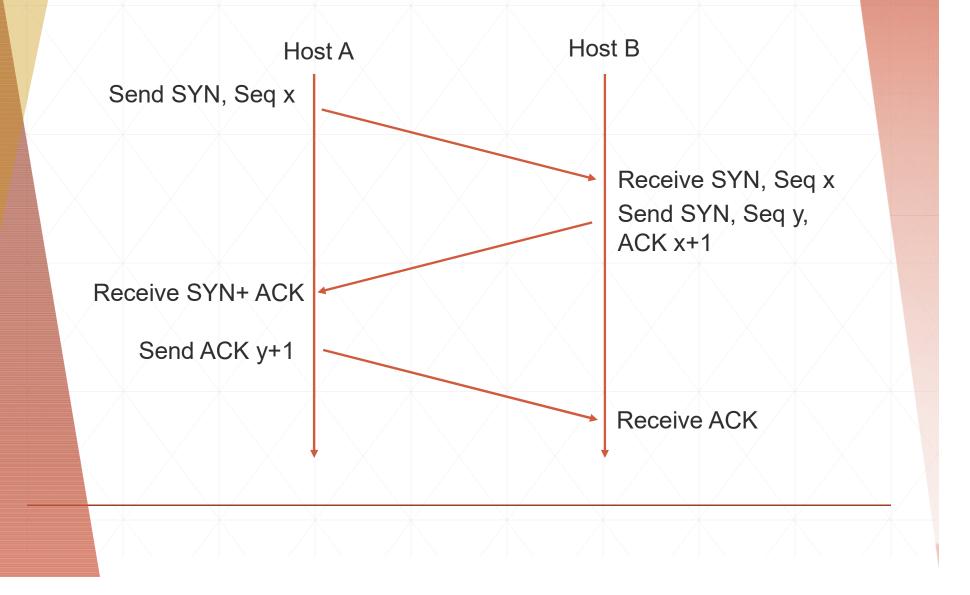

Fundamental concepts in communication :

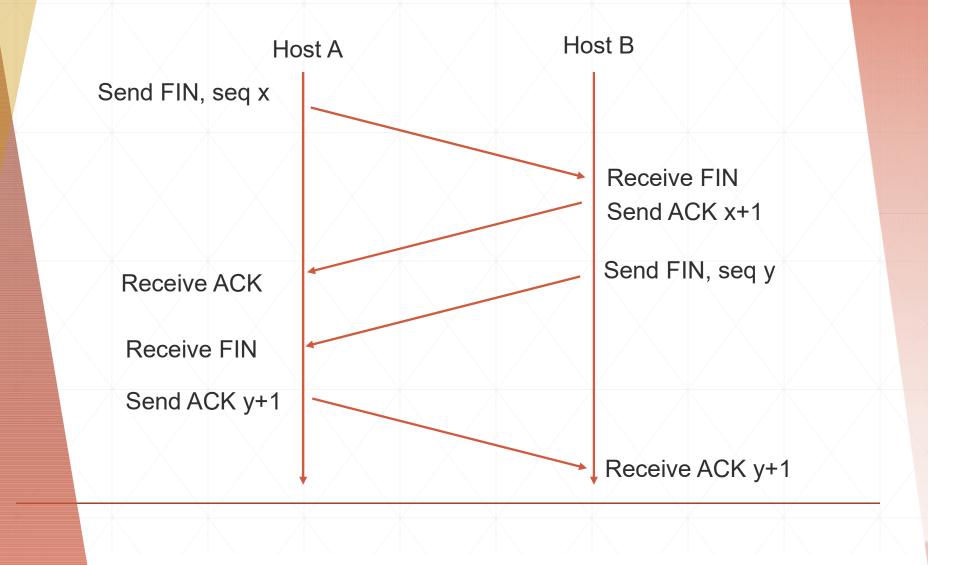
TCP/IP Protocol Suit

TCP End to End Protocol Layer

- Transport Control Protocol
 - Connection-oriented
 - Provides establishment, maintenance and termination of logical connection between end users/host
 - Establishment is initiated by originating end user by sending SYN segment and accepted/acknowledged by receiving end user (Three-way handshake)
 - Termination is made through FIN-ACK segment exchange between user
 - Imposes a reliable connection between users in packet switching network
 - Flow control to maintain the rate of the segment
 - The user of the receiving entity should be able to keep up with the flow of data
 - Include sequence number, acknowledgement number, and window in each segment
 - Congestion control
 - Deals with varying delay within network
 - End user/host identification
 - Port, and protocol

