
    
Advanced Material: Implementing Cache 
Controllers

The section starts with the SystemVerilog of the cache control ler from Section 5.7 
in eight fi gures. It then goes into details of an example cache coherency protocol 
and the diffi culties in implementing such a protocol.

SystemVerilog of a Simple Cache Controller

The hardware description language we are using in this section is SystemVerilog. 
The biggest change from prior versions of Ver ilog is that it borrows structures 
from C to make the code easier to read. Figures 5.9.1 through 5.9.8 show the 
SystemVerilog description of the cache controller.   

5.95.9

package cache_def;
 // data structures for cache tag & data
 
 parameter int TAGMSB = 31; //tag msb
 parameter int TAGLSB = 14; //tag lsb

 //data structure for cache tag
 typedef struct packed {
  bit  valid; //valid bit
  bit  dirty; //dirty bit
  bit [TAGMSB:TAGLSB]tag; //tag bits
 }cache_tag_type;

 //data structure for cache memory request
 typedef struct {
  bit [9:0]index; //10-bit index
  bit  we; //write enable
 }cache_req_type;

 //128-bit cache line data
 typedef bit [127:0]cache_data_type;

FIGURE 5.9.1 Type declarations in SystemVerilog for the cache tags and data. The tag fi eld 
is 18 bits wide and the index fi eld is 10 bits wide, while a 2-bit fi eld (bits 3–2) is used to index the block and 
select the word from the block. The rest of the type declaration is found in the following fi gure.
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Figures 5.9.1 and 5.9.2 declare the structures that are used in the defi nition of 
the cache in the following fi gures. For example, the cache tag structure (cache_
tag_type) contains a valid bit (valid), a dirty bit (dirty), and an 18-bit tag 
fi eld ([TAGMSB:TAGLSB] tag). Figure 5.9.3 shows the block diagram of the cache 
using the names from the Verilog description.

FIGURE 5.9.2 Type declarations in SystemVerilog for the CPU-cache and cache-memory interfaces. These are nearly identical 
except that the data is 32 bits wide between the CPU and cache and is 128 bits wide between the cache and memory.

 // data structures for CPU<->Cache controller interface
 
 // CPU request (CPU->cache controller)
 typedef struct {
  bit [31:0]addr; //32-bit request addr
  bit [31:0]data; //32-bit request data (used when write)
  bit rw; //request type : 0 = read, 1 = write
  bit valid; //request is valid
 }cpu_req_type;

 // Cache result (cache controller->cpu)
 typedef struct {
  bit [31:0]data; //32-bit data
  bit ready; //result is ready
 }cpu_result_type;
 
 //----------------------------------------------------------------------
 // data structures for cache controller<->memory interface
 
 // memory request (cache controller->memory)
 typedef struct {
  bit [31:0]addr; //request byte addr
  bit [127:0]data; //128-bit request data (used when write)
  bit rw; //request type : 0 = read, 1 = write
  bit valid; //request is valid
 }mem_req_type;

 // memory controller response (memory -> cache controller)
 typedef struct {
  cache_data_typedata; //128-bit read back data
  bit  ready; //data is ready
 }mem_data_type;

endpackage
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Figure 5.9.4 instantiates modules for the cache data (dm_cache_data) and 
cache tag (dm_cache_tag). These memories can be read at any time, but writes 
only occur on the positive clock edge (posedge(clk)) and only if write enable is 
a 1 (data_req.we or tag_req.we).

FIGURE 5.9.3 Block diagram of the simple cache using the Verilog names. Not shown are the write enables for the cache tag memory 
and for the cache data memory, or the control signals for multiplexors that supply data for the Data Write variable. Rather than have separate write 
enables on every word of the cache data block, the Verilog reads the old value of the block into Data Write and then updates the word in that variable 
on a write. It then writes the whole 128-bit block.
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Figure 5.9.5 defi nes the inputs, outputs, and states of the FSM. The inputs are 
the requests from the CPU (cpu_req) and responses from memory (mem_data), 
and the outputs are responses to the CPU (cpu_res) and requests to memory 
(mem_req). The fi gure also declares the internal variables needed by the FSM. For 
example, the current state and next state registers of the FSM are rstate and 
vstate, respectively.

