

Bluetooth and IEEE 802.15

CS-1699 Wireless Networks Term : Spring 2018

Instructor : Xerandy

Objectives

- Explain the roles of the Bluetooth protocol stack and core protocols
- Describe the enhancement to Bluetooth in Bluetooth 3.0 and 4.0
- Compare the purposes of IEEE 802.15.3 and IEEE 802.15.4

IEEE 802.15

- Wireless Personal Area Networks
 - Short-range communication
 - Low-cost, low-energy to provide long battery life
- Several standards have been provided
- We focus on 802.15 technologies
 - Other viable WPAN alternatives exist

Internet of Things

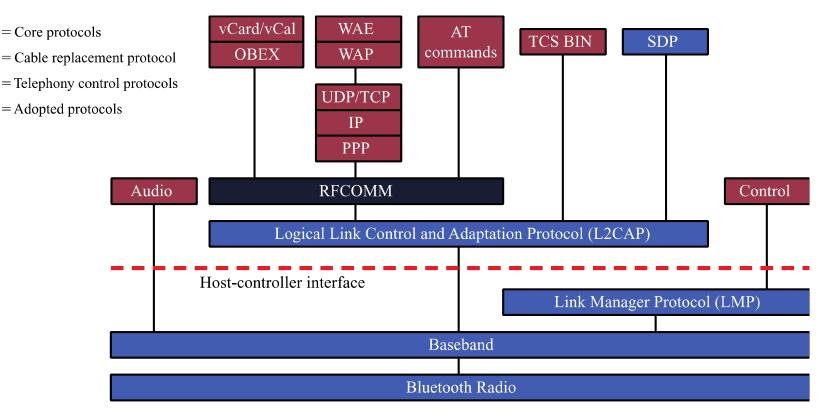
- Key application area for short-range communications
- Future Internet
 - Large numbers of wirelessly connected objects
 - Interactions between the physical world and computing, digital content, analysis, and services.
 - Called the Internet of Things
 - And many other "Internet of ..." titles
 - Useful for health and fitness, healthcare, home monitoring and automation, energy savings, farming, environmental monitoring, security, surveillance, education, and many others.
- Machine-to-machine communications (MTM, M2M, D2D, etc.), also machine-type communications (MTC)
 - Devices working together for data analysis and automated control

Bluetooth

- Universal short-range wireless capability
- Uses 2.4-GHz band
- Available globally for unlicensed users
- Devices within 10 m can share up to 2.1 Mbps or 24 Mbps of capacity
- Supports open-ended list of applications
 - Data, audio, graphics, video
- Started as IEEE 802.15.1
 - New standards come from the Bluetooth Special Interest Group (Bluetooth SIG)
 - Industry consortium
 - Bluetooth 2.0, 2.1, 3.0, and 4.0

Bluetooth Application Areas

- Data and voice access points
 - Real-time voice and data transmissions
- Cable replacement
 - Eliminates need for numerous cable attachments for connection
- Ad hoc networking
 - Device with Bluetooth radio can establish connection with another when in range


Top uses of Bluetooth

- Mobile handsets
- Voice handsets
- Stereo headsets and speakers
- PCs and tablets
- Human interface devices, such as mice and keyboards
- Wireless controllers for video game consoles
- Cars
- Machine-to-machine applications: credit-card readers, industrial automation, etc.

Bluetooth Standard Documents

- Divided into 2 groups : Core and Profile
 - Core specification :
 - Details of various layers of Bluetooth protocol architecture
 - Profile specifications
 - Use of Bluetooth technology to support various applications
- This class focuses on
 - Bluetooth 2.1 Basic/Enhanced Data Rate (BR/EDR)
 - Enhancements :
 - Bluetooth 3.0 Alternative MAC/PHY (AMP)
 - 4.0 Bluetooth Smart (Bluetooth Low Energy)

