
    Advanced Material: Compiling C and 
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java 
is executed. Be cause the compiler will signifi cantly affect the performance of a 
computer, understanding compiler technology today is critical to understanding 
performance. Keep in mind that the subject of compiler construction is usually 
taught in a one- or two-semester course, so our introduction will nec essarily only 
touch on the basics. 

The second part of this section, starting on page 2.15-14, is for readers interested 
in seeing how an objected-oriented lan guage like Java executes on the MIPS archi-
tecture. It shows the Java bytecodes used for interpretation and the MIPS code for 
the Java version of some of the C segments in prior sections, includ ing Bubble Sort. 
It covers both the Java virtual machine and just-in-time (JIT) compilers.

Compiling C

This fi rst part of the section introduces the internal anatomy of a compiler. To start, 
Figure 2.15.1 shows the structure of recent compilers, and we describe the optimi-
zations in the order of the passes of that structure.

2.15 2.15 

FIGURE 2.15.1 The structure of a modern optimizing compiler con sists of a number of 
passes or phases. Logically, each pass can be thought of as running to completion before the next occurs. 
In practice, some passes may handle a procedure at a time, essentially interleaving with another pass.
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To illustrate the concepts in this part of this section, we will use the C version of 
a while loop from page 107:

while (save[i] == k) 
 i += 1;

The Front End

The function of the front end is to read in a source program; check the syntax 
and semantics; and translate the source pro gram to an intermediate form that 
interprets most of the lan guage-specifi c operation of the program. As we will see, 
intermediate forms are usually simple, and some are in fact sim ilar to the Java 
bytecodes (see Figure 2.15.8 on page 2.15-16).

The front end is usually broken into four separate functions:

1. Scanning reads in individual characters and creates a string of tokens. 
 Examples of tokens are reserved words, names, operators, and punctuation 
symbols. In the above example, the token sequence is while, (, save, [, i, ], 
==, k, ), i, +=, 1. A word like while is recognized as a reserved word in C, but 
save, i, and j are recognized as names, and 1 is recognized as a  number. 

2. Parsing takes the token stream, ensures the syntax is cor rect, and produces an 
abstract syntax tree, which is a rep resentation of the syntactic structure of the 
program. Figure 2.15.2 shows what the abstract syntax tree might look like 
for this program fragment. 

3. Semantic analysis takes the abstract syntax tree and checks the program for 
semantic correctness. Semantic checks normally ensure that variables and 
types are prop erly declared and that the types of operators and objects match, 
a step called type checking. During this process, a symbol table representing 
all the named objects—classes, variables, and functions—is usually created 
and used to type-check the program.

4. Generation of the intermediate representation (IR) takes the symbol table and 
the abstract syntax tree and generates the intermediate representation that is 
the output of the front end. Intermediate representations usually use simple 
opera tions on a small set of primitive types, such as integers, characters, and 
reals. Java bytecodes represent one type of intermediate form. In modern 
compilers, the most com mon intermediate form looks much like the MIPS 
instruction set but with an infi nite number of virtual registers; later, we 
describe how to map these virtual registers to a fi nite set of real registers. 
Figure 2.15.3 shows how our example might be represented in such an inter-
mediate form. We cap italize the MIPS instructions in this section when they 
rep resent IR forms.

The intermediate form specifi es the functionality of the pro gram in a manner 
independent of the original source. After this front end has created the intermediate 
form, the remaining passes are largely language independent.
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High-Level Optimizations

High-level optimizations are transformations that are done at something close to 
the source level. 

The most common high-level transformation is probably proce dure inlining, 
which replaces a call to a function by the body of the function, substituting the caller’s 
arguments for the procedure’s parameters. Other high-level optimizations involve 
loop transfor mations that can reduce loop overhead, improve memory access, and 
exploit the hardware more effectively. For example, in loops that execute many 
iterations, such as those traditionally con trolled by a for statement, the optimization 
of loop-unrolling is often useful. Loop-unrolling involves taking a loop, replicating 
the body multiple times, and executing the transformed loop fewer times. Loop-
unrolling reduces the loop overhead and provides opportunities for many other 
optimizations. Other types of high-level transformations include sophisticated loop 

loop-unrolling A tech nique to 
get more perfor mance from 
loops that access arrays, in which 
multiple copies of the loop body 
are made and instructions from 
different iterations are scheduled 
together.

loop-unrolling A tech nique to 
get more perfor mance from 
loops that access arrays, in which 
multiple copies of the loop body 
are made and instructions from 
different iterations are scheduled 
together.
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FIGURE 2.15.2 An abstract syntax tree for the while example. The roots of the tree consist 
of the informational tokens such as numbers and names. Long chains of straight-line descendents are often 
omitted in constructing the tree. 
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transformations such as interchanging nested loops and blocking loops to obtain 
better memory behavior; see Chapter 5 for examples.

Local and Global Optimizations

Within the pass dedicated to local and global optimization, three classes of 
optimizations are performed:

1. Local optimization works within a single basic block. A local optimization 
pass is often run as a precursor and successor to global optimization to 
“clean up” the code before and after global optimization.

2. Global optimization works across multiple basic blocks; we will see an 
example of this shortly.

3. Global register allocation allocates variables to registers for regions of the 
code. Register allocation is crucial to get ting good performance in modern 
processors.

Several optimizations are performed both locally and globally, including 
common subexpression elimination, constant propaga tion, copy propagation, 
dead store elimination, and strength reduction. Let’s look at some simple examples 
of these optimiza tions. 

FIGURE 2.15.3 The while loop example is shown using a typical intermediate rep-
resentation. In practice, the names save, i, and k would be replaced by some sort of address, such as 
a reference to either the local stack pointer or a global pointer, and an offset, similar to the way save[i] 
is accessed. Note that the format of the MIPS instructions is different, because they represent inter mediate 
representations here: the operations are capitalized and the registers use RXX notation.

 # comments are written like this--source code often included
 # while (save[i] == k) 
loop:    LI R1,save   # loads the starting address of save into R1
 LW R2,i
 MULT R3,R2,4 #Multiply R2 by 4
 ADD R4,R3,R1
 LW R5,0(R4) # load save[i]
 LW R6,k
 BNE R5,R6,endwhileloop

 # i += 1

 LW R6, i
 ADD R7,R6,1  # increment
 SW R7,i

 branch loop # next iteration
endwhileloop:
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Common subexpression elimination fi nds multiple instances of the same expres-
sion and replaces the second one by a reference to the fi rst. Consider, for example, 
a code segment to add 4 to an array element: 

x[i] = x[i] + 4

The address calculation for x[i] occurs twice and is identical since neither the 
starting address of x nor the value of i changes. Thus, the calculation can be reused. 
Let’s look at the intermediate code for this fragment, since it allows several other 
optimizations to be performed. The unoptimized intermediate code is on the left. On 
the right is the optimized code, using common subexpression elim ination to replace 
the second address calculation with the fi rst. Note that the register allocation has not 
yet occurred, so the com piler is using virtual register numbers like R100 here. 

