
FUNDAMENTAL : Communication Transmission

Week 2 day 2

by **Xerandy**

Channel Capacity

• Channel Capacity : the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

Concepts Related to Channel Capacity

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive 1
 - Implying the probability of one bit error
 - Example : Bit error rate of 10^{-3} means probability of a single bit flipped, or in other words, in every 1000 bit, one bit error is found

Concepts Related to Channel Capacity

- Channel Capacity
 - Channel can be thought as a pipe, which certain maximum water (bit) can flow (propagate) through
 - Channel capacity infer the maximum number of bit per unit time that can transmitted through a channel with a very small bit error rate.
- Wireless channel capacity
 - Transmitting digital data using analog signal
 - Shannon Channel Capacity
 - Upper bound channel capacity, with present of noise regardless channel coding scheme,
 - Never being reached in practice $C = B \log_2(1 + SNR)$

Where C is the channel capacity (in bit/second), B is the channel bandwidth (Hz), and SNR is signal to noise ratio quantity (It is in linear scale)

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
 - Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)

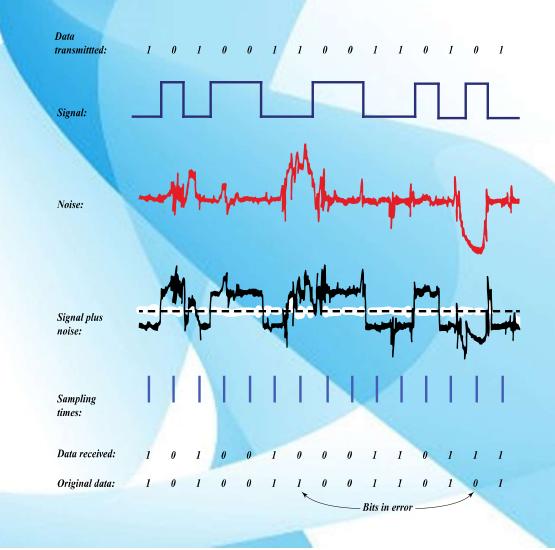
$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$
$$SNR = \frac{\text{signal power}}{\text{noise power}}$$

or

- SNR is a essential parameter that shows signal quality
 - A high SNR means a high-quality signal, low number of required intermediate repeaters
 - A low SNR means low quality signal, may require further signal processing to recover original signal

Channel Noise

- Noise power is also expressed in Watt
- Type of noise
 - Thermal Noise
 - Thermal noise due to agitation of electrons, Present in all electronic devices and transmission media
 - Cannot be eliminated, function of temperature
 - Particularly significant for satellite communication
 - Intermodulation noise
 - Occurs if signals with different frequencies share the same medium
 - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
 - Crosstalk
 - Unwanted coupling between signal paths
 - Impulse Noise
 - Short duration and of relatively high amplitude
 - Caused by external electromagnetic disturbances, or faults and flaws in the communications system


Additive Gaussian White Noise

- Since noise is a random signal in nature, noise signal is described as random process
 - It is usually modelled based on particular probability distribution function (abbr: pdf)
 - The very common yet simple model is Additive Gaussian White Noise
 - It is additive because the received signal is the sum of original signal and the noise signal
 - The noise signal uses Gaussian (or Normal) distribution
 - The spectral density is flat : i.e. the signal power for every frequency is flat (remember about Fourier transformation)
 - However, the use of this model sometime doesn't fit to represent real-valued noise signal in practice

Channel Capacity

Impact due to noise

Signal Power

• Power

- Commonly denoted as P
- Amount of energy spent per unit time
- Measurement standard unit is Watt (w) Variant :
 - Kilowatt (kW)
 - Megawatt (MW)
 - Milliwatt (mW)
 - Microwatt (uW)

- = 1000 times of 1 Watt
- = 1,000,000 times of 1 Watt
- = 10^{-3} times of 1 Watt
- = 10^{-6} times of 1 Watt
- Sometime it is also expressed in decibel scale, which is denoted as decibel-Watt (dBW)
 - Formulated as follows:

$$P_{(dBW)} = 10 \log_{10} \left(\frac{P_{(W)}}{1 W} \right)$$

• Another common unit is decibel-milliWatt (dBm) $P_{(dBm)} = 10 \log_{10} \left(\frac{P_{(mW)}}{1 \ mW} \right)$

