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 E.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in 
this appendix. The fi rst group is the desktop and server RISCs:

Digital Alpha 

Hewlett-Packard PA-RISC 

IBM and Motorola PowerPC 

MIPS INC MIPS-64

Sun Microsystems SPARC 

■

■

■

■

■
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The second group is the embedded RISCs: 

Advanced RISC Machines ARM 

Advanced RISC Machines Thumb 

Hitachi SuperH 

Mitsubishi M32R 

MIPS INC MIPS-16   

■

■

■

■

■

Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8 

Date announced 1992 1986 1986 1993 1987 

Instruction size (bits) 32 32 32 32 32 

Address space (size, model) 64 bits, fl at 32 bits, fl at 48 bits, 
segmented

32 bits, fl at 32 bits, fl at 

Data alignment Aligned Aligned Aligned Unaligned Aligned 

Data addressing modes 1 1 5 4 2 

Protection Page Page Page Page Page 

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB 

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped 

Integer registers (number, model, size) 31 GPR × 64 bits 31 GPR × 32 bits 31 GPR × 32 bits 32 GPR × 32 bits  31 GPR × 32 bits

Separate fl oating-point registers 31 × 32 or 
31 × 64 bits 

16 × 32 or 
16 × 64 bits 

56 × 32 or 
28 × 64 bits 

32 × 32 or 
32 × 64 bits 

32 × 32 or 
32 × 64 bits 

Floating-point format IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

IEEE 754 single, 
double

FIGURE E.1.1 Summary of the fi rst version of fi ve architectures for desktops and servers. Except for the num ber of data 
address modes and some instruction set details, the integer instruction sets of these architec tures are very similar. Contrast this with Figure E.17.1. 
Later versions of these architectures all support a fl at, 64-bit address space.

FIGURE E.1.2 Summary of fi ve architectures for embedded applications. Except for number of data address modes and some 
instruction set details, the integer instruction sets of these architectures are similar. Con trast this with Figure E.17.1.

ARM Thumb SuperH M32R MIPS-16 

Date announced 1985 1995 1992 1997 1996 

Instruction size (bits) 32 16 16 16/32 16/32 

Address space (size, model) 32 bits, fl at 32 bits, fl at 32 bits, fl at 32 bits, fl at 32/64 bits, fl at 

Data alignment Aligned Aligned Aligned Aligned Aligned 

Data addressing modes 6 6 4 3 2 

Integer registers (number, model, size) 15 GPR x 32 bits 8 GPR + SP, 
LR x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP, 
RA x 32/64 bits 

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped 



There has never been another class of computers so similar. This similarity 
allows the presentation of 10 architectures in about 50 pages. Characteristics of the 
desktop and server RISCs are found in Figure E.1.1 and the embedded RISCs in 
Figure E.1.2. 

Notice that the embedded RISCs tend to have 8 to 16 general-purpose regis ters 
while the desktop/server RISCs have 32, and that the length of instructions is 16 to 
32 bits in embedded RISCs but always 32 bits in desktop/server RISCs. 

Although shown as separate embedded instruction set archi tectures, Thumb 
and MIPS-16 are really optional modes of ARM and MIPS invoked by call instruc-
tions. When in this mode, they execute a subset of the native architecture using 
16-bit-long instructions. These 16-bit instruction sets are not intended to be full 
architectures, but they are enough to encode most proce dures. Both machines 
expect procedures to be homogeneous, with all instructions in either 16-bit mode 
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or 
in 32-bit mode for performance. 

One complication of this description is that some of the older RISCs have been 
extended over the years. We have decided to describe the latest versions, of the 
archi tectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for 
the  desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R 
version 1, and MIPS-16 version 1 for the embedded ones. 

The remaining sections proceed as follows: after discussing the addressing 
modes and instruction formats of our RISC archi tectures, we present the survey of 
the instructions in fi ve steps: 

Instructions found in the MIPS core, which is defi ned in Chapters 2 and 3 of 
the main text

Multimedia extensions of the desktop/server RISCs 

Digital signal-processing extensions of the embedded RISCs 

Instructions not found in the MIPS core but found in two or more 
architectures 

The unique instructions and characteristics of each of the ten architectures 

We give the evolution of the instruction sets in the fi nal section and conclude with 
a speculation about future directions for RISCs.

