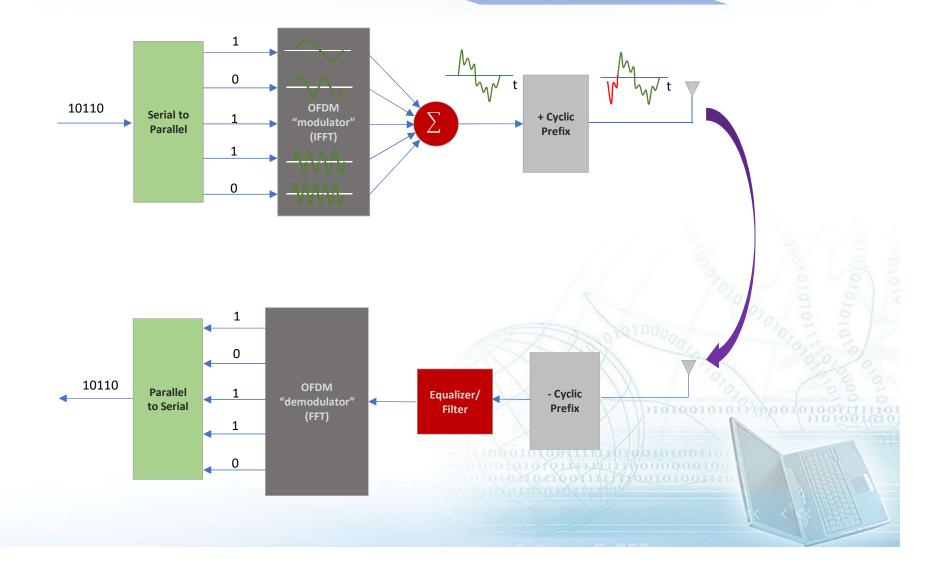

- Assures that transmitting entity does not overwhelm a receiving entity with data
- Protocols with flow control mechanism allow multiple information packet in transit at the same time
 - Generic name for block of bits that represents data to exchanged at any protocol or communication layer
- Packets arrive in same order they're sent
- Sliding-window flow control
 - Transmitter maintains list (window) of sequence numbers allowed to send
 - Receiver maintains list allowed to receive

Sliding Window Illustrated

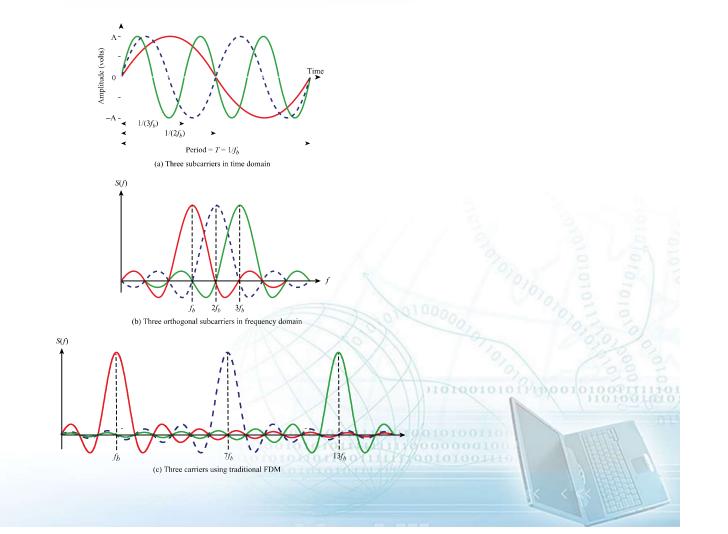
- Reasons for breaking up a block of data before transmitting:
 - Limited buffer size of receiver
 - Retransmission of packets due to error requires smaller amounts of data to be retransmitted
 - On shared medium, larger packets occupy medium for extended period, causing delays at other sending stations

Space Diversity

- Space diversity techniques involving physical transmission path, spacing antennas
- Based on the illustration above, we may have SISO (Single Input Single Output), MISO(Multiple Input Single Output), SIMO(Single Input Multiple Output), and MIMO(Multiple Input Multiple Output)
- Multiple input multiple output (MIMO)
 - If being treated properly, signal diversity due to multipath can be advantageous.


2x2 MIMO

- MIMO can be also used to increase the reliability of the link
 - Each antenna can be seen as independent channel. Each transmitter's antenna emits different stream of data

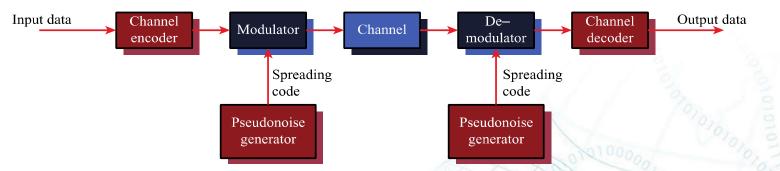

Frequency Diversity

- Frequency diversity techniques where the signal is spread out over a larger frequency bandwidth or carried on multiple frequency carriers (Actually, we have talked about this in previous slide!)
 - Frequency Division Multiplexing (FDM), orthogonal FDM (OFDM)
 - OFDM
 - Also called multicarrier modulation
 - Start with a data stream of *R* bps
 - Could be sent with bandwidth Nf_b
 - With bit duration 1/R
 - OFDM splits into N parallel data streams
 - Called *subcarriers*
 - Each with center frequency f_b
 - And data rate *R*/*N* (bit time *N*/*R*)