Basic of Logarithm : Revisit

- $C = x^B \iff \log_x(C) = B$ for any x > 0
 - example : $100 = 10^2$ then $\log_{10}(100) = 2$
 - Do you know the outcome of $\log_x(x) = ?$
- $C = A \times B \leftrightarrow \log_x (C) = \log_x(A) + \log_x(B)$
 - example : If $12 = 3 \times 4$; then $\log_2(12) = \log_2(3) + \log_2(4)$
 - Do you know the outcome of log₂(4)?

•
$$C = \frac{A}{B} \leftrightarrow \log_{X}(C) = \log_{X}(A) - \log_{X}(B)$$

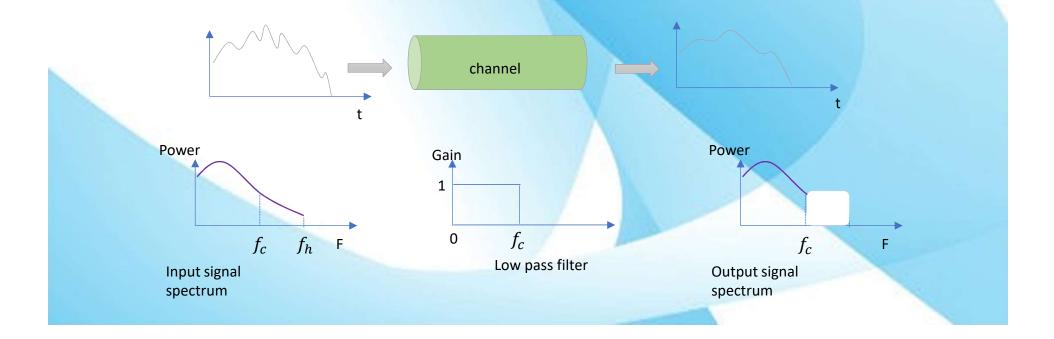
- example : If $3 = 24 \div 8$; then $\log_2(3) = \log_2(24) \cdot \log_2(8)$
- Do you know the outcome of log₂(8)?
- $C = A^B \leftrightarrow \log_x(C) = B \times \log_x(A)$

Signal Power

• Power expressions examples

• Linear scale

•


•	1 W	=	mW	
٠	100 W	=	kW	
•	0.5 kW	=	W	
٠	75 mW	=	W	
•	15 W	=	mW	
•	0.5 mW	=	uW	
In decibel				
٠	1 W	=	dBW	
•	0.5 W	=	dBW	
	1 mW	=	dBm	
•	0.25 mW	=	dBm	
•	50 mW	=	dBm =	
•	1 kW	=	dBW=	

dBW dBm

Channel Bandwidth

- Channel bandwidth in Shannon capacity formulation
 - In most cases, it is defined as the highest frequency that a wireless channel can support, which is imposing a low-pass filter
 - Low pass filter : If the supported highest frequency is f_c , then any frequency higher than f_c will be rejected.