Bluetooth Protocol Stack

AT	= Attention sequence (modem prefix)	TCS BIN	= Telephony control specification - binary
IP	= Internet Protocol	UDP	= User Datagram Protocol
OBEX	= Object exchange protocol	vCal	= Virtual calendar
PPP	= Point-to-Point Protocol	vCard	= Virtual card
RFCOMM	= Radio frequency communications	WAE	= Wireless application environment
SDP	= Service discovery protocol	WAP	= Wireless application protocol
TCP	= Transmission control protocol		

Protocol Architecture

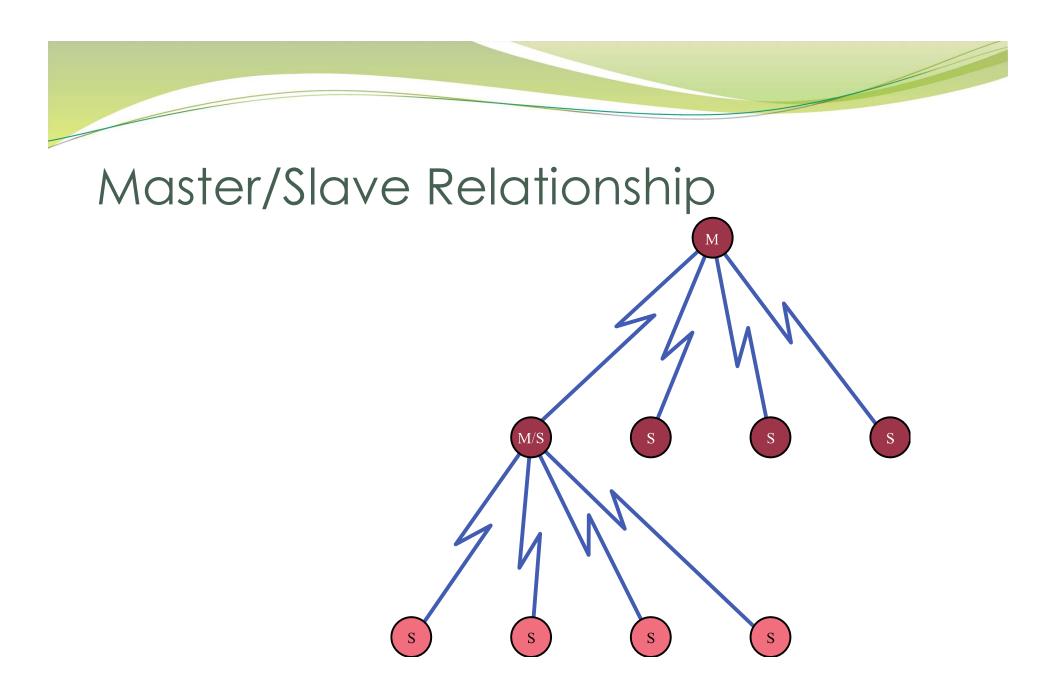
- Bluetooth is a layered protocol architecture
 - Core protocols
 - Cable replacement and telephony control protocols
 - Adopted protocols
- Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)

Protocol Architecture

- Cable replacement protocol
 - RFCOMM : Presents a virtual serial port for binary data transfer, emulating EIA-232 standard
- Telephony control protocol
 - Telephony control specification binary (TCS BIN)
 - Defines the call control signaling for the establishment of speech and data calls between Bluetooth devices
 - Also defines mobility management procedures for handling groups of Bluetooth devices
- Adopted protocols
 - Specification issued by other standard-making organization and being incorporated into Bluetooth architecture
 - PPP (Point to Point Protocol):
 - Internet standard protocol for transporting IP datagrams over a point-to-point link
 - TCP/UDP/IP
 - OBEX (Object Exchange Protocol)
 - Session-level protocol developed by Infrared Data Association(IrDA)
 - WAE/WAP