# x[i] + 4
li R100,x
lw R101,i
mult R102,R101,4
add R103,R100,R102
lw R104,0(R103) 
# value of x[i] is in R104
add R105,R104,4
# x[i] =
sw R105,0(R103)

If the same optimization were possible across two basic blocks, it would then be an 
instance of global common subexpression elimination. 

Let’s consider some of the other optimizations:

Strength reduction replaces complex operations by simpler ones and can be 
applied to this code segment, replacing the MULT by a shift left.

Constant propagation and its sibling constant folding fi nd constants in code 
and propagate them, collapsing constant values whenever possible. 

Copy propagation propagates values that are simple copies, eliminating the 
need to reload values and possibly enabling other optimizations, such as 
common subexpression elimina tion. 

Dead store elimination fi nds stores to values that are not used again and 
eliminates the store; its “cousin” is dead code elimination, which fi nds unused 
code—code that cannot affect the result of the program—and eliminates it. 
With the heavy use of macros, templates, and the similar techniques designed 
to reuse code in high-level languages, dead code occurs surprisingly often.

Compilers must be conservative. The fi rst task of a compiler is to produce correct 
code; its second task is usually to produce fast code, although other factors, such as 
code size, may some times be important as well. Code that is fast but incorrect—for 
any possible combination of inputs—is simply wrong. Thus, when we say a compiler 

■
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■

■
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is “conservative,” we mean that it per forms an optimization only if it knows with 
100% certainty that, no matter what the inputs, the code will perform as the user 
wrote it. Since most compilers translate and optimize one function or procedure 
at a time, most compilers, especially at lower optimization levels, assume the worst 
about function calls and about their own parameters. 

Programmers concerned about performance of critical loops, especially in real-time 
or embedded applications, often fi nd themselves staring at the assembly  language 
produced by a com piler and wondering why the compiler failed to perform some 
global optimization or to allocate a variable to a register throughout a loop. The 
answer often lies in the dictate that the compiler be conservative. The opportunity 
for improving the code may seem obvious to the programmer, but then the pro-
grammer often has knowledge that the compiler does not have, such as the absence 
of aliasing between two pointers or the absence of side effects by a function call. 
The compiler may indeed be able to perform the transformation with a little help, 
which could eliminate the worst-case behavior that it must assume. This insight 
also illustrates an important observation: programmers who use pointers to try to 
improve performance in accessing variables, especially pointers to values on the 
stack that also have names as variables or as elements of arrays, are likely to disable 
many compiler optimizations. The end result is that the lower-level pointer code 
may run no better, or perhaps even worse, than the higher-level code optimized by 
the com piler. 

Global Code Optimizations
Many global code optimizations have the same aims as those used in the local case, 
including common subexpression elimination, constant propagation, copy propa-
gation, and dead store and dead code elimination. 

There are two other important global optimizations: code motion and induc-
tion variable elimination. Both are loop optimi zations; that is, they are aimed at 
code in loops. Code motion fi nds code that is loop invariant: a particular piece of 
code com putes the same value on every iteration of the loop and, hence, may be 
computed once outside the loop. Induction variable elim ination is a combination 
of transformations that reduce over head on indexing arrays, essentially replacing 
array indexing with pointer accesses. Rather than examine induction variable 
elimination in depth, we point the reader to Section 2.14, which compares the 
use of array indexing and pointers; for most loops, the transformation from the 
more obvious array code to the pointer code can be performed by a modern 
optimizing com piler. 

Understanding 
Program 

Performance

Understanding 
Program 

Performance
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Implementing Local Optimizations
Local optimizations are implemented on basic blocks by scanning the basic block in 
instruction execution order, looking for optimization opportunities. In the assignment 
statement example on page 2.15-5, the duplication of the entire address calculation is 
recognized by a series of sequential passes over the code. Here is how the process might 
proceed, including a description of the checks that are needed:

1. Determine that the two li operations return the same result by observing 
that the operand x is the same and that the value of its address has not been 
changed between the two li operations. 

2. Replace all uses of R106 in the basic block by R101.

3. Observe that i cannot change between the two LWs that ref erence it. So 
replace all uses of R107 with R101.

4. Observe that the mult instructions now have the same input operands, so 
that R108 may be replaced by R102.

5. Observe that now the two add instructions have identical input operands 
(R100 and R102), so replace the R109 with R103.

6. Use dead store code elimination to delete the second set of li, lw, mult, 
and add instructions since their results are unused.

Throughout this process, we need to know when two instances of an operand 
have the same value. This is easy to determine when they refer to virtual registers, 
since our intermediate rep resentation uses such registers only once, but the problem 
can be trickier when the operands are variables in memory, even though we are 
only considering references within a basic block. 

It is reasonably easy for the compiler to make the common subexpression 
elimination determination in a conservative fash ion in this case; as we will see in 
the next subsection, this is more diffi cult when branches intervene.

Implementing Global Optimizations
To understand the challenge of implementing global optimizations, let’s consider 
a few examples:

Consider the case of an opportunity for common subexpres sion elimination, 
say, of an IR statement like ADD Rx, R20, R50. To determine whether two 
such statements compute the same value, we must determine whether the 
values of R20 and R50 are identical in the two statements. In practice, this 
means that the values of R20 and R50 have not changed between the fi rst 
statement and the second. For a single basic block, this is easy to decide; it 
is more diffi cult for a more complex program structure involving multiple 
basic blocks and branches.

Consider the second LW of i into R107 within the earlier example: how do 
we know whether its value is used again? If we consider only a single basic 

■

■
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block, and we know that all uses of R107 are within that block, it is easy to 
see. As optimization proceeds, however, common subexpression elimination 
and copy propagation may create other uses of a value. Determining that a 
value is unused and the code is dead is more diffi cult in the case of multiple 
basic blocks.

Finally, consider the load of k in our loop, which is a candi date for code 
motion. In this simple example, we might argue it is easy to see that k is 
not changed in the loop and is, hence, loop invariant. Imagine, however, a 
more complex loop with multiple nestings and if statements within the body. 
Determining that the load of k is loop invariant is harder in such a case.

The information we need to perform these global optimizations is similar: we 
need to know where each operand in an IR statement could have been changed or 
defi ned (use-defi nition information). The dual of this information is also needed: 
that is, fi nding all the uses of that changed operand (defi nition-use information). 
Data fl ow analysis obtains both types of information. 

Global optimizations and data fl ow analysis operate on a control fl ow graph, 
where the nodes represent basic blocks and the arcs represent control fl ow between 
basic blocks. Figure 2.15.4 shows the control fl ow graph for our simple loop example, 
with one important transformation introduced. We describe the  transfor mation in 
the caption, but see if you can discover it, and why it was done, on your own! 