Figure 5.9.6 lists the default values of the control signals, including the word 
to be read or written from a block, setting the cache write enables to 0, and so 
on. These values are set every clock cycle, so the write enable for a portion of the 
cache—for example, tag_req.we—would be set to 1 for one clock cycle in the 
fi gures below and then would be reset to 0 according to the Ver ilog in this fi gure.

The last two fi gures show the FSM as a large case statement (case(rstate)), 
with the four states splits across the two fi gures. Figure 5.9.7 starts with the Idle 
state (idle), which simply goes to the Compare Tag state (compare_tag) if the 
CPU makes a valid request. It then describes most of the Compare Tag state. The 
Compare Tag state checks to see if the tags match and the entry is valid. If so, then 
it fi rst sets the Cache Ready signal (v_cpu_res.ready). If the request is a write, 
it sets the tag fi eld, the valid bit, and the dirty bit. The next state is Idle. If it is a miss, 
then the state prepares to change the tag entry and valid and dirty bits. If the block 
to be replaced is clean or the invalid, the next state is Allocate.

Figure 5.9.8 continues the Compare Tag state. If the block to be replaced is dirty, 
then the next state is Write-Back. The fi gure shows the Allocate state (allocate) 
next, which simply reads the new block. It keeps looping until the memory is ready; 
when it is, it goes to the Compare Tag state. This is followed in the fi gure by the 
Write-Back state (write_back). As the fi gure shows, the Write-Back state merely 
writes the dirty block to memory, once again looping until memory is ready. When 
mem ory is ready, indicating the write is complete, we go to the Allo cate state. 

The code at the end sets the current state from the next state or resets the FSM to 
the Idle state on the next clock edge, depending on a reset signal (rst).

The CD includes a Test Case module that will be useful to check the code in 
these fi gures. This SystemVerilog could be used to create a cache and cache control-
ler in an FPGA.
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FIGURE 5.9.4 Cache data and tag modules in SystemVerilog. These are nearly identical except that the data is 32 bits wide between the CPU 
and cache and is 128 bits wide between the cache and memory. Both only write on positive clock edges if the write enable is set.

/*cache: data memory, single port, 1024 blocks*/
module dm_cache_data(input  bit clk, 
  input  cache_req_type  data_req,//data request/command, e.g. RW, valid
  input  cache_data_type data_write, //write port (128-bit line) 
  output cache_data_type data_read); //read port
  timeunit 1ns; timeprecision 1ps;

 cache_data_typedata_mem[0:1023];

 initial begin
  for (int i=0; i<1024; i++) 
        data_mem[i] = ‘0;
 end
 
 assign data_read = data_mem[data_req.index];

 always_ff @(posedge(clk)) begin
  if (data_req.we)
   data_mem[data_req.index] <= data_write;
 end
endmodule

/*cache: tag memory, single port, 1024 blocks*/
module dm_cache_tag(input  bit clk, //write clock
  input  cache_req_type tag_req, //tag request/command, e.g. RW, valid
  input  cache_tag_type tag_write,//write port    
  output cache_tag_type tag_read);//read port
  timeunit 1ns; timeprecision 1ps;

 cache_tag_typetag_mem[0:1023];

 initial begin
     for (int i=0; i<1024; i++) 
     tag_mem[i] = ‘0;
 end

 assign tag_read = tag_mem[tag_req.index];

 always_ff @(posedge(clk)) begin
  if (tag_req.we)
   tag_mem[tag_req.index] <= tag_write;
 end

endmodule
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/*cache fi nite state machine*/

module dm_cache_fsm(input  bit clk, input  bit rst,
      input  cpu_req_type   cpu_req, //CPU request input (CPU->cache)
      input  mem_data_type  mem_data, //memory response (memory->cache)
      output mem_req_type   mem_req, //memory request (cache->memory)
      output cpu_result_type cpu_res  //cache result (cache->CPU)
  );

  timeunit 1ns; 
  timeprecision 1ps;

 /*write clock*/
 typedef enum {idle, compare_tag, allocate, write_back} cache_state_type;
 