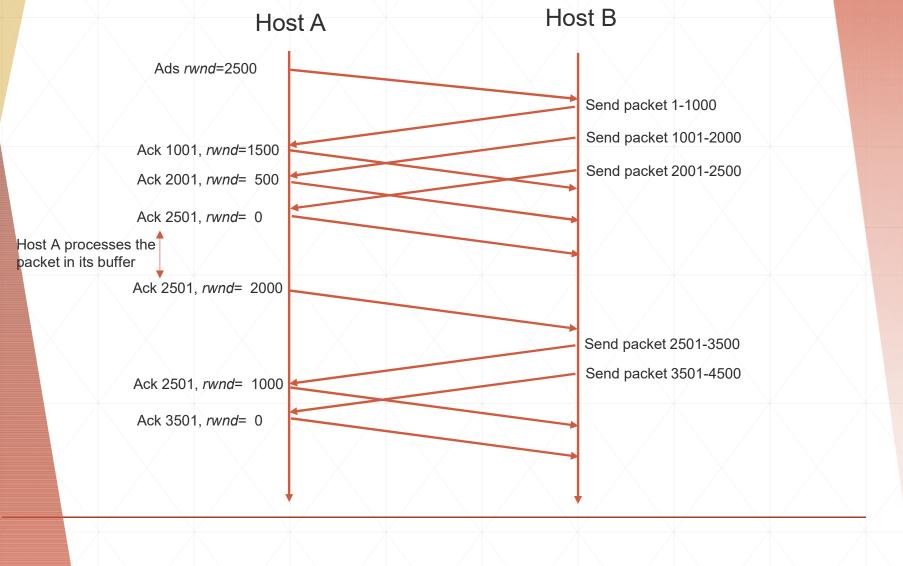

TCP End to End Protocol Layer

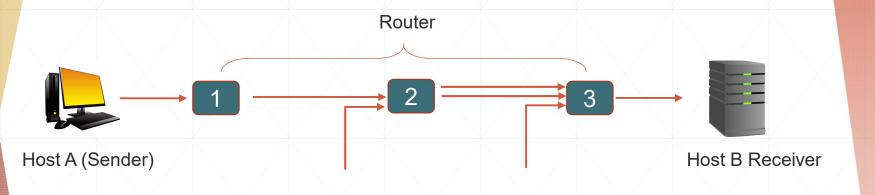
													T	СР	He	ad	er																
Bit offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	2	4 25	5 20	6 2	27 2	8 2	9 3	30 3	1
0					6		Sc	ourc	e p	ort												C)est	tina	atio	n p	ort						
32	Sequence number Acknowledgment number (if ACK set)																																
64																																	
96	Da	Data offset Reserved Reserved R E G K H T N N C E U A P R S F W C R C S S Y I R E G K H T N N																															
128										oint	nter (if URG set)																						
160	Options (if Data Offset > 5)														pa	addi	ng																


Source : https://caleudum.wordpress.com/2011/05/08/tcp-header-format/

Further explanations on the format can be found at "Data and Computer Communications, eight edition" William Stallings

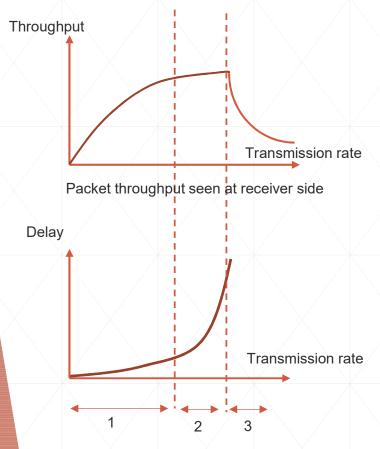
TCP Connection Establishment


TCP Connection Termination


TCP Flow Control

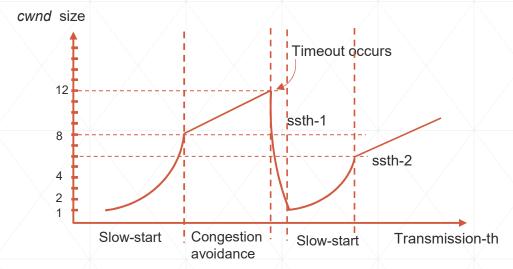
- Flow control is implemented to prevent the sender flooding the receiver with packet
 - Receiver's buffer capacity and speed may not be the same as sender
 - It uses selective ARQ with positive acknowledge
 - Using sliding window with bytes basis as the unit
 - Receiver advertises the maximum receiving window, *rwnd*, to sender
 - The size of the windows changes dynamically, depending on the capability of receiver
- Sender can only send the remaining packet min(*cwnd,rwnd*), where *cwnd* is sender congestion window
- Example : (see following slide)
 - Suppose host B has 4500 bytes data to send, its *cwnd* is 4000 bytes.
 - Host B also knows that host A can only accept 2500 bytes from previous rwnd advertisement