■

FIGURE 2.15.4 A control fl ow graph for the while loop example. Each node represents a basic 
block, which terminates with a branch or by sequential fall-through into another basic block that is also 
the target of a branch. The IR statements have been numbered for ease in referring to them. The important 
transformation per formed was to move the while test and conditional branch to the end. This eliminates the 
unconditional branch that was formerly inside the loop and places it before the loop. This transformation 
is so important that many compilers do it during the gener ation of the IR. The MULT was also replaced with 
(“strength-reduced to”) an SLL.

8.      LW R6,i
9.      ADD R7,R6,1
10.    SW R7,i

1.      LI R1,save
2.      LW R2,i
3.      SLL R3,R2,2
4.      ADD R4,R3,R1
5.      LW R5,0(R4)
6.      LW R6,k
7.      BEQ R5,R6,startwhileloop
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Suppose we have computed the use-defi nition information for the control fl ow 
graph in Figure 2.15.4. How does this information allow us to perform code motion? 
Consider IR statements number 1 and 6: in both cases, the use-defi nition information 
tells us that there are no defi nitions (changes) of the operands of these state ments 
within the loop. Thus, these IR statements can be moved out side the loop. Notice that 
if the LI of save and the LW of k are executed once, just prior to the loop entrance, 
the computational effect is the same, but the program now runs faster since these two 
statements are outside the loop. In contrast, consider IR statement 2, which loads the 
value of i. The defi nitions of i that affect this statement are both outside the loop, 
where i is initially defi ned, and inside the loop in statement 10 where it is stored. 
Hence, this statement is not loop invariant. 

Figure 2.15.5 shows the code after performing both code motion and induction 
variable elimination, which simplifi es the address calculation. The variable i can 
still be register allocated, eliminating the need to load and store it every time, and 
we will see how this is done in the next subsection.

Before we turn to register allocation, we need to mention a caveat that also 
 illustrates the complexity and diffi culty of optimizers. Remember that the com-
piler must be conservative. To be conservative, a compiler must consider the follow-
ing ques tion: Is there any way that the variable k could possibly ever change in 
this loop? Unfortunately, there is one way. Suppose that the variable k and the 
variable i actually refer to the same memory location, which could happen if they 
were accessed by pointers or reference parameters. 

FIGURE 2.15.5 The control fl ow graph showing the representation of the while loop 
example after code motion and induction variable elimi nation. The number of instructions in 
the inner loop has been reduced from 10 to 6.

LW R2,i
ADD R7,R2,1
ADD R4,R4,4
SW R7,i

LI R1,save
LW R6,k
LW R2,i
SLL R3,R2,2
ADD R4,R3,R1

LW R5,0(R4)
BEQ R5,R6,startwhileloop
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I am sure that many readers are saying, “Well, that would certainly be a stupid 
piece of code!” Alas, this response is not open to the compiler, which must translate 
the code as it is writ ten. Recall too that the aliasing information must also be conser-
vative; thus, compilers often fi nd themselves negating optimization opportunities 
because of a possible alias that exists in one place in the code or because of 
incomplete information about aliasing.

Register Allocation

Register allocation is perhaps the most important optimization for modern 
load-store architectures. Eliminating a load or a store eliminates an instruction. 
Furthermore, register alloca tion enhances the value of other optimizations, such 
as common subexpression elimination. Fortunately, the trend toward larger 
register counts in modern architectures has made register allo cation simpler and 
more effective. Register allocation is done on both a local basis and a global basis, 
that is, across multiple basic blocks but within a single function. Local register 
alloca tion is usually done late in compilation, as the fi nal code is gen erated. Our 
focus here is on the more challenging and more opportunistic global register 
allocation.

Modern global register allocation uses a region-based approach, where a 
region (sometimes called a live range) repre sents a section of code during which 
a particular variable could be allocated to a particular register. How is a region 
selected? The process is iterative:

1. Choose a defi nition (change) of a variable in a given basic block; add that 
block to the region.

2. Find any uses of that defi nition, which is a data fl ow analy sis problem; add 
any basic blocks that contain such uses, as well as any basic block that the 
value passes through to reach a use, to the region.

3. Find any other defi nitions that also can affect a use found in the previous 
step and add the basic blocks containing those defi nitions, as well as the 
blocks the defi nitions pass through to reach a use, to the region.

4. Repeat steps 2 and 3 using the defi nitions discovered in step 3 until 
convergence.

The set of basic blocks found by this technique has a special prop erty: if the 
designated variable is allocated to a register in all these basic blocks, then there is 
no need for loading and storing the variable. 

Modern global register allocators start by constructing the regions for every virtual 
register in a function. Once the regions are constructed, the key question is how to 
allocate a register to each region: the challenge is that certain regions overlap and may 
not use the same register. Regions that do not overlap (i.e., share no common basic 
blocks) can share the same register. One way to represent the interference among 
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regions is with an interference graph, where each node represents a region, and the arcs 
between nodes represent that the regions have some basic blocks in common.

Once an interference graph has been constructed, the problem of allocating reg-
isters is equivalent to a famous problem called graph coloring: fi nd a color for each 
node in a graph such that no two adjacent nodes have the same color. If the num-
ber of colors equals the number of registers, then coloring an interference graph 
is equivalent to allocating a register for each region! This insight was the initial 
motivation for the allocation method now known as region-based allocation, but 
originally called the graph-coloring approach. Figure 2.15.6 shows the fl ow graph 
represen tation of the while loop example after register allocation. 

What happens if the graph cannot be colored using the number of registers 
available? The allocator must spill registers until it can complete the coloring. By 
doing the coloring based on a prior ity function that takes into account the number 
of memory refer ences saved and the cost of tying up the register, the allocator 
attempts to avoid spilling for the most important candidates. 

Spilling is equivalent to splitting up a region (or live range); if the region is split, 
fewer other regions will interfere with the two separate nodes representing the orig-
inal region. A process of splitting regions and successive coloring is used to allow 
the allocation process to complete, at which point all candidates will have been 
allocated a register. Of course, whenever a region is split, loads and stores must be 

FIGURE 2.15.6 The control fl ow graph showing the representation of the while loop 
example after code motion and induction variable elimi nation and register allocation, 
using the MIPS register names. The num ber of IR statements in the inner loop has now dropped to 
only four from six before register allocation and ten before any global optimizations. The value of i resides 
in $t2 at the end of the loop and may need to be stored eventually to maintain the pro gram semantics. If i 
were unused after the loop, not only could the store be avoided, but also the increment inside the loop could 
be eliminated completely!

ADD $t2,$t2,1
ADD $t4,$t4,4

LI $t0,save
LW $t1,k
LW $t2,i
SLL $t3,$t2,2
ADDU $t4,$t3,$t0

LW $t3,0($t4)
BEQ $t3,$t1,startwhileloop
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introduced to get the value from memory or to store it there. The location chosen 
to split a region must balance the cost of the loads and stores that must be intro-
duced against the advantage of freeing up a register and reducing the number of 
interferences.