 /*FSM state register*/
 cache_state_typevstate, rstate;

 /*interface signals to tag memory*/
 cache_tag_typetag_read;     //tag read result
 cache_tag_typetag_write;     //tag write data
 cache_req_typetag_req;     //tag request
 
 /*interface signals to cache data memory*/
 cache_data_typedata_read;     //cache line read data
 cache_data_typedata_write;     //cache line write data
 cache_req_typedata_req;     //data req
 
 
 /*temporary variable for cache controller result*/
 cpu_result_typev_cpu_res; 
 
 /*temporary variable for memory controller request*/
 mem_req_typev_mem_req;
 
 assign mem_req = v_mem_req;     //connect to output ports
 assign cpu_res = v_cpu_res; 

FIGURE 5.9.5 FSM in SystemVerilog, part I. These modules instantiate the memories according to the type defi ni tions in the previous 
fi gure.
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always_comb begin
  
  /*-------------------------default values for all signals------------*/
  /*no state change by default*/
  vstate = rstate;    
  v_cpu_res = ‘{0, 0}; tag_write = ‘{0, 0, 0}; 

  /*read tag by default*/
  tag_req.we = ‘0;  
  /*direct map index for tag*/
   tag_req.index = cpu_req.addr[13:4];
  
  /*read current cache line by default*/
  data_req.we = ‘0;
  /*direct map index for cache data*/
  data_req.index = cpu_req.addr[13:4];

  /*modify correct word (32-bit) based on address*/
  data_write = data_read;   
  case(cpu_req.addr[3:2])
  2’b00:data_write[31:0] = cpu_req.data;
  2’b01:data_write[63:32] = cpu_req.data;
  2’b10:data_write[95:64] = cpu_req.data;
  2’b11:data_write[127:96] = cpu_req.data;
  endcase
  
  /*read out correct word(32-bit) from cache (to CPU)*/
  case(cpu_req.addr[3:2])
  2’b00:v_cpu_res.data = data_read[31:0];
  2’b01:v_cpu_res.data = data_read[63:32];
  2’b10:v_cpu_res.data = data_read[95:64];
  2’b11:v_cpu_res.data = data_read[127:96];
  endcase
  
  /*memory request address (sampled from CPU request)*/
  v_mem_req.addr = cpu_req.addr; 
  /*memory request data (used in write)*/
  v_mem_req.data = data_read;  
  v_mem_req.rw = ‘0;

FIGURE 5.9.6 FSM in SystemVerilog, part II. This section describes the default value of all signals. The following fi gures will set these values for 
one clock cycle, and this Verilog will reset it to these values the following clock cycle.
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  //------------------------------------Cache FSM-------------------------
  case(rstate)
  /*idle state*/
  idle : begin
    /*If there is a CPU request, then compare cache tag*/
    if (cpu_req.valid)
  vstate = compare_tag;
  end
  /*compare_tag state*/ 
  compare_tag : begin
            /*cache hit (tag match and cache entry is valid)*/
    if (cpu_req.addr[TAGMSB:TAGLSB] == tag_read.tag && tag_read.valid) begin
            v_cpu_res.ready = ‘1;
     
       /*write hit*/
       if (cpu_req.rw) begin  
        /*read/modify cache line*/
        tag_req.we = ‘1; data_req.we = ‘1;

        /*no change in tag*/
        tag_write.tag = tag_read.tag; 
        tag_write.valid = ‘1;
        /*cache line is dirty*/
        tag_write.dirty = ‘1;    
       end 
      
          /*xaction is fi nished*/
          vstate = idle; 
    end 
    /*cache miss*/
    else begin 
      /*generate new tag*/
      tag_req.we = ‘1; 
      tag_write.valid = ‘1;
      /*new tag*/
      tag_write.tag = cpu_req.addr[TAGMSB:TAGLSB];
      /*cache line is dirty if write*/
      tag_write.dirty = cpu_req.rw;
     
      /*generate memory request on miss*/
      v_mem_req.valid = ‘1; 
      /*compulsory miss or miss with clean block*/
      if (tag_read.valid == 1’b0 || tag_read.dirty == 1’b0)
  /*wait till a new block is allocated*/
  vstate = allocate;