TCP Flow Control : illustration



- To deal with varying delay due to network load
 - Flow control is implemented between host A and B.
 - No explicit flow control among router or between router and host
 - Host may not know explicitly the condition at router 1,2, and 3
 - In the picture above, link between router 2 and 3 may present bottleneck
 - Solution : Host A probe the network by observing the delay of the packet it transmit
 - Increased delay may indicate the network getting congested
 - Dynamically adjust the rate by adjusting the cwnd.

TCP Congestion Control



Packet delay seen at receiver side

(1) : Light traffic

- The transmission rate < network bandwidth
- Low delay
- Can increase transmission rate without incurring excessive delay
- (2) : Knee (Congestion onset)
 - Transmission rate approaches network bandwidth
 - The increase of throughput starts to saturate.
 - Delay starts increasing rapidly
- (3): Congestion
 - Throughput decrease rapidly as the transmission rate is increased
 - Large delay, packet loss

TCP Congestion Control: Adjusting cwnd

Slow-start

- Start sending segment with the lowest cwnd
- Increase the cwnd exponentially as ACKs are received for corresponding transmitted segment.
- The exponential increase would stop at threshold ssth-1
- Congestion avoidance
 - The cwnd is increased linearly as long as ACK packet is received after cwnd reach ssth-1
 - If timeout occurs, decrease cwnd to 1 and set a new threshold ssth-2 equals to half to ssth-1

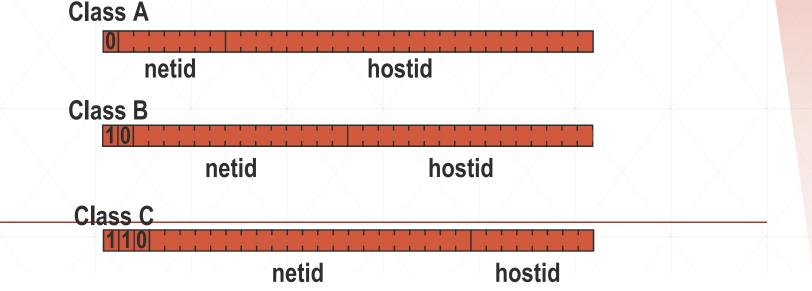
TCP End to End Protocol Layer

User Datagram Protocol

- Simple
- Connection-less : No logical connection setup performed
- Unreliable
 - No segment acknowledgement is applied
- Delivery and duplicate protection are not guaranteed
- Fast and less overhead
- UDP Segment header format

D	4	8 	12	16	20	24	28	32
		Source Port			[Destination Po	ort	
	100	Length		. / 1.13		Checksum		
5	In	91	CF	711	G		de	
-				Data				Ŧ
		Å		X	X			X

Internet Layer


- Addressing scheme
 - Need addresses that are globally unique
 - Accommodating diverse networks
- Routing algorithm
 - Needs to find the path in which the packet traverses
- Two version of internet layer
 - IPv4 and IPv6

Internet Layer : IP Datagram Header Format

- Header Format (IPv4)
 - Size minimum 20 bytes
 - Addressing scheme uses 32 bits, generally consist of network identifier and host identifier
 - Managed using subnets and subnet mask

0	3	4	7	9 15	16		3					
Versi	on	Hea leng		Type of service		Total length						
		Ide	ntif	ication	Flags Fragment offset							
Tin	ne	to liv	e	Protocol	Header checksum							
32-bit source address												
32-bit destination address												
				Options		Padding	2					

- In IPv4, the size of the address is 32 bits
 - Four groups of 8 bits. Theoretically can accommodate up to 2³² addresses
 - Use decimal equivalent to represent the address
- Initially, IP addresses were grouped in several classes, in order to alleviate the complexity of routing
 - An address consists of network ID and host ID part
 - Different class allocates different number of networks IDs and host IDs
 - Class A, Class B, Class C (These first-three are commonly used), Class D (Multicast) and Class E