Modern register allocators are incredibly effective in using the large register counts 
available in modern processors. In many programs, the effectiveness of register allo-
cation is limited not by the availability of registers but by the possibilities of aliasing 
that cause the compiler to be conservative in its choice of candi dates.

Code Generation

The fi nal steps of the compiler are code generation and assembly. Most compilers 
do not use a stand-alone assembler that accepts assembly language source code; 
to save time, they instead per form most of the same functions: fi lling in symbolic 
values and generating the binary code as the fi nal stage of code generation. 

In modern processors, code generation is reasonably straight forward, since the 
simple architectures make the choice of instruction relatively obvious. For more 
complex architectures, such as the x86, code generation is more complex since 
multiple IR instructions may collapse into a single machine instruction. In modern 
compilers, this compilation process uses pattern match ing with either a tree-based 
pattern matcher or a pattern matcher driven by a parser.

During code generation, the fi nal stages of machine-dependent optimization 
are also performed. These include some constant folding optimizations, as well as 
localized instruction scheduling (see Chapter 4).

Optimization Summary

Figure 2.15.7 gives examples of typical opti mizations, and the last column indi-
cates where the optimization is performed in the gcc compiler. It is sometimes 
diffi cult to separate some of the simpler opti mizations—local and processor-
dependent optimiza tions—from trans formations done in the code generator, 
and some optimizations are done multiple times, especially local optimizations, 
which may be performed before and after global optimization as well as during 
code generation.   

Today, essentially all programming for desktop and server appli cations is done in 
high-level languages, as is most programming for embedded applications. This 
development means that since most instructions executed are the output of a com-
piler, an instruction set archi tecture is essentially a compiler target. With Moore’s 
law comes the temptation of adding sophisticated opera tions in an instruction set. 
The challenge is that they may not exactly match what the compiler needs to pro-
duce or may be so gen eral that they aren’t fast. For example, consider special loop 
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instructions found in some computers. Suppose that instead of decrementing by 
one, the compiler wanted to increment by four, or instead of branching on not 
equal zero, the compiler wanted to branch if the index was less than or equal to the 
limit. The loop instruction may be a mismatch. When faced with such objections, 
the instruction set designer might then generalize the operation, adding another 
operand to specify the increment and perhaps an option on which branch condi-
tion to use. Then the danger is that a common case, say, incrementing by one, will 
be slower than a sequence of simple operations. 

Elaboration: Some more sophisticated compilers, and many research compilers, use 
an analysis technique called interprocedural analysis to obtain more information about 
functions and how they are called. Interpro cedural analysis attempts to discover what 
properties remain true across a function call. For example, we might discover that a 
function call can never change any global variables, which might be useful in optimizing 
a loop that calls such a function. Such information is called may-information or fl ow-
insensitive information and can be obtained reasonably effi ciently, although analyzing 

Optimization name Explanation gcc level

High level At or near the source level; processor inde pendent

Procedure integration Replace procedure call by procedure body O3

Local Within straight-line code

Common subexpression elimination Replace two instances of the same computa tion by single copy O1

Constant propagation Replace all instances of a variable that is as signed a constant with the 
constant

O1

Stack height reduction Rearrange expression tree to minimize re sources needed for ex pression  evaluation O1

Global Across a branch

Global common subexpression 
elimi nation

Same as local, but this version crosses branches O2

Copy propagation Replace all instances of a variable A that has been assigned X (i.e., A = X) with X O2

Code motion Remove code from a loop that computes same value each iteration of the loop O2

Induction variable elimina tion Simplify/eliminate array addressing calcula tions within loops O2

Processor dependent Depends on processor knowledge

Strength reduction Many examples; replace multiply by a con stant with shifts O1

Pipeline scheduling Reorder instructions to improve pipeline per formance O1

Branch offset optimization Choose the shortest branch displacement that reaches target O1

FIGURE 2.15.7 Major types of optimizations and explanation of each class. The third column shows when these occur at different 
levels of optimization in gcc. The GNU organization calls the three optimization levels medium (O1), full (O2), and full with integration of small 
procedures (O3).



2.15-14 2.15 Advanced Material: Compiling C and Interpreting Java

a call to a function F requires analyzing all the functions that F calls, which makes 
the process somewhat time consuming for large pro grams. A more costly property to 
discover is that a function must always change some variable; such information is called 
must-information or fl ow-sensitive information. Recall the dictate to be conservative: 
may-informa tion can never be used as must-information—just because a function may 
change a variable does not mean that it must change it. It is conservative, how ever, to 
use the negation of may-information, so the compiler can rely on the fact that a function 
will never change a variable in optimizations around the call site of that function. 

One of the most important uses of interprocedural analysis is to obtain so-called 
alias information. An alias occurs when two names may designate the same variable. 
For example, it is quite helpful to know that two pointers passed to a function may never 
designate the same variable. Alias informa tion is usually fl ow-insensitive and must be 
used conservatively. 

Interpreting Java

This second part of the section is for readers interested in seeing how an object-
oriented language like Java executes on a MIPS architecture. It shows the Java 
bytecodes used for inter pretation and the MIPS code for the Java version of some 
of the C segments in prior sections, including Bubble Sort.

Let’s quickly review the Java lingo to make sure we are all on the same page. The 
big idea of object-oriented programming is for programmers to think in terms of 
abstract objects, and operations are associated with each type of object. New types 
can often be thought of as refi nements to existing types, and so some opera tions 
for the existing types are used by the new type without change. The hope is that the 
programmer thinks at a higher level, and that code can be reused more readily if 
the programmer implements the common operations on many different types.

This different perspective led to a different set of terms. The type of an object 
is a class, which is the defi nition of a new data type together with the operations 
that are defi ned to work on that data type. A particular object is then an instance 
of a class, and creating an object from a class is called instantiation. The operations 
in a class are called methods, which are similar to C procedures. Rather than call 
a procedure as in C, you invoke a method in Java. The other members of a class 
are fi elds, which correspond to variables in C. Variables inside objects are called 
instance fi elds. Rather than access a structure with a pointer, Java uses an object 
reference to access an object. The syntax for method invocation is x.y, where x is 
an object reference and y is the method name.

The parent-child relationship between older and newer classes is captured by the 
verb “extends”: a child class extends (or sub classes) a parent class. The child class 
typically will redefi ne some of the methods found in the parent to match the new 
data type. Some methods work fi ne, and the child class inherits those methods. 

To reduce the number of errors associated with pointers and explicit memory 
deallocation, Java automatically frees unused storage, using a separate garbage 
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 collector that frees memory when it is full. Hence, new creates a new instance of a 
dynamic object on the heap, but there is no free in Java. Java also requires array 
bounds to be checked at runtime to catch another class of errors that can occur in 
C programs.