FIGURE 5.9.7 FSM in SystemVerilog, part III. Actual FSM states via case statement in this fi gure and the next. This fi gure has the Idle state and 
most of the Compare Tag state.
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     else begin
     /*miss with dirty line*/
      /*write back address*/
      v_mem_req.addr = {tag_read.tag, cpu_req.addr[TAGLSB-1:0]};
      v_mem_req.rw = ‘1;  
      /*wait till write is completed*/
      vstate = write_back;
     end
    end 
  end
  /*wait for allocating a new cache line*/
  allocate: begin    
    /*memory controller has responded*/
    if (mem_data.ready) begin
       /*re-compare tag for write miss (need modify correct word)*/
       vstate = compare_tag; 
       data_write = mem_data.data;
       /*update cache line data*/
       data_req.we = ‘1;  
    end 
        end
  /*wait for writing back dirty cache line*/
  write_back : begin   
    /*write back is completed*/
    if (mem_data.ready) begin
       /*issue new memory request (allocating a new line)*/
       v_mem_req.valid = ‘1;   
       v_mem_req.rw = ‘0;    
      
       vstate = allocate; 
    end
   end
  endcase
 end

 always_ff @(posedge(clk)) begin
  if (rst) 
   rstate <= idle; //reset to idle state
  else 
   rstate <= vstate;
 end
 /*connect cache tag/data memory*/
 dm_cache_tag  ctag(.*);
 dm_cache_data cdata(.*);
endmodule

FIGURE 5.9.8 FSM in SystemVerilog, part IV. Actual FSM states via case statement in prior fi gure and this one. This fi gure has last part of the 
Compare Tag state, plus Allocate and Write-Back states.
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Basic Coherent Cache Implementation Techniques

The key to implementing an invalidate protocol is the use of the bus, or another 
broadcast medium, to perform invalidates. To invalidate, the processor simply 
acquires bus access and broad casts the address to be invalidated on the bus. All 
processors continuously snoop on the bus, watching the addresses. The pro cessors 
check whether the address on the bus is in their cache. If so, the corresponding data 
in the cache is invalidated. 

When a write to a block that is shared occurs, the writing pro cessor must acquire 
bus access to broadcast its invalidation. If two processors attempt to write shared 
blocks at the same time, their attempts to broadcast an invalidate operation will 
be seri alized when they arbitrate for the bus. The fi rst processor to obtain bus 
access will cause any other copies of the block it is writing to be invalidated. If the 
processors were attempting to write the same block, the serialization enforced by 
the bus also serializes their writes. One implication of this scheme is that a write 
to a shared data item cannot actually complete until it obtains bus access. All 
coherence schemes require some method of serializing accesses to the same cache 
block, either by serial izing access to the communication medium or another shared 
structure.

In addition to invalidating outstanding copies of a cache block that is being 
written into, we also need to locate a data item when a cache miss occurs. In a 
write-through cache, it is easy to fi nd the recent value of a data item, since all 
written data are always sent to the memory, from which the most recent value of 
a data item can always be fetched. In a design with adequate memory bandwidth 
to support the write traffi c from the proces sors, using write-through simplifi es the 
implementation of cache coherence. 

For a write-back cache, fi nding the most recent data value is more diffi cult, since 
the most recent value of a data item can be in a cache rather than in memory. 
Happily, write-back caches can use the same snooping scheme both for cache misses 
and for writes: each processor snoops all addresses placed on the bus. If a processor 
fi nds that it has a dirty copy of the requested cache block, it provides that cache 
block in response to the read request and causes the memory access to be aborted. 
The additional complexity comes from having to retrieve the cache block from a 
processor’s cache, which can often take longer than retrieving it from the shared 
memory if the proces sors are in separate chips. Since write-back caches generate 
lower  requirements for memory bandwidth, they can support larger numbers of 
faster processors and have been the approach chosen in most multiprocessors, 
despite the additional complex ity of maintaining coherence. Therefore, we will 
examine the implementation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping, and 
the valid bit for each block makes invalidation easy to implement. Read misses, 
whether generated by an invalidation or by some other event, are also straight-
forward, since they simply rely on the snooping capability. For writes, we’d like to 
know whether any other copies of the block are cached, because if there are no 
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other cached copies, the write need not be placed on the bus in a write-back cache. 
Not sending the write reduces both the time taken by the write and the required 
band width. 