 E.2  
Addressing Modes and Instruction 
Formats

Figure E.2.1 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address 
modes, the absolute address mode with limited range can be synthesized using 

■

■

■

■

■
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zero as the base in displacement addressing. (This register can be changed by ALU 
 operations in PowerPC; it is always 0 in the other machines.) Similarly, reg ister indi-
rect addressing is synthesized by using displacement addressing with an offset of 0. 
Simplifi ed addressing modes is one distinguishing feature of RISC  architectures.

Figure E.2.2 shows the data addressing modes supported by the embedded 
architectures. Unlike the desktop RISCs, these embed ded machines do not reserve 
a register to contain 0. Although most have two to three simple addressing modes, 
ARM and SuperH have several, including fairly complex calculations. ARM has 
an addressing mode that can shift one register by any amount, add it to the other 
registers to form the address, and then update one register with this new address. 

References to code are normally PC-relative, although jump register indirect 
is supported for returning from procedures, for case statements, and for pointer 
function calls. One variation is that PC-relative branch addresses are shifted left 
two bits before being added to the PC for the desktop RISCs, thereby increasing the 
branch distance. This works because the length of all instruc tions for the desktop 
RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory. 
Embedded architectures with 16-bit-long instructions usually shift the PC-relative 
address by 1 for similar reasons. 

FIGURE E.2.1 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short address 
versions of the offset addressing modes. MIPS-64 has indexed addressing for fl oating-point loads and stores. (These addressing modes are 
described in Figure 2.24.) 

Addressing mode Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Register + offset (displacement or based) X X X X X 

Register + register (indexed)  X (FP) X (Loads) X X 

Register + scaled register (scaled)   X  

Register + offset and update register   X X  

Register + register and update register   X X  

FIGURE E.2.2 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R have 
separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the latter mode. This increases the 
use of 16-bit instructions in the M32R, and it gives a wider set of address modes to dif ferent data transfer instructions in SuperH. To get 
greater addressing range, ARM and Thumb shift the offset left one or two bits if the data size is halfword or word. (These addressing modes 
are described in Figure 2.24.) 

Addressing mode ARM v.4 Thumb SuperH M32R MIPS-16 

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X   

Register + scaled register (scaled) X   

Register + offset and update register X     

Register + register and update register X     

Register indirect   X X  

Autoincrement, autodecrement X X X X 

PC-relative data X X (loads) X  X (loads)
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Figure E.2.3 shows the format of the desktop RISC instruc tions, which include 
the size of the address. Each instruction set architecture uses these four primary 
instruction formats. Figure E.2.4 shows the six formats for the embedded RISC 
machines. The desire to have smaller code size via 16-bit instructions leads to more 
instruction formats.
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FIGURE E.2.3 Instruction formats for desktop/server RISC architectures. These four formats 
are found in all fi ve architectures. (The superscrift notation in this fi gure means the width of a fi eld in bits.) 
Although the register fi elds are located in similar pieces of the instruction, be aware that the destination and 
two source fi elds are scrambled. Op = the main opcode, Opx = an opcode extension, Rd = the destination 
register, Rs1 = source register 1, Rs2 = source reg ister 2, and Const = a constant (used as an immediate or as an 
address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations that 
is different from the data transfer format shown here. It pro vides an 8-bit immediate in bits 20 to 13 of the RR 
format, with bits 12 to 5 remaining as an opcode exten sion. 