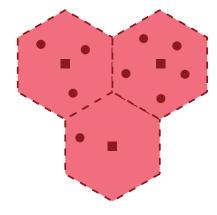
Bluetooth Core Protocol

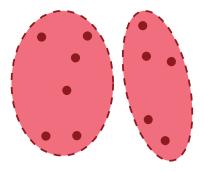
- Radio
 - Specifies details of the air interface, including frequency and the use of frequency hopping
- Baseband
 - Concerned with connection establishment within a piconet, addressing, packet format, timing, and power control
- Link Manager Protocol
 - Responsible for link set up, including security aspect and packet size
- Logical link control and adaptation protocol (L2CAP)
 - Adapts upper layer protocols to the baseband layer
- Service discovery protocol
 - Inquiries on device information, services, and character of services

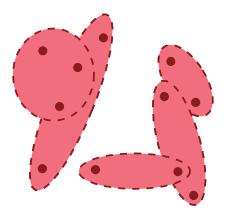


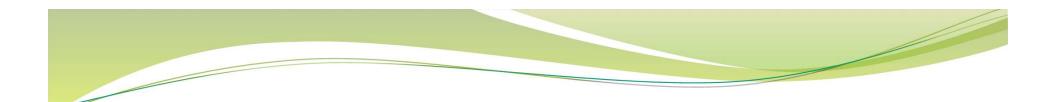
Profiles

- Over 40 different profiles are defined in Bluetooth documents
 - Only subsets of Bluetooth protocols are required
 - Reduces costs of specialized devices
- All Bluetooth nodes support the Generic Access Profile
- Profiles may depend on other profiles
 - Example: File Transfer Profile
 - Transfer of directories, files, documents, images, and streaming media formats
 - Depends on the Generic Object File Exchange, Serial Port, and Generic Access Profiles.
 - Interfaces with L2CAP and RFCOMM protocols


Piconets and Scatternets


- Piconet
 - Basic unit of Bluetooth networking
 - Master and one to seven slave devices
 - Master determines channel and phase
- Scatternet
 - Device in one piconet may exist as master or slave in another piconet
 - Allows many devices to share same area
 - Makes efficient use of bandwidth

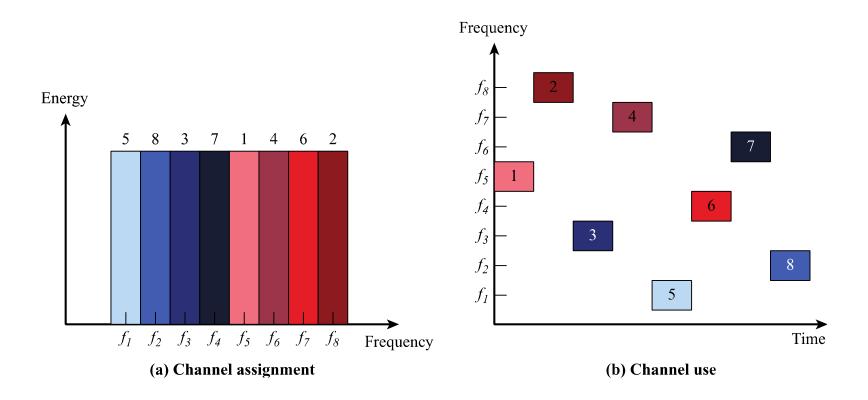

Wireless Network Configuration



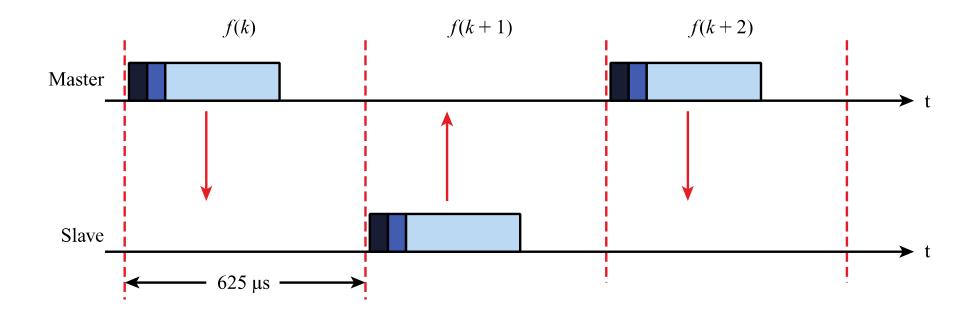
(a) Cellular system (squares represent stationary base stations)