To track whether or not a cache block is shared, we can add an extra state bit 
associated with each cache block, just as we have a valid bit and a dirty bit. By add-
ing a bit indicating whether the block is shared, we can decide whether a write must 
generate an invalidate. When a write to a block in the shared state occurs, the cache 
generates an invalidation on the bus and marks the block as exclusive. No further 
invalidations will be sent by that processor for that block. The processor with the 
sole copy of a cache block is normally called the owner of the cache block. 

When an invalidation is sent, the state of the owner’s cache block is changed 
from shared to unshared (or exclusive). If another processor later requests this 
cache block, the state must be made shared again. Since our snooping cache also 
sees any misses, it knows when the exclusive cache block has been requested by 
another processor and the state should be made shared. 

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with processor cache accesses. One way to reduce this interference is 
to duplicate the tags. The interference can also be reduced in a multilevel cache by 
direct ing the snoop requests to the L2 cache, which the processor uses only when 
it has a miss in the L1 cache. For this scheme to work, every entry in the L1 cache 
must be present in the L2 cache, a property called the inclusion property. If the 
snoop gets a hit in the L2 cache, then it must arbitrate for the L1 cache to update 
the state and possibly retrieve the data, which usually requires a stall of the proces-
sor. Sometimes it may even be useful to dupli cate the tags of the secondary cache to 
further  decrease conten tion between the processor and the snooping activity. 

An Example Cache Coherency Protocol

A snooping coherence protocol is usually implemented by incor porating a fi nite-
state controller in each node. This controller responds to requests from the pro-
cessor and from the bus (or other broadcast medium), changing the state of the 
selected cache block, as well as using the bus to access data or to invali date it. Logi-
cally, you can think of a separate controller being associated with each block; that 
is, snooping operations or cache requests for different blocks can proceed indepen-
dently. In actual implementations, a single controller allows multiple operations 
to distinct blocks to proceed in interleaved fashion (that is, one operation may be 
initiated before another is completed, even though only one cache access or one bus 
access is allowed at a time). Also, remember that although we refer to a bus in the 
following description, any interconnection network that supports a broadcast to 
all the coherence controllers and their associated caches can be used to  implement 
snooping.

The simple protocol we consider has three states: invalid, shared, and modi-
fi ed. The shared state indicates that the block is potentially shared, while the 
modifi ed state indicates that the block has been updated in the cache; note that 
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the modifi ed state implies that the block is exclusive. Figure 5.9.9 shows the 
requests generated by the processor-cache module in a node (in the top half of 
the table) as well as those coming from the bus (in the bottom half of the table). 
This protocol is for a write-back cache, but it can be easily changed to work for a 
write-through cache by rein terpreting the modifi ed state as an exclusive state and 
updating the cache on writes in the normal fashion for a write-through cache. 
The most common extension of this basic protocol is the addition of an exclusive 
state, which describes a block that is unmodifi ed but held in only one cache; the 
caption of Figure 5.9.9 describes this state and its addition in more detail.

When an invalidate or a write miss is placed on the bus, any processors with 
copies of the cache block invalidate it. For a write-through cache, the data for a 
write miss can always be retrieved from the memory. For a write miss in a write-
back cache, if the block is exclusive in just one cache, that cache also writes back the 
block; otherwise, the data can be read from memory. 

Figure 5.9.10 shows a fi nite-state transition diagram for a sin gle cache block 
using a write invalidation protocol and a write-back cache. For simplicity, the three 
states of the protocol are duplicated to represent transitions based on processor 
requests (on the left, which corresponds to the top half of the table in Figure 5.9.9), 
as opposed to transitions based on bus  requests (on the right, which corresponds 
to the bottom half of the table in Figure 5.9.9). Boldface type is used to distinguish 
the bus actions, as opposed to the conditions on which a state transition depends. 
The state in each node represents the state of the selected cache block speci fi ed by 
the processor or bus  request. 