Interpretation

As mentioned before, Java programs are distributed as Java bytecodes, and the Java 
Virtual Machine (JVM) executes Java byte codes. The JVM understands a binary 
format called the class fi le format. A class fi le is a stream of bytes for a single class, 
con taining a table of valid methods with their bytecodes, a pool of constants that 
acts in part as a symbol table, and other informa tion such as the parent class of this 
class.

When the JVM is fi rst started, it looks for the class method main. To start any 
Java class, the JVM dynamically loads, links, and initializes a class. The JVM loads 
a class by fi rst fi nding the binary representation of the proper class (class fi le) and 
then creat ing a class from that binary representation. Linking combines the class 
into the runtime state of the JVM so that it can be exe cuted. Finally, it executes the 
class initialization method that is included in every class.

Figure 2.15.8 shows Java bytecodes and their corresponding MIPS instructions, 
illustrating fi ve major differences between the two:

1. To simplify compilation, Java uses a stack instead of regis ters for operands. 
Operands are pushed on the stack, oper ated on, and then popped off the 
stack. 

2. The designers of the JVM were concerned about code size, so bytecodes 
vary in length between one and fi ve bytes, versus the 4-byte, fi xed-size 
MIPS instructions. To save space, the JVM even has redundant instructions 
of different lengths whose only difference is size of the immediate. This 
decision illustrates a code size variation of our third design principle: make 
the common case small. 

3. The JVM has safety features embedded in the architecture. For example, 
array data transfer instructions check to be sure that the fi rst operand is a 
reference and that the second index operand is within bounds. 

4. To allow garbage collectors to fi nd all live pointers, the JVM uses different 
instructions to operate on addresses versus integers so that the JVM can 
know what operands contain addresses. MIPS generally lumps integers and 
addresses together.

5. Finally, unlike MIPS, there are Java-specifi c instructions that perform com-
plex operations, like allocating an array on the heap or invoking a method.
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Category Operation Java bytecode
Size 
(bits)

MIPS 
instr.  Meaning

Arithmetic add iadd 8 add NOS=TOS+NOS; pop

subtract isub 8 sub NOS=TOS–NOS; pop

increment iinc I8a I8b 8 addi Frame[I8a]= Frame[I8a] + I8b

Data transfer load local integer/address iload I8/aload I8 16 lw TOS=Frame[I8]

load local integer/address iload_/aload_{0,1,2,3} 8 lw TOS=Frame[{0,1,2,3}]

store local integer/address istore I8/astore I8 16 sw Frame[I8]=TOS; pop

load integer/address from array iaload/aaload 8 lw NOS=*NOS[TOS]; pop

store integer/address into array iastore/aastore 8 sw *NNOS[NOS]=TOS; pop2

load half from array saload 8 lh NOS=*NOS[TOS]; pop

store half into array sastore 8 sh *NNOS[NOS]=TOS; pop2

load byte from array baload 8 lb NOS=*NOS[TOS]; pop

store byte into array bastore 8 sb *NNOS[NOS]=TOS; pop2

load immediate bipush I8, sipush I16 16, 24 addi push; TOS=I8 or I16

load immediate iconst_{–1,0,1,2,3,4,5} 8 addi push; TOS={–1,0,1,2,3,4,5}

Logical and iand 8 and NOS=TOS&NOS; pop

or ior 8 or NOS=TOS|NOS; pop

shift left ishl 8 sll NOS=NOS << TOS; pop

shift right iushr 8 srl NOS=NOS >> TOS; pop

Conditional 
branch

branch on equal if_icompeq I16 24 beq if TOS == NOS, go to I16; pop2

branch on not equal if_icompne I16 24 bne if TOS != NOS, go to I16; pop2

compare if_icomp{lt,le,gt,ge} I16 24 slt if TOS {<,<=,>,>=} NOS, go to I16; pop2

Unconditional 
jump

jump goto I16 24 j go to I16

return ret, ireturn 8 jr

jump to subroutine jsr I16 24 jal go to I16; push; TOS=PC+3

Stack 
management

remove from stack pop, pop2 8 pop, pop2

duplicate on stack dup 8 push; TOS=NOS

swap top 2 positions on stack swap 8 T=NOS; NOS=TOS; TOS=T

Safety check check for null reference ifnull I16, ifnotnull I16 24 if TOS {==,!=} null, go to I16

get length of array arraylength 8 push; TOS = length of array

check if object a type instanceof I16 24 TOS = 1 if TOS matches type of 
Const[I16]; TOS = 0 otherwise

Invocation invoke method invokevirtual I16 24 Invoke method in Const[I16], dispatching 
on type

Allocation create new class instance new I16 24 Allocate object type Const[I16] on heap

create new array newarray I16 24 Allocate array type Const[I16] on heap

FIGURE 2.15.8 Java bytecode architecture versus MIPS. Although many bytecodes are simple, those in the last half-dozen rows above are 
complex and specifi c to Java. Bytecodes are one to fi ve bytes in length, hence their name. The Java mnemonics use the prefi x i for 32-bit integer, a for 
reference (address), s for 16-bit integers (short), and b for 8-bit bytes. We use I8 for an 8-bit constant and I16 for a 16-bit constant. MIPS uses registers 
for operands, but the JVM uses a stack. The compiler knows the maximum size of the operand stack for each method and simply allocates space for it 
in the current frame. Here is the notation in the Meaning column: TOS: top of stack; NOS: next position below TOS; NNOS: next position below NOS; 
pop: remove TOS; pop2: remove TOS and NOS; and push: add a position to the stack. *NOS and *NNOS mean access the memory location pointed to 
by the address in the stack at those positions. Const[] refers to the runtime constant pool of a class created by the JVM, and Frame[] refers to the 
variables of the local method frame. The only missing MIPS instructions from Figure 2.1 are nor, andi, ori, slti, and lui. The missing bytecodes 
are a few arith metic and logical operators, some tricky stack management, compares to 0 and branch, support for branch tables, type conversions, more 
variations of the complex, Java-specifi c instructions plus operations on fl oating-point data, 64-bit integers (longs), and 16-bit characters.
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Compiling a while Loop in Java Using Bytecodes

Compile the while loop from page 107, this time using Java bytecodes:

while (save[i] == k)
 i += 1;

Assume that i, k, and save are the fi rst three local variables. Show the addresses 
of the bytecodes. The MIPS version of the C loop in Figure 2.15.3 took six 
instructions and twenty-four bytes. How big is the bytecode version?