(b) Conventional ad hoc systems

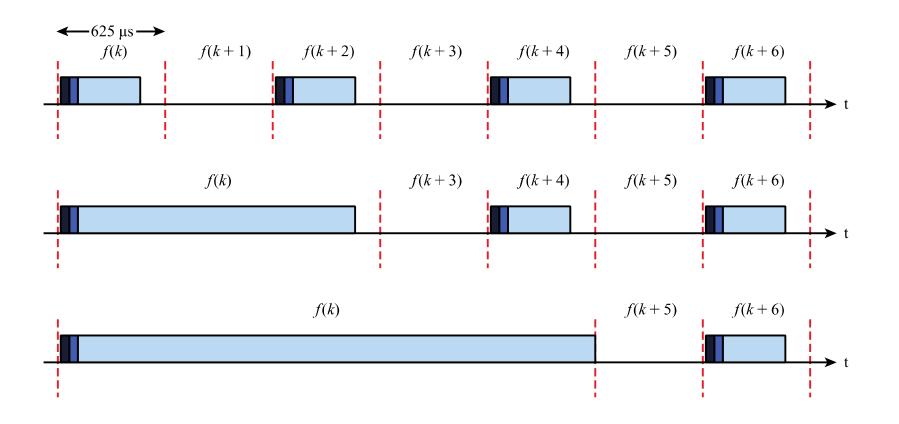
(c) Scatternets



Radio Specification


- Classes of transmitters
 - Class 1: Outputs 100 mW for maximum range
 - Power control mandatory
 - Provides greatest distance
 - Class 2: Outputs 2.4 mW at maximum
 - Power control optional
 - Class 3: Nominal output is 1 mW
 - Lowest power

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets
- Total bandwidth divided into 1MHz physical channels
- FH occurs by jumping from one channel to another in pseudorandom sequence
 - The hop rate is 1600 hops per-second
- Hopping sequence shared with all devices on piconet
- Piconet access:
 - Bluetooth devices use time division duplex (TDD)
 - Access technique is TDMA
 - FH-TDD-TDMA



Bluetooth Specification

	Basic Rate	Enhanced Data Rate	
Topology	7 simultaneous links in logical star	7 simultaneous links in logical star	
Modulation	GFSK	$\pi/4$ –DQPSK and 8DPSK	
Peak data rate	1 Mbps	2 Mbps and 3 Mbps	
RF Bandwidth	220 KHz (-3 dB), 1 MHz (- 20 dB)	220 KHz (-3 dB), 1 MHz (- 20 dB)	
RF Band	2.4 GHz ISM band	2.4 GHz ISM band	
Carrier spacing	1 MHz	1 MHz	
RF Carriers	23/79	23/79	
Transmit power	0.1 Watt	0.1 Watt	
Frequency hop rate	1600 hop/s	1600 hop/s	

Bluetooth Frequency Allocation

Area	Regulatory Range	RF Channels
US most of Europe and other countries	2.4 to 2.4835 GHz	f= 2.402 + n MHz, n=0,1,78
Japan	2.471 to 2.497 GHz	f=2.473 + + n MHz, n=0,1,22
Spain	2.445 to 2.475 GHz	f=2.449 + + n MHz, n=0,1,22
France	2.4465 to 2.4835 GHz	f=2.454 + + n MHz, n=0,1,22

Physical Links

• Synchronous connection oriented (SCO)