All of the states in this cache protocol would be needed in a uniprocessor cache, 
where they would correspond to the invalid, valid (and clean), and dirty states. 
Most of the state changes indicated by arcs in the left half of Figure 5.9.10 would be 
needed in a write-back uniprocessor cache, with the exception being the invalidate 
on a write hit to a shared block. The state changes rep resented by the arcs in the 
right half of Figure 5.9.10 are needed only for coherence and would not appear at 
all in a uniprocessor cache controller. 

As mentioned earlier, there is only one fi nite-state machine per cache, with stimuli 
coming either from the attached proces sor or from the bus. Figure 5.9.11 shows 
how the state transi tions in the right half of Figure 5.9.10 are combined with those 
in the left half of the fi gure to form a single state diagram for each cache block. 

To understand why this protocol works, observe that any valid cache block is 
either in the shared state in one or more caches or in the exclusive state in exactly 
one cache. Any transition to the exclusive state (which is required for a processor 
to write to the block) requires an invalidate or write miss to be placed on the bus, 
causing all  caches to make the block invalid. In addition, if some other cache had 
the block in exclusive state, that cache generates a write back, which supplies the 
block containing the desired address. Finally, if a read miss occurs on the bus to a 
block in the exclusive state, the cache with the exclusive copy changes its state to 
shared. 
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Request Source

State of 
addressed

cache block
Type of

cache action Function and explanation

Read hit processor shared or 
modifi ed

normal hit Read data in cache.

Read miss processor invalid normal miss Place read miss on bus.

Read miss processor shared replacement Address confl ict miss: place read miss on bus.

Read miss processor modifi ed replacement Address confl ict miss: write-back block, then place read miss 
on bus.

Write hit processor modifi ed normal hit Write data in cache.

Write hit processor shared coherence Place invalidate on bus. These operations are often called 
upgrade or ownership misses, since they do not fetch the data 
but only change the state.

Write miss processor invalid normal miss Place write miss on bus.

Write miss processor shared replacement Address confl ict miss: place write miss on bus.

Write miss processor modifi ed replacement Address confl ict miss: write-back block, then place write miss 
on bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modifi ed coherence Attempt to share data: place cache block on bus and change 
state to shared.

Invalidate bus shared coherence Attempt to write shared block; invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache 
block.

Write miss bus modifi ed coherence Attempt to write block that is exclusive elsewhere: write-back 
the cache block and make its state invalid.

FIGURE 5.9.9 The cache coherence mechanism receives requests from both the processor and the bus and responds to 
these based on the type of request, whether it hits or misses in the cache, and the state of the cache block specifi ed in 
the request. The fourth column describes the type of cache action as normal hit or miss (the same as a uniprocessor cache would see), replacement 
(a uniprocessor cache replacement miss), or coherence (required to maintain cache coherence); a normal or replacement action may cause a coherence 
action depending on the state of the block in other caches. For read misses, write misses, or invalidates snooped from the bus, an action is required 
only if the read or write addresses match a block in the cache and the block is valid. Some protocols also introduce a state to designate when a block is 
exclusively in one cache but has not yet been written. This state can arise if a write access is broken into two pieces: getting the block exclusively in one 
cache and then subsequently updating it; in such a protocol this “exclusive unmodifi ed state” is transient, ending as soon as the write is completed. Other 
protocols use and maintain an exclusive state for an unmodifi ed block. In a snooping protocol, this state can be entered when a pro cessor reads a block 
that is not resident in any other cache. Because all subsequent accesses are snooped, it is possible to maintain the accuracy of this state. In particular, 
if another processor issues a read miss, the state is changed from exclu sive to shared. The advantage of adding this state is that a subsequent write to 
a block in the exclusive state by the same processor need not acquire bus access or generate an invalidate, since the block is known to be exclusively in 
this cache; the processor merely changes the state to modifi ed. This state is easily added by using the bit that encodes the coherent state as an exclusive 
state and using the dirty bit to indicate that a block is modifi ed. The popular MESI protocol, which is named for the four states it includes (modifi ed, 
exclusive, shared, and invalid), uses this structure. The MOESI protocol introduces another extension: the “owned” state.
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The actions in gray in Figure 5.9.11, which handle read and write misses on the 
bus, are essentially the snooping component of the protocol. One other property 
that is preserved in this pro tocol, and in most other protocols, is that any memory 
block in the shared state is always up to date in the memory, which sim plifi es the 
implementation. 