The fi rst step is to put the array reference in save on the stack:

0 aload_3 # Push local variable 3 (save[]) onto stack

This 1-byte instruction informs the JVM that an address in local variable 3 is 
being put on the stack. The 0 on the left of this instruction is the byte address 
of this fi rst instruction; bytecodes for each method start at 0. The next step is 
to put the index on the stack:

1 iload_1 # Push local variable 1 (i) onto stack

Like the prior instruction, this 1-byte instruction is a short version of a more 
general instruction that takes 2 bytes to load a local variable onto the stack. The 
next instruction is to get the value from the array element:

2 iaload # Put array element (save[i]) onto stack

This 1-byte instruction checks the prior two operands, pops them off the stack, 
and then puts the value of the desired ar ray element onto the new top of the 
stack. Next, we place k on the stack:

3 iload_2 # Push local variable 2 (k) onto stack

We are now ready for the while test:

4 if_icompne, Exit # Compare and exit if not equal

This 3-byte instruction compares the top two elements of the stack, pops them 
off the stack, and branches if they are not equal. We are fi nally ready for the 
body of the loop:

7 iinc, 1, 1 # Increment local variable 1 by 1 (i+=1)

EXAMPLEEXAMPLE

ANSWERANSWER
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This unusual 3-byte instruction increments a local variable by 1 without using 
the operand stack, an optimization that again saves space. Finally, we return to 
the top of the loop with a 3-byte jump:

10 go to 0 # Go to top of Loop (byte address 0)

Thus, the bytecode version takes seven instructions and thirteen bytes, almost 
half the size of the MIPS C code. (As before, we can optimize this code to jump 
less.)

Compiling for Java

Since Java is derived from C and Java has the same built-in types as C, the assignment 
statement examples in Sections 2.2 to 2.6 are the same in Java as they are in C. The 
same is true for the if statement example in Section 2.7. 

The Java version of the while loop is different, however. The designers of C 
leave it up to the programmers to be sure that their code does not exceed the array 
bounds. The designers of Java wanted to catch array bound bugs, and thus require 
the compiler to check for such violations. To check bounds, the com piler needs to 
know what they are. Java includes an extra word in every array that holds the upper 
bound. The lower bound is defi ned as 0.

Compiling a while Loop in Java

Modify the MIPS code for the while loop on page 107 to include the array 
bounds checks that are required by Java. Assume that the length of the array is 
located just before the fi rst el ement of the array.

Let’s assume that Java arrays reserved the fi rst two words of arrays before the 
data starts. We’ll see the use of the fi rst word soon, but the second word has the 
array length. Before we enter the loop, let’s load the length of the array into a 
temporary register:

lw $t2,4($s6) # Temp reg $t2 = length of array save

Before we multiply i by 4, we must test to see if it’s less than 0 or greater than 
the last element of the array. The fi rst step is to check if i is less than 0:

Loop: slt $t0,$s3,$zero # Temp reg $t0 = 1 if i < 0

Register $t0 is set to 1 if i is less than 0. Hence, a branch to see if register $t0 is 
not equal to zero will give us the effect of branching if i is less than 0. This pair 
of instructions, slt and bne, implements branch on less than. Register $zero 

EXAMPLEEXAMPLE

ANSWERANSWER
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al ways contains 0, so this fi nal test is accomplished using the bne instruction 
and comparing register $t0 to register $zero:

bne $t0,$zero,IndexOutOfBounds    # if i<0, goto Error

Since the array starts at 0, the index of the last array ele ment is one less than the 
length of the array. Thus, the test of the upper array bound is to be sure that i is 
less than the length of the array. The second step is to set a temporary register 
to 1 if i is less than the array length and then branch to an error if it’s not less. 
That is, we branch to an error if the temporary register is equal to zero:

slt $t0,$s3,$t2 # Temp reg $t0 = 0 if i >= length
beq $t0,$zero,IndexOutOfBounds  #if i>=length, goto Error

Note that these two instructions implement branch on greater than or equal.
The next two lines of the MIPS while loop are unchanged from the C version:

 sll $t1,$s3,2 # Temp reg $t1 = 4 * i
 add $t1,$t1,$s6 # $t1 = address of save[i]

We need to account for the fi rst 8 bytes that are reserved in Java. We do that by 
changing the address fi eld of the load from 0 to 8:

 lw  $t0,8($t1) # Temp reg $t0 = save[i]

The rest of the MIPS code from the C while loop is fi ne as is:

 bne  $t0,$s5, Exit # go to Exit if save[i] ≠ k
 add  $s3,$s3,1 # i = i + 1
 j    Loop # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Invoking Methods in Java

The compiler picks the appropriate method depending on the type of the object. 
In a few cases, it is unambiguous, and the method can be invoked with no more 
overhead than a C procedure. In gen eral, however, the compiler knows only that 
a given variable contains a pointer to an object that belongs to some subtype of a 
general class. Since it doesn’t know at compile time which sub class the object is, 
and thus which method should be invoked, the compiler will generate code that 
fi rst tests to be sure the pointer isn’t null and then uses the code to load a pointer 
to a table with all the legal methods for that type. The fi rst word of the object has 
the method table address, which is why Java arrays reserve two words. Let’s say it’s 
using the fi fth method that was declared for that class. (The method order is the 
same for all subclasses.) The compiler then takes the fi fth address from that table 
and invokes the method at that address.
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The cost of object orientation in general is that method invoca tion includes 
1) a conditional branch to be sure that the pointer to the object is valid; 2) a load 
to get the address of the table of available methods; 3) another load to get the 
address of the proper method; 4) placing a return address into the return regis ter, 
and fi nally 5) a jump register to invoke the method. The next subsection gives a 
concrete example of method invocation.

A Sort Example in Java

Figure 2.15.9 shows the Java version of exchange sort. A simple difference is that 
there is no to need to pass the length of the array as a separate parameter, since Java 
arrays include their length: v.length denotes the length of v. 

A more signifi cant difference is that Java methods are prepended with keywords 
not found in the C procedures. The sort method is declared public static 
while swap is declared protected static. Public means that sort can be 
invoked from any other method, while protected means swap can only be called by 
other methods within the same package and from methods within derived classes. 
A static method is another name for a class method—methods that perform 
classwide operations and do not apply to an individual object. Static methods are 
essentially the same as C procedures.

This straightforward translation from C into static methods means there is no 
ambiguity on method invocation, and so it can be just as effi cient as C. It also is limited 
to sorting integers, which means a different sort has to be written for each data type.

To demonstrate the object orientation of Java, Figure 2.15.10 shows the 
new version with the changes highlighted. First, we declare v to be of the type 
Comparable and replace v[j] > v[j + 1] with an invocation of compareTo. By 
changing v to this new class, we can use this code to sort many data types. 

public A Java keyword that 
allows a method to be invoked 
by any other method.

protected A Java key word that 
restricts invo cation of a method 
to other methods in that package.
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that contains a group of related 
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applies to the whole class rather 
to an individual object. It is 
unrelated to static in C.
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public class sort {

   public static void sort (int[] v) {

  for (int i = 0; i < v.length; i += 1) {

   for (int j = i - 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

 swap(v, j);

   }

 }

   protected static void swap(int[] v, int k) {

  int temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}

FIGURE 2.15.9 An initial Java procedure that performs a sort on the array v. Changes from Figure 2.26 are highlighted.
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The method compareTo compares two elements and returns a value greater 
than 0 if the parameter is larger than the object, 0 if it is equal, and a negative num-
ber if it is smaller than the object. These two changes generalize the code so it could 
sort integers, characters, strings, and so on, if there are subclasses of  Comparable 
with each of these types and if there is a version of compareTo for each type. 
For pedagogic purposes, we redefi ne the class Comparable and the method 
 compareTo here to compare integers. The actual defi nition of Comparable in the 
Java library is considerably different.