Shannon's Channel Capacity : Example

Spectrum of a channel between 3 MHz and 4 MHz ; SNR_{dB} = 24 dB

B = 4 MHz - 3 MHz = 1 MHzSNR_{dB} = 24 dB = 10 log₁₀ (SNR) SNR = 251

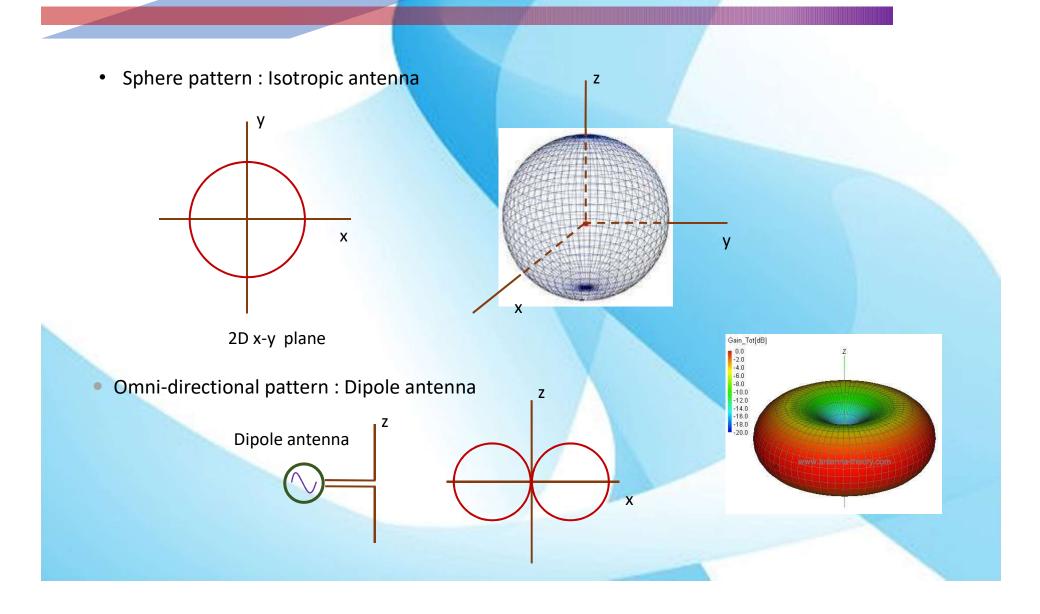
Using Shannon's formula

 $C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$ Mbps

FUNDAMENTAL : SIGNAL TRANSMISSION

Transmission Media

- Transmission Medium
 - Physical path between transmitter and receiver
- Guided Media
 - Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber
- Unguided Media
 - Provides means of transmission but does not guide electromagnetic signals
 - Usually referred to as wireless transmission
 - E.g., atmosphere, outer space
 - Transmission and reception in wireless transmission are achieved by means of an antenna



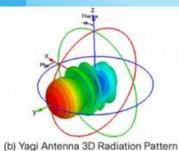
Antenna in Wireless Communication

- An antenna is an electrical conductor or system of conductors
 - Transmission radiates electromagnetic energy into space
 - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception.
- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section, however, it is a 3D description
 - The patterns shows the amount and direction of power radiated with respect to relative distance from antenna position
 - The radiation pattern also describes the direction from which antenna can receive the signal in the best manner.

Antenna Radiation Pattern

Antenna Radiation Pattern

Directional antenna


150

180

210

240

(a) Yagi Antenna Model

270

(c) Yagi Antenna Azimuth Plane Pattern

330

300

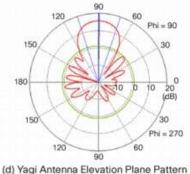


Image credit : http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennasaccessories/prod_white_paper0900aecd806a1a3e.html

Wireless Transmission : Impairments

- Transmission loss
 - Mainly by signal attenuation
- Noise
 - Unwanted external signal that can impair original signal
- Multipath
 - caused by reflection, refraction, and scattering
- Doppler spread
 - Signal distortion that is caused by the movement of mobile unit

- Main source of wireless transmission loss is attenuation
 - For a microwave (and radio frequencies), transmitted from a source, with wave length λ (in meter), and travels with distance d (in meter) from source, then the attenuation L is formulated as the ratio between transmitted power and received power, which in simplified case, it is assumed as free space loss, which can be expressed as

d

$$L = \frac{P_{tx}}{P_{Rx}} = \left(\frac{4\pi d}{\lambda}\right)^2$$
 or

$$L_{dB} = 10\log_{10}\left(\frac{P_{tx}}{P_{rx}}\right) = 10\log_{10}\left(\frac{4\pi d}{\lambda}\right)^2$$
 in dB (decibel)

Source

 P_{tx}

Receiver

 P_{rx}

• In decibel, it can be re written as follows

$$L_{dB} = -20\log(\lambda) + 20\log(d) + 21.98 \, \mathrm{dB}$$

$$= 20\log\left(\frac{4\pi fd}{c}\right) = 20\log(f) + 20\log(d) - 147.56 \,\mathrm{dB}$$