Although our simple cache protocol is correct, it omits a num ber of complications 
that make the implementation much trickier. The most important of these is that 
the protocol assumes that operations are atomic—that is, an operation can be done 
in such a way that no intervening operation can occur. For example, the protocol 
described assumes that write misses can be detected, acquire the bus, and receive a 
response as a single atomic action. In reality, this is not true. Similarly, if we used 

FIGURE 5.9.10 A write-invalidate, cache-coherence protocol for a write-back cache, showing the states and state transi tions 
for each block in the cache. The cache states are shown in circles, with any access permitted by the processor with out a state transition shown 
in parentheses under the name of the state. The stimulus causing a state change is shown on the transition arcs in regular type, and any bus actions 
generated as part of the state transition are shown on the transition arc in bold. The stimulus actions apply to a block in the cache, not to a specifi c 
address in the cache. Hence, a read miss to a block in the shared state is a miss for that cache block but for a different address. The left side of the diagram 
shows state transitions based on actions of the processor associated with this cache; the right side shows transitions based on operations on the bus. 
A read miss in the exclusive or shared state and a write miss in the exclusive state occur when the address requested by the processor does not match 
the address in the cache block. Such a miss is a standard cache replace ment miss. An attempt to write a block in the shared state generates an invalidate. 
Whenever a bus transaction occurs, all caches that contain the cache block specifi ed in the bus transaction take the action dictated by the right half of 
the diagram. The protocol assumes that memory provides data on a read miss for a block that is clean in all caches. In actual implemen tations, these 
two sets of state diagrams are combined. In practice, there are many subtle variations on invalidate proto cols, including the introduction of the exclusive 
unmodifi ed state, as to whether a processor or memory provides data on a miss.
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a switch, as all recent multiprocessors do, then even read misses would also not be 
atomic. 

Nonatomic actions introduce the possibility that the protocol can deadlock, 
meaning that it reaches a state where it cannot continue. We will explore how these 
protocols are implemented without a bus shortly.

Constructing small-scale (two to four processors) multipro cessors has become 
very easy. For example, the Intel Nehalem and AMD Opteron processors are 
designed for use in cache-coherent multiprocessors and have an external interface 
that supports snooping and allows two to four processors to be directly connected. 
They also have larger on-chip caches to reduce bus utilization. In the case of 
the Opteron processors, the support for interconnecting multiple processors is 
integrated onto the processor chip, as are the memory interfaces. In the case of the 
Intel design, a two-processor system can be built with only a few additional external 
chips to interface with the memory system and I/O. Although these designs cannot 
be easily scaled to larger processor counts, they offer an extremely cost-effective 
solution for two to four processors.

FIGURE 5.9.11 Cache coherence state diagram with the state transi tions induced by the 
local processor shown in black and by the bus activities shown in gray. As in Figure 5.9.10, the 
activities on a transition are shown in bold.
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Implementing Snoopy Cache Coherence
As we said earlier, the major complication in actually imple menting the snooping 
coherence protocol we have described is that write and upgrade misses are not 
atomic in any recent mul tiprocessor. The steps of detecting a write or upgrade 
miss; communicating with the other processors and memory; getting the most 
recent value for a write miss and ensuring that any invalidates are processed; and 
updating the cache cannot be done as if they took a single cycle. 

In a simple single-bus system, these steps can be made effec tively atomic by 
arbitrating for the bus fi rst (before changing the cache state) and not releasing 
the bus until all actions are complete. How can the processor know when all the 
invalidates are complete? In most bus-based multiprocessors, a single line is used 
to signal when all necessary invalidates have been received and are being processed. 
Following that signal, the processor that generated the miss can release the bus, 
knowing that any required actions will be completed before any activity related 
to the next miss. By holding the bus exclusively during these steps, the processor 
effectively makes the individual steps atomic.