OFDM : Diagram Block

Orthogonality on OFDM

OFDM

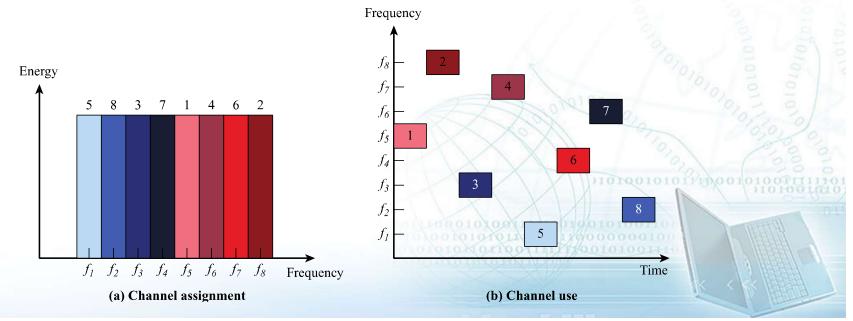

- The spacing of the f_b frequencies allows tight packing of signals
 - Actually with overlap between the signals
 - Signals at spacing of f_b , $2f_b$, $3f_b$, etc.
- The choice of f_b is related to the bit rate to make the signals orthogonal
- Traditional FDM makes signals completely avoid frequency overlap
 - Because of tight packing of signals, overlap in OFDM greatly increases capacity.
 - Although these frequencies overlap, orthogonal properties of the frequencies prevents interference

OFDM : Pros and Cons

- Frequency selective fading only affects some subcarriers
- More importantly, OFDM overcomes inter-symbol interference (ISI)
 - ISI is a caused by multipath signals arriving in later bits
 - OFDM bit times are much, much longer (by a factor of N)
 - ISI is dramatically reduced
 - OFDM's long bit times eliminate most of the ISI
 - OFDM also uses a *cyclic prefix* (CP) to overcome the residual ISI
 - Adds additional time to the OFDM symbol before the real data is sent
 - Acted like *guard interval*. Instead of an empty guard interval, a copy of the last OFDM symbol is put in front of the symbol
 - ISI diminishes before the data starts
- Cons
 - Poor performance under time selective fading and doppler spread
 - Sensitive to non-linear distortion

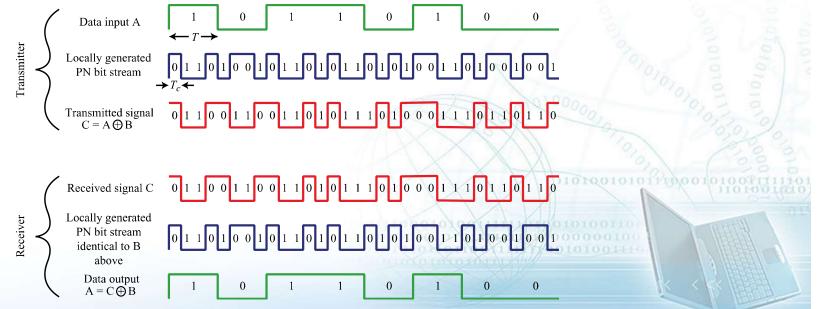
Spread Spectrum

- Spread spectrum technique spreads the information signal over a wider bandwidth
 - This technique makes jamming and interception more difficult, since the receiver will see the modulated signal like a noise
 - This technique was initially developed for military and intelligence requirement

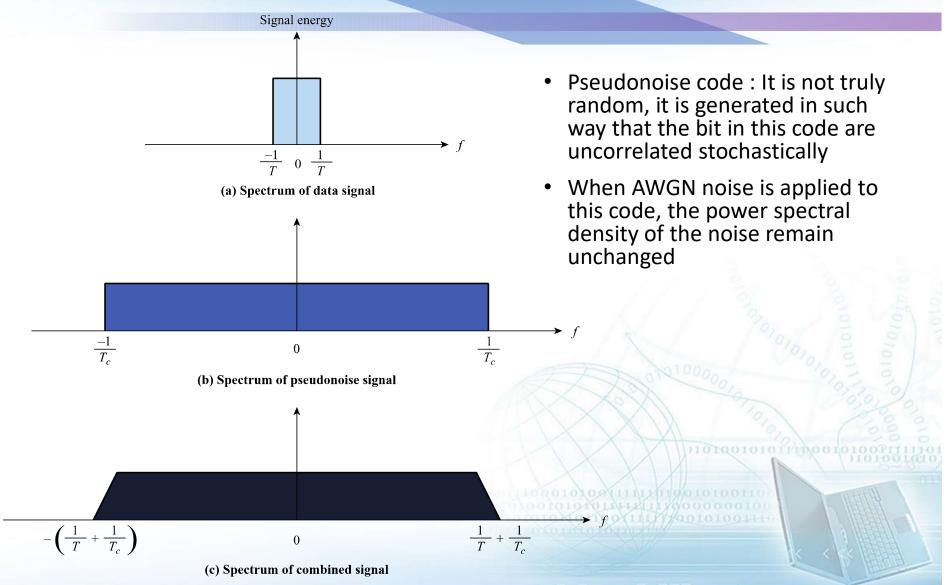


General model of spread spectrum in Digital Communication System

- Analogy : speaking with different language within a crowd that also speak different language
- Two important known spectrum techniques : Frequency hopping and direct sequence


Frequency Hopping Spread Spectrum

- Signal is broadcast over a seemingly random series of radio frequencies, hopping from frequency to frequency at fixed interval
 - Receiver should be synchronized with transmitter
 - Eaves dropping only hears a random blips, jamming in one frequency only knocks out a few of bits
 - Bluetooth (IEEE 802.15.1) uses FHSS for its signal transmission, number of frequencies C=80



Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code (called as Pseudonoise (PN) bit stream using exclusive-OR

Spectrum of DSSS