Register-register

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 4 0

31 25 20 15 10 4 0

Op6 Opx11

Opx6

Opx11

Opx8

Opx11

Op6

Op6

Op6

Rs15

Rs15

Rs15

Rd5

Rd5

Rd5

Rd5

Const5

Op2 Opx6

Rs25

Rs15 0

Rs25

Rs25

Rs25

Rs25

Rs15

Rd5

Register-immediate

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 0

31 25 20 15 0

Op6 Const16

Const16

Const16

Const16

Const13

Op6

Op6

Op6

Rd5

Rs15

Rs25

Rd5

Op2 Opx6

Rs15

Rs15 1

Rd5

Rd5

Rs15

Rd5

Branch

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 18 12 01

31 25 20 15 0

Op6 Const21

Const16

Const14 Opx2

Const11 O C

Const19

Op6

Op6

Op6

Rs15

Rs15

Rs25

Opx6

Op2 Opx11

Opx3

Opx5/Rs25

Rs15

Rs15

Jump/call

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 20 15 12 01

31 25 20 0

Op6 Const21

Const26

Const24 Opx2

Const21 O1 C1

Const30

Op6

Op6

Op6

Rs15

Op2

Opcode Register Constant



Opcode Register Constant

Register-register

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 1 0

31 27 19 15 11 3 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8

Op6

Op4

Op4 Rd4

Rd4

Rs24

Op5 Rs13 Rs23

Rs14 Rd4

Opx2

Rd3Rs3

Rs4

Rd3

Rs14

Register-immediate

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4

Op5 Rs3 Const5

Rs14 Rd4

Rd3 Const8

Const8

Rs4

Rd3

Const16

Data transfer

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4 Rs4

Op5 Rs3 Const5

Rs14 Rd4

Const5 Rs3 Rd3

Const4

Rs4

Rd3

Const16

Branch

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 0

31 27 23 0

Opx4

Opx4

Opx4

Op4 Const24

Op4

Op8

Op4 Rd4

Op5 Const8

Const8

Const8

Rs4

Rd3

Const16

Jump

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 0

31 27 23 0

Opx4

Opx4

Op4 Const24

Op5

Op4

Op4

Op5 Const11

Const11

Const12

Const8

Call

ARM

Thumb

SuperH

M32R

MIPS-16

15 25 0

31 27 23 0

Opx4

Op8

Op4 Const24

Op5

Op4

Op6 Const26

Const11 Opx5 Const11

Const12

Const24

FIGURE E.2.4 Instruction formats for embedded RISC architectures. These six formats are 
found in all fi ve architectures. The notation is the same as in Figure E.2.3. Note the similarities in branch, 
jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats. 
The differences result from whether the architecture has 8 or 16 registers, whether it is a 2- or 3-operand 
format, and whether the instruction length is 16 or 32 bits.
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Figures E.2.5 and E.2.6 show the variations in extending constant fi elds to the full 
width of the registers. In this subtle point, the RISCs are similar but not identical.

 E.3 Instructions: the MIPS Core Subset

The similarities of each architecture allow simultaneous descrip tions, starting with 
the operations equivalent to the MIPS core. 

MIPS Core Instructions 

Almost every instruction found in the MIPS core is found in the other architectures, as 
Figures E.3.1 through E.3.5 show. (For reference, defi nitions of the MIPS instructions 
are found in the MIPS Reference Data Card at the beginning of the book.) Instruc-
tions are listed under four categories: data transfer (Figure E.3.1); arithmetic/logical 
(Figure E.3.2); control (Figure E.3.3); and fl oating point (Figure E.3.4). A fi fth cat-
egory (Figure E.3.5) shows conventions for register usage and pseudoinstructions on 
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FIGURE E.2.5 Summary of constant extension for desktop RISCs. The constants in the jump and call instructions of MIPS 
are not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate 
instructions. 

Format: instruction category Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Branch: all Sign Sign Sign Sign Sign 

Jump/call: all Sign — Sign Sign Sign 

Register-immediate: data transfer Sign Sign Sign Sign Sign 

Register-immedaite: arithmetic Zero Sign Sign Sign Sign 

Register-immediate: logical Zero Zero — Zero Sign 

FIGURE E.2.6 Summary of constant extension for embedded RISCs. The 16-bit-length instructions have much shorter 
immediates than those of the desktop RISCs, typically only fi ve to eight bits. Most embedded RISCs, however, have a way to get a long address 
for procedure calls from two sequencial halfwords. The constants in the jump and call instructions of MIPS are not sign-extended, since they 
only replace the lower 28 bits of  the PC, leaving the upper 4 bits unchanged. The 8-bit immediates in ARM can be rotated right an even number 
of bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM.

Format: instruction category Arm v.4 Thumb SuperH M32R MIPS-16 

Branch: all Sign Sign Sign Sign Sign 

Jump/call: all Sign Sign/Zero Sign Sign — 

Register-immediate: data transfer Zero Zero Zero Sign Zero 

Register-immedaite: arithmetic Zero Zero Sign Sign Zero/Sign 

Register-immediate: logical Zero — Zero Zero — 
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Data transfer 
(instruction formats) 

R-I R-I R-I, R-R R-I, R-R R-I, R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Load byte signed LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB 
Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB 
Load halfword signed LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH 
Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH 
Load word LDLS LW LDW, LDWX, LDWS LW LD 
Load SP fl oat LDS* LWC1 FLDWX, FLDWS LFS LDF 
Load DP fl oat LDT LDC1 FLDDX, FLDDS LFD LDDF 
Store byte STB SB STB, STBX, STBS STB STB 
Store halfword STW SH STH, STHX, STHS STH STH 
Store word STL SW STW, STWX, STWS STW ST 
Store SP fl oat STS SWC1 FSTWX, FSTWS STFS STF 
Store DP fl oat STT SDC1 FSTDX, FSTDS STFD STDF 
Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_, 