- Problem with class system
 - Unavailability of address blocks of reasonable size
 - Explosive growth of routing tables
- Classless Inter-Domain Routing
 - Eliminates the classed IP address scheme
 - Address class is no longer uniquely identifiable from the address
 - Primary beneficiaries of CIDR addressing are medium-sized organizations
 - Too big for Class C (~250 hosts), too small for Class B (~65,000 hosts)
 - Host number can be arbitrary length
 - In routing table, the router stores the information of the length of bits for network ID (netID) part of an IP address (also called netmask)
 - Example : 73.5.0.0/17
 - Called a /17 network. So, the netmask has 17 bits length, which is in IP-style presentation would be: 11111111111111111110000000.0000000(255.255.128.0)
 - The remaining 15 bits identify the host
 - So, the network can have 215 = 32,768 computers

- Determine the network ID of following IP address

- 172.16.17.30/20

- 172.16.28.15/20

To obtain network ID, do AND logic operation IP address and netmask

172.16.17.30	10101100.00010000.00010001.00011110
255.255.240.0	1111111.1111111.11110000.00000000
Network =	10101100.00010000.00010000.00000000 (AND operation)
=	172.16.16.0
172.16.28.15	10101100.00010000.00011100.00001111
255.255.240.0	11111111.11111111.11110000.00000000
Network =	10101100.00010000.00010000.00000000 (AND operation)
=	172.16.16.0

They belong to the same network

Special set of IP address

- Local IP address
 - Used for private or local network, not routable from "outside"

Start Address	End Address
10.0.0.1	10.255.255.254
172.16.0.1	172.31.255.254
192.168.0.1	192.168.255.254

- Broadcast IP address
 - Destined to every station in the network:

example: 255.255.255.255

The scope may be localized/directed

example: consider a local network with network ID: 192.168.1.0/24; then the broadcast address for this network would be the host ID part is set (in binary) all ones

- Subnetting
 - Allow us to create multiple logical networks that exist within a single address pool
 - Using subnet mask
 - Example:
 - Assume we would like 6 different network, with only 20 host each.
 - Request for six of 24 bit netmask, each of those can accommodate 256 addresses (unrealistic)
 - Get one address of 24 bit netmask, then split 256 host into 6 subnetworks
 - Since address split is done internally, internal router will perform routing task
 - Example : 202.168.5.0/24
 - Extended netmask into 27 bits internally 202.168.5.0/27

204.17.5.0	11001100	.00010001.	.00000101.00000000
255.255.255.224	11111111	.11111111	.11111111.11100000

- Then we will have and extra 3 bits for network ID (actually, we are given 8 address space)
 - Possible assignment:
 - Sub network Address : 204.17.5.0 , host address range 1 to 30
 - Sub network Address : 204.17.5.32, host address range 33 to 62
 - Sub network Address : 204.17.5.64, host address range 65 to 94
 - Sub network Address : 204.17.5.96, host address range 97 to 126
 - Sub network Address : 204.17.5.128, host address range 129 to158
- However, in some cases, it is still not efficient

Internet Layer : IP Address Assignment

- Static
 - Assigned and configured at startup, usually permanently dedicated to a device
- Dynamic
 - IP Addresses are "leased" from a pool
 - Use Dynamic Host Configuration Protocol (DHCP)
 - New Host broadcasts a Discover message via UDP to Port 67
 - Destination address: 255.255.255.255
 - Source address: 0.0.0.0
 - DHCP server responds with an Offer message
 - Transaction ID of *Discover*
 - Proposed IP address
 - Network mask
 - IP address lease time
 - New Host responds with an DHCP Request
 - Mirrors information in Offer
 - Goes to selected DHCP server in the case of multiple servers
 - Server responds with a DHCP ACK
 - Confirms parameters
 - Initiates lease

- IPv4 is now replaced with IPv6
 - Address allocation in IPv4 exhausted
 - Enhancement IPv6 over IPv4
 - Expanded address space : using 128 bit address. This allows the use of 6×10^{23} addresses in 1 meter square of earth surface
 - Improved option mechanism
 - Address auto-configuration
 - Increased addressing flexibility : any-cast addressing and multi-cast routing
 - Support for resource allocation
 - IPv6 basic header has fixed size of 40 bytes plus optional extension header