• In real practice, following formula can be used to approximate wireless channel path loss

$$L_{dB} = 20\log(f) + 10n\log(d) - 147.56 \text{ dB}$$

Path Loss Exponents for Different Environments [RAPP02]

Environment	Path Loss Exponent, <i>n</i>	
Free space	2	
Urban area cellular radio	2.7 to 3.5	
Shadowed cellular radio	3 to 5	
In building line-of-sight	1.6 to 1.8	
Obstructed in building	4 to 6	
Obstructed in factories	2 to 3	

- Example 1 :
 - If transmission power of a radio wave is P_{tx} =100 Watt and the received power is P_{rx} =0.5 Watt.
 - Transmission and receiving power in dBW

$$P_{tx(dBW)} = 10 \log_{10} \left(\frac{P_{tx(W)}}{1 W}\right) = 10 \log_{10} \left(\frac{100 W}{1 W}\right) = 20 \text{ dBW}$$
$$P_{rx(dBW)} = 10 \log_{10} \left(\frac{P_{rx(W)}}{1 W}\right) = 10 \log_{10} \left(\frac{0.5 W}{1W}\right) = -3 \text{ dBW}$$

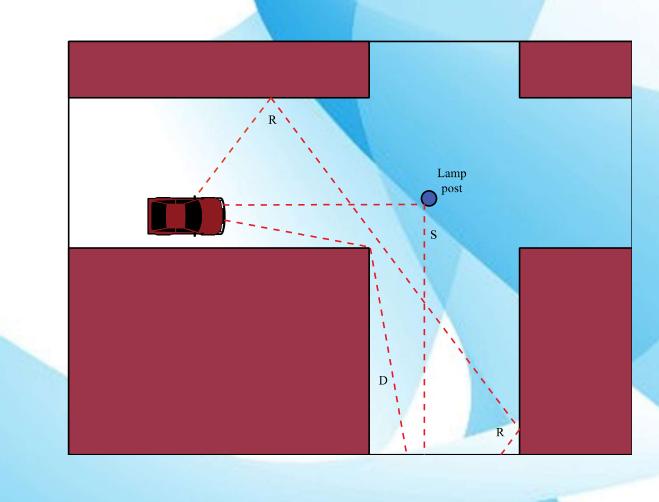
• Attenuation L, in decibel

$$L_{dB} = 10\log_{10}\left(\frac{P_{tx(w)}}{P_{rx(w)}}\right) = 10\log_{10}\left(\frac{100}{0.5}\right) = 23$$
 dB

- Example 2
 - Using the same values as given in example 1, find the distance that the radio wave would have traveled, if :
 - $\lambda = 4 \quad meter: \quad L = \frac{P_{tx}}{P_{rx}} = \frac{100}{0.5} = \left(\frac{4\pi d}{4}\right)^2 \implies d = m$

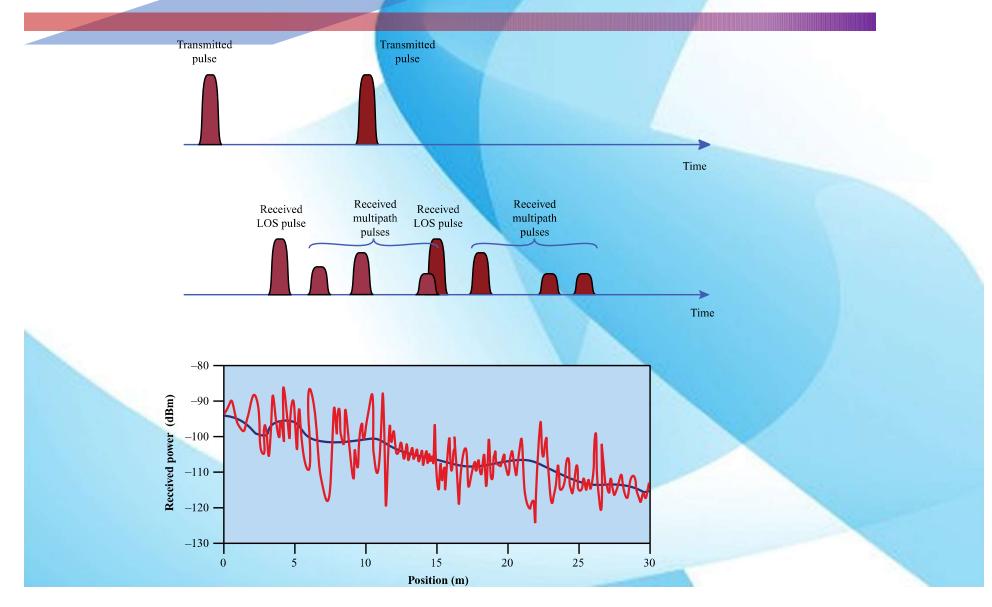
•
$$\lambda = 1 meter$$
: $L = \frac{P_{tx}}{P_{rx}} = \frac{100}{0.5} = \left(\frac{4\pi d}{1}\right)^2 \implies d = m$