Starting from the MIPS code that we generated for C, we show what changes we 
made to create the MIPS code for Java. 

For swap, the only signifi cant differences are that we must check to be sure the 
object reference is not null and that each array reference is within bounds. The fi rst 
test checks that the address in the fi rst parameter is not zero:

swap: beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next, we load the length of v into a register and check that index k is OK. 

lw $t2,4($a0)  # Temp reg $t2 = length of array v
slt $t0,$a1,$zero # Temp reg $t0 = 1 if k < 0

public class sort {

   public static void sort (Comparable[] v) {

  for (int i = 0; i < v.length; i += 1) {

       for (int j = i – 1; j >= 0 && v[j].compareTo(v[j + 1]); 

 j –= 1) {

                    swap(v, j);

           }

   }

     

   protected static void swap(Comparable[] v, int k) {

  Comparable temp = v[k];

  v[k] = v[k+1];

  v[k+1] = temp;

   }}

public class Comparable {

  public int(compareTo (int x)

  { return value – x; }

  public int value;

}

FIGURE 2.15.10 A revised Java procedure that sorts on the array v that can take on more types. Changes from Figure 2.15.9 are 
highlighted.
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bne $t0,$zero,IndexOutOfBounds # if k < 0, goto Error
slt $t0,$a1,$t2 # Temp reg $t0 = 0 if k >= length
beq $t0,$zero,IndexOutOfBounds #if k>=length,goto Error

This check is followed by a check that k+1 is within bounds. 

addi $t1,$a1,1 # Temp reg $t1 = k+1
slt $t0,$t1,$zero # Temp reg $t0 = 1 if k+1 < 0
bne $t0,$zero,IndexOutOfBounds # if k+1 < 0, goto Error
slt $t0,$t1,$t2 # Temp reg $t0 = 0 if k+1 >= length
beq $t0,$zero,IndexOutOfBounds #if k+1>=length,goto Error

Figure 2.15.11 highlights the extra MIPS instructions in swap that a Java 
compiler might produce. We again must adjust the offset in the load and store to 
account for two words reserved for the method table and length. 

Figure 2.15.12 shows the method body for those new instruc tions for sort. 
(We can take the saving, restoring, and return from Figure 2.27.)

The fi rst test is again to make sure the pointer to v is not null:

beq $a0,$zero,NullPointer #if $a0==0,goto Error

Next, we load the length of the array (we use register $s3 to keep it similar to the 
code for the C version of swap):

lw $s3,4($a0) #$s3 = length of array v

Bounds check

swap: beq $a0,$zero,NullPointer #if $a0==0,goto Error
 lw $t2,-4($a0)  # Temp reg $t2 = length of array v
 slt $t0,$a1,$zero  # Temp reg $t0 = 1 if k < 0
 bne $t0,$zero,IndexOutOfBounds # if k < 0, goto Error
 slt $t0,$a1,$t2  # Temp reg $t0 = 0 if k >= length
 beq $t0,$zero,IndexOutOfBounds # if k >= length, goto Error
 addi $t1,$a1,1  # Temp reg $t1 = k+1
 slt $t0,$t1,$zero  # Temp reg $t0 = 1 if k+1 < 0
 bne $t0,$zero,IndexOutOfBounds # if k+1 < 0, goto Error
 slt $t0,$t1,$t2  # Temp reg $t0 = 0 if k+1 >= length
 beq $t0,$zero,IndexOutOfBounds # if k+1 >= length, goto Error

Method body

 sll $t1, $a1, 2  # reg $t1 = k * 4 
 add $t1, $a0, $t1  # reg $t1 = v + (k * 4) 
    # reg $t1 has the address of v[k]
 lw $t0, 8($t1)  # reg $t0 (temp) = v[k]
 lw $t2, 12($t1)  # reg $t2 = v[k + 1]
    # refers to next element of v
 sw $t2, 8($t1)  # v[k] = reg $t2
 sw $t0, 12($t1)  # v[k+1] = reg $t0 (temp)

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.15.11 MIPS assembly code of the procedure swap in Figure 2.24.
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Now we must ensure that the index is within bounds. Since the fi rst test of the 
inner loop is to test if j is negative, we can skip that initial bound test. That leaves 
the test for too big:

slt $t0,$s1,$s3  # Temp reg $t0 = 0 if j >= length
beq $t0,$zero,IndexOutOfBounds #if j>=length, goto Error

Method body

Move parameters  move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)

Test ptr null  beq  $a0,$zero,NullPointer # if $a0==0, goto Error

Get array length  lw $s3,4($a0) # $s3 = length of array v

Outer loop
 move $s0, $zero # i = 0
for1tst: slt $t0, $s0, $s3  # reg $t0 = 0 if $s0 Š $s3  (i Š n)
 beq $t0, $zero, exit1 # go to exit1 if $s0 Š $s3  (i Š n)

Inner loop start
 addi $s1, $s0, –1 # j = i – 1
for2tst: slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

Test if j too big
 slt $t0,$s1,$s3 # Temp reg $t0 = 0 if j >= length
 beq $t0,$zero,IndexOutOfBounds # if j >= length, goto Error

Get v[j]
 sll $t1, $s1, 2 # reg $t1 = j * 4 
 add $t2, $s2, $t1 # reg $t2 = v + (j * 4) 
 lw $t3, 0($t2) # reg $t3 = v[j]

Test if j+1 < 0
or if j+1 too big

 addi $t1,$s1,1 # Temp reg $t1 = j+1
 slt $t0,$t1,$zero # Temp reg $t0 = 1 if j+1 < 0
 bne $t0,$zero,IndexOutOfBounds # if j+1 < 0, goto Error
 slt $t0,$t1,$s3 # Temp reg $t0 = 0 if j+1 >= length
 beq $t0,$zero,IndexOutOfBounds # if j+1 >= length, goto Error

Get v[j+1]  lw $t4, 4($t2) # reg $t4   = v[j + 1]

Load method table  lw $t5,0($a0) # $t5 = address of method table

Get method addr  lw $t5,8($t5) # $t5 = address of fi rst method

Pass parameters  move $a0, $t3  # 1st parameter of compareTo is v[j]
 move $a1, $t4 # 2nd param. of compareTo is v[j+1] 

Set return addr  la $ra,L1  # load return address

Call indirectly  jr $t5  # call code for compareTo

Test if should skip 
swap

L1: slt $t0, $zero, $v0  # reg $t0 = 0 if 0 Š $v0 
 beq $t0, $zero, exit2 # go to exit2 if $t4 Š $t3 

Pass parameters
and call swap

 move $a0, $s2 # 1st parameter of swap is v 
 move $a1, $s1 # 2nd parameter of swap is j 
 jal swap  # swap code shown in Figure 2.34

Inner loop end  addi $s1, $s1, –1 # j –= 1
 j for2tst  # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
 j for1tst  # jump to test of outer loop

FIGURE 2.15.12 MIPS assembly version of the method body of the Java version of sort. The new code is highlighted in this fi gure. 
We must still add the code to save and restore registers and the return from the MIPS code found in Figure 2.27. To keep the code similar to that fi gure, 
we load v.length into $s3 instead of into a temporary register. To reduce the number of lines of code, we make the simplify ing assumption that 
compareTo is a leaf procedure and we do not need to push registers to be saved on the stack.
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The code for testing j + 1 is quite similar to the code for checking k + 1 in swap, 
so we skip it here.