- Allocates fixed bandwidth between point-to-point connection of master and slave
- Master maintains link using reserved slots
- Master can support three simultaneous links
- Considered as symmetric connection
- Asynchronous connectionless (ACL)
 - Only single ACL link can exist
 - ACL link can be used for broadcasting packet
 - Most ACL packet applies retransmission to assure data integrity
- Extended Synchronous connection oriented (eSCO)
 - Reserves slots just like SCO, but these can be asymmetric connection
 - Retransmissions are supported

Bluetooth Baseband format

(d) Data payload header format

Bluetooth Packet Field

- Access code used for timing synchronization, offset compensation, paging, and inquiry
 - Channel access code (CAC) identifies a piconet
 - Device access code (DAC) used for paging and subsequent responses
 - Inquiry access code (IAC) used for inquiry purposes
 - Two types : General IAC and Dedicated IAC
- Header used to identify packet type and carry protocol control information
- Payload contains user voice or data and payload header, if present

Bluetooth Packet Header Field

- AM_ADDR contains "active mode" address of one of the slaves
- Type identifies type of packet
- Flow 1-bit flow control
- ARQN 1-bit acknowledgment
- SEQN 1-bit sequential numbering schemes
- Header error control (HEC) 8-bit error detection code

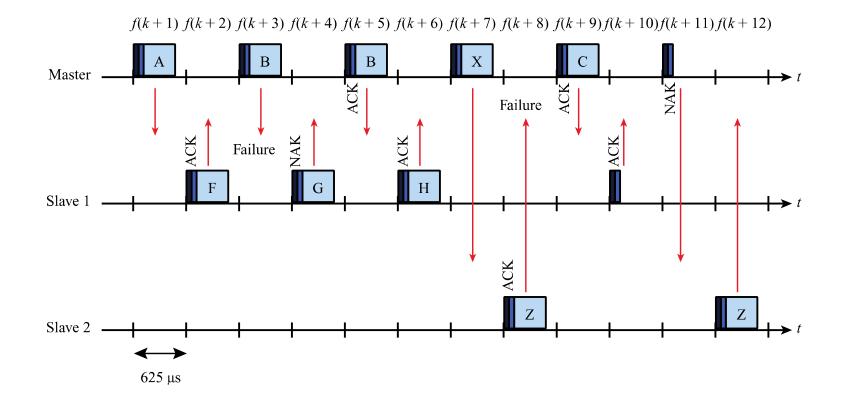
Bluetooth Packet Type

Segment	TYPE code ԵցԵշԵղԵ₀	Slot occupancy	SCO link	ACL link
	0000	1	NULL	NULL
	0001	1	POLL	POLL
1	0010	1	FHS	FHS
	0011	1	DM1	DM1
	0100	1	undefined	DH1
	0101	1	HV1	undefined
	0110	1	HV2	undefined
2	0111	1	HV3	undefined
	1000	1	DV	undefined
	1001	1	undefined	AUX1
	1010	3	undefined	DM3
	1011	3	undefined	DH3
3	1100	3	undefined	undefined
	1101	3	undefined	undefined
	1110	5	undefined	DM5
4	1111	5	undefined	DH5

Bluetooth Packet Header Field

- Payload header
 - L_CH field identifies logical channel
 - LMP Message
 - Un-fragmented L2CAP
 - Continuation of fragmented L2CAP
 - Other
 - Flow field used to control flow at L2CAP level
 - Length field number of bytes of data
- Payload body contains user data
- CRC 16-bit CRC code

Bluetooth Error Correction Scheme


- 1/3 rate FEC (forward error correction)
 - Used on 18-bit packet header, voice field in HV1 packet
- 2/3 rate FEC
 - Used in DM packets, data fields of DV packet, FHS packet and HV2 packet
- ARQ
 - Used with DM and DH packets

ARQ Scheme Elements

- Error detection destination detects errors, discards packets
- Positive acknowledgment destination returns positive acknowledgment
- Retransmission after timeout source retransmits if packet unacknowledged
- Negative acknowledgment and retransmission destination returns negative acknowledgement for packets with errors, source retransmits

Example of Retransmission Operation