•
$$\lambda = 0.25 meter$$
: $L = \frac{P_{tx}}{P_{rx}} = \frac{100}{0.5} = \left(\frac{4\pi}{0.25}\right)^2 \implies d = m$


Impairments: Multipath

- Can be caused by reflection, diffraction, and scattering
 - Reflection occurs when radio wave encounters a surface that is large relative to the wave length of signal
 - Diffraction occurs at the edge of an impenetrable body that is large compared to the wave length
 - Scattering occurs when the size of obstruction is on the order of the wave length
- Multiple copies of a signal may arrive at different phases
 - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Inter-symbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit
- Rapid signal fluctuations
 - Over a few centimeters can cause multipath fading

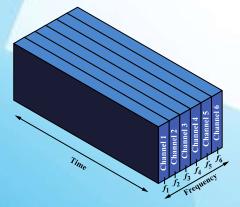
(University of Pittsburgh

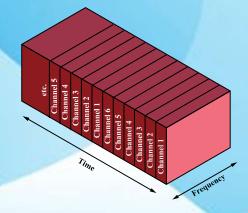

Impairments: Multipath

University of Pittsburgh

Impairments: Multipath

Multiplexing


- Capacity of transmission medium usually exceeds capacity required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium
 - More efficient use of transmission medium
 - Cost per kbps of transmission facility declines with an increase in the data rate
 - Cost of transmission and receiving equipment declines with increased data rate
 - Most individual data communicating devices require relatively modest data rate support



Multiplexing Techniques

- Frequency-division multiplexing (FDM)
 - Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
 - Orthogonal FDM is a special case of FDM technique
- Time-division multiplexing (TDM)
 - Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal

(a) Frequency division multiplexing

(b) Time division multiplexing

Addressing Channel Impairment

- Adaptive Modulation
 - Can be performed adaptively according to channel condition
- Data Encoding :
 - Error Control Coding
 - Adding extra bit into the data so that error can be detected or corrected
- Equalization
 - Counteract the multipath effect of the channel
- Multiple input multiple output (MIMO)
 - The use of multiple antenna either for transmitting and receiving
- Direct sequence spread spectrum
 - Signal occupies large bandwidth, so that problems in parts of it are overcome

Error Control Coding

Coding and Error Control

- Applied to digital data
 - Data would be a sequence of bits with certain length, called as frame
- There are two approaches:
 - Error Detection Codes
 - Error Correction Codes
- Error Detection Codes
 - Simply detect the presence of error bit
 - Transmitter
 - For a given frame, an error-detecting code (check bits) is calculated from data bits
 - Check bits are appended to data bits
 - Receiver
 - Separates incoming frame into data bits and check bits
 - Calculates check bits from received data bits
 - Compares calculated check bits against received check bits
 - Detected error occurs if mismatch
 - Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data

Error Control Coding

- Forward error correction
 - Transmitter adds error-correcting code to data block
 - Block code
 - Convolutional Code
 - Turbo codes
 - Code is a function of the data bits
 - Receiver calculates error-correcting code from incoming data bits
 - If calculated code matches incoming code, no error occurred
 - If error-correcting codes don't match, receiver attempts to determine bits in error and correct