The key difference is the invocation of compareTo. We fi rst load the address of 
the table of legal methods, which we assume is two words before the beginning of 
the array:

lw $t5,0($a0) # $t5 = address of method table

Given the address of the method table for this object, we then get the desired method. 
Let’s assume compareTo is the third method in the Comparable class. To pick the 
address of the third method, we load that address into a temporary register:

lw $t5,8($t5) # $t5 = address of third method

We are now ready to call compareTo. The next step is to save the necessary regis-
ters on the stack. Fortunately, we don’t need the temporary registers or argument 
registers after the method invocation, so there is nothing to save. Thus, we simply 
pass the parameters for compareTo:

move $a0, $t3  # 1st parameter of compareTo is v[j]
move $a1, $t4 # 2nd parameter of compareTo is v[j+1] 

Since we are using a jump register to invoke compareTo, we need to pass the 
return address explicitly. We use the pseudoin struction load address (la) and label 
where we want to return, and then do the indirect jump:

la $ra,L1     # load return address
jr $t5    # to code for compareTo

The method returns, with $v0 determining which of the two elements is larger. 
If $v0 > 0, then v[j] >v[j+1], and we need to swap. Thus, to skip the swap, we 
need to test if $v0 ð 0, which is the same as 0 Š $v0. We also need to include the 
label for the return address:

L1: slt $t0, $zero, $v0 # reg $t0 = 0 if 0 Š $v0 
 beq $t0, $zero, exit2 # go to exit2 if v[j+1] Š v[j] 

The MIPS code for compareTo is left as an exercise.

The main changes for the Java versions of sort and swap are testing for null object 
references and index out-of-bounds errors, and the extra method invocation to give a 
more general compare. This method invocation is more expensive than a C procedure 
call, since it requires a load, a conditional branch, a pair of chained loads, and an 
indirect jump. As we will see in Chapter 4, chained loads and indirect jumps can be 
relatively slow on modern processors. The increasing popularity of Java suggests that 
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many programmers today are willing to leverage the high performance of mod ern 
processors to pay for error checking and code reuse. 

Elaboration: Although we test each reference to j and j + 1 to be sure that these 
indices are within bounds, an assembly language programmer might look at the code 
and reason as follows:

1. The inner for loop is only executed if j ≤ 0 and since j + 1 > j, there is no need to test 
j + 1 to see if it is less than 0.

2. Since i takes on the values, 0, 1, 2, . . . , (data.length – 1) and since j takes on the 
values i – 1, i – 2, . . . , 2, 1, 0, there is no need to test if j ≤ data.length since the 
largest value j can be is data.length – 2.

3. Following the same reasoning, there is no need to test whether j + 1 ≤ data.length 
since the largest value of j + 1 is data.length – 1.

There are coding tricks in Chapter 2 and superscalar execution in Chapter 4 that 
lower the effective cost of such bounds checking, but only high opti mizing compilers 
can reason this way. Note that if the compiler inlined the swap method into sort, many 
checks would be unnecessary. 

Elaboration: Look carefully at the code for swap in Figure 2.15.11. See anything 
wrong in the code, or at least in the explanation of how the code works? It implicitly 
assumes that each Comparable element in v is 4 bytes long. Surely, you need much 
more than 4 bytes for a complex subclass of Comparable, which could contain any 
number of fi elds. Surprisingly, this code does work, because an important property of 
Java’s semantics forces the use of the same, small representation for all variables, 
fi elds, and array elements that belong to Comparable or its subclasses.

Java types are divided into primitive types—the predefi ned types for numbers, 
characters, and Booleans—and reference types—the built-in classes like String, 
user-defi ned classes, and arrays. Values of reference types are pointers (also called 
references) to anonymous objects that are themselves allocated in the heap. For the 
programmer, this means that assigning one variable to another does not create a new 
object, but instead makes both variables refer to the same object. Because these objects 
are anonymous and programs therefore have no way to refer to them directly, a program 
must use indirection through a variable to read or write any objects’ fi elds (variables). 
Thus, because the data structure allocated for the array v consists entirely of pointers, 
it is safe to assume they are all the same size, and the same swapping code works for 
all of Comparable’s subtypes. 

To write sorting and swapping functions for arrays of primitive types requires that 
we write new versions of the functions, one for each type. This replication is for two 
reasons. First, primitive type values do not include the references to dispatching tables 
that we used on Comparables to determine at runtime how to compare values. Second, 
primitive values come in different sizes: 1, 2, 4, or 8 bytes.

The pervasive use of pointers in Java is elegant in its consistency, with the penalty 
being a level of indirection and a requirement that objects be allocated on the heap. 
Furthermore, in any language where the lifetimes of the heap-allocated anonymous 
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objects are independent of the lifetimes of the named variables, fi elds, and array 
elements that reference them, program mers must deal with the problem of deciding 
when it is safe to deallocate heap-allocated storage. Java’s designers chose to use 
garbage collection. Of course, use of garbage collection rather than explicit user memory 
manage ment also improves program safety.

C++ provides an interesting contrast. Although programmers can write essentially the 
same pointer-manipulating solution in C++, there is another option. In C++, programmers 
can elect to forgo the level of indirection and directly manipulate an array of objects, 
rather than an array of pointers to those objects. To do so, C++ programmers would 
typically use the template capability, which allows a class or function to be parameterized 
by the type of data on which it acts. Templates, however, are compiled using the equiv-
alent of macro expansion. That is, if we declared an instance of sort capable of sorting 
types X and Y, C++ would create two copies of the code for the class: one for sort<X> 
and one for sort<Y>, each specialized accordingly. This solution increases code size in 
exchange for making comparison faster (since the function calls would not be indirect, 
and might even be subject to inline expansion). Of course, the speed advantage would 
be canceled if swap ping the objects required moving large amounts of data instead of 
just single pointers. As always, the best design depends on the details of the problem.
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