In a system without a bus, we must fi nd some other method of making the steps 
in a miss atomic. In particular, we must ensure that two processors that attempt to 
write the same block at the same time, a situation which is called a race, are strictly 
ordered: one write is processed before the next is begun. It does not matter which 
of two writes in a race wins the race, just that there be only a single winner whose 
coherence actions are completed fi rst. In a snoopy system, ensuring that a race 
has only one winner is accomplished by using broadcast for all misses, as well as 
some basic properties of the interconnection network. These properties, together 
with the ability to restart the miss handling of the loser in a race, are the keys to 
imple menting snoopy cache coherence without a bus.

The devil is in the details.

Classic proverb

The devil is in the details.

Classic proverb



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile (ColorMatch RGB)
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Albertus-ExtraBold
    /Albertus-Medium
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /AllegroBT-Regular
    /AntiqueOlive
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Apple-Chancery
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /BabyKruffy
    /BankGothicBT-Medium
    /BenguiatITCbyBT-Bold
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BremenBT-Bold
    /Candid
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CGOmega
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGTimes
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /Chicago
    /Chick
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Condensed-Bold
    /Clarendon-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CooperBlack-Italic
    /CopperplateGothicBT-Bold
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /Coronet
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /Croobie
    /English111VivaceBT-Regular
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldExtendedTwo
    /Eurostile-ExtendedTwo
    /Fat
    /Fences
    /FencesPlain
    /FranklinGothic-Book
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Freshbot
    /Frosty
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Book
    /Garamond-BookItalic
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Gautami
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /Goudy-ExtraBold
    /GoudyHandtooledBT-Regular
    /Goudy-Italic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Light
    /Helvetica-LightOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Humanist521BT-Bold
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Roman
    /Impact
    /Jenkinsv20
    /Jenkinsv20Thik
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Jokewood
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /Kartika
    /Latha
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Italic
    /LetterGothic-Slanted
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaConsole
    /LucidaSansUnicode
    /Mangal-Regular
    /Marigold
    /MathExt
    /Meridien-Bold
    /Meridien-BoldItalic
    /Meridien-Italic
    /Meridien-Medium
    /Meridien-MediumItalic
    /Meridien-Roman
    /MicrosoftSansSerif
    /Minion-Black
    /Minion-Bold
    /Minion-BoldItalic
    /Minion-DisplayItalic
    /Minion-DisplayRegular
    /Minion-Italic
    /Minion-Regular
    /Minion-Semibold
    /Minion-SemiboldItalic
    /Monaco
    /MonaLisa-Recut
    /MonotypeCorsiva
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MT-Extra
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Myriad-BdWeb
    /Myriad-CnItWeb
    /Myriad-CnWeb
    /Myriad-ItWeb
    /Myriad-Web
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewYork
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-Italic
    /Oxford
    /OzHandicraftBT-Roman
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /Poornut
    /Porkys
    /PorkysHeavy
    /PosterBodoniBT-Roman
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RefSpecialty
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Shruti
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /Staccato222BT-Regular
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /StoneSerif
    /StoneSerif-Bold
    /StoneSerif-BoldItalic
    /StoneSerif-Italic
    /StoneSerif-Semibold
    /StoneSerif-SemiboldItalic
    /Swiss911BT-ExtraCompressed
    /Sylfaen
    /Symbol
    /SymbolMT
    /Taffy
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TypoUprightBT-Regular
    /Univers
    /Univers-Black
    /Univers-BlackOblique
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldItalic
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-CondensedBold
    /Univers-Condensed-Bold
    /Univers-Condensed-BoldItalic
    /Univers-CondensedBoldOblique
    /Univers-Condensed-Medium
    /Univers-Condensed-MediumItalic
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-Light
    /Univers-LightOblique
    /Univers-Medium
    /Univers-MediumItalic
    /Univers-Oblique
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZurichBT-RomanExtended
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <FEFF>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [504.000 720.000]
>> setpagedevice