MTSPR, MT_ 
RD, WR, RDPR, WRPR, 
LDXFSR, STXFSR 

Move integer to FP register ITOFS MFC1/DMFC1 STW; FLDWX STW; LDFS ST; LDF 
Move FP to integer register FTTOIS MTC1/DMTC1 FSTWX; LDW STFS; LW STF; LD 

FIGURE E.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to 
synthe size a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are 
separated by commas. For this fi gure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single precision fl oating point 
to double precision and loads the entire 64-bit register.

each architecture. If a MIPS core instruction requires a short sequence of instructions 
in other architectures, these instruc tions are sepa rated by semicolons in Figures E.3.1 
through E.3.5. (To avoid confusion, the desti nation register will always be the left-
most operand in this appendix, independent of the notation normally used with each 
architecture.) Figures E.3.6 through E.3.9 show the equivalent listing for embedded 
RISCs. Note that fl oating point is generally not defi ned for the embedded RISCs.

Every architecture must have a scheme for compare and con ditional branch, but 
despite all the similarities, each of these architectures has found a different way to 
perform the opera tion.  

Compare and Conditional Branch  
SPARC uses the traditional four condition code bits stored in the program status 
word: negative, zero, carry, and overfl ow. They can be set on any arithmetic or log ical 
instruction; unlike earlier architectures, this setting is optional on each instruc tion. 
An explicit option leads to fewer problems in pipelined implementa tion. Although 
condition codes can be set as a side effect of an operation, explicit com pares are 
 synthesized with a subtract using r0 as the destination. SPARC  condi tional branches 



FIGURE E.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not 
available in that architecture, or not synthesized in a few instructions. Such a sequence of instruc tions is shown separated by semicolons. If 
there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category, 
all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of these 
instructions but uses a single mne monic. (Of course these are separate opcodes!) 

Arithmetic/logical  
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Add ADDL ADDU, ADDU ADDL, LD0, ADDI, 
UADDCM

ADD, ADDI ADD

Add (trap if overfl ow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; MCRXR; BC ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overfl ow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT, MULTU SHiADD;...; (i=1,2,3) MULLW, MULLI MULX

Multiply (trap if overfl ow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overfl ow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI 
(B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL
Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL 
Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA
Compare CMPEQ, CMPLT, 

CMPLE
SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,... 

FIGURE E.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equivalent 
to MIPS core, they are separated by commas. 

Control 
(instruction formats) 

B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Branch on integer compare B_ (<, >, <=, 
>=, =, not=)

BEQ, BNE, B_Z 
(<, >, <=, >=) 

COMB, COMIB BC BR_Z, BPcc (<, 
>, <=, >=, =, 
not=) 

Branch on fl oating-point 
compare

FB_(<, >, <=, 
>=, =, not=)

BC1T, BC1F FSTWX f0; 
LDW t; BB t 

BC FBPfcc (<, >, 
<=, >=, =,...) 

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...
Call, call register BSR JAL, JALR BL, BLE BL, BLA, 

BCLRL, BCCTRL
CALL, JMPL 

Trap CALL_PAL 
GENTRAP 

BREAK BREAK TW, TWI Ticc, SIR 

Return from interrupt CALL_PAL REI JR; ERET RFI, RFIR RFI DONE, RETRY, 
RETURN
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test condition codes to determine all possible unsigned and signed relations. Float-
ing point uses separate condition codes to encode the IEEE 754 conditions, requiring 
a fl oating-point compare instruction. Version 9 expanded SPARC branches in four 
ways: a separate set of condition codes for 64-bit opera tions; a branch that tests the 
contents of a register and branches if the value is =, not=, <, <=, >=, or <= 0 (see MIPS 
below); three more sets of fl oating-point condition codes; and branch instructions 
that encode static branch predic tion.

PowerPC also uses four condition codes—less than, greater than, equal, and 
summary overfl ow—but it has eight copies of them. This redundancy allows the 
PowerPC instructions to use different condition codes without confl ict, essentially 
giving PowerPC eight extra 4-bit registers. Any of these eight condi tion codes can 
be the target of a compare instruction, and any can be the source of a conditional 
branch. The integer instructions have an option bit that behaves as if the integer op is 

Floating point  
(instruction formats) R-R R-R R-R R-R R-R 

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Add single, double ADDS, ADDT ADD.S, ADD.D FADD FADD/dbl FADDS, FADD FADDS, FADDD 
Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB FSUB/dbl FSUBS, FSUB FSUBS, FSUBD 
Multiply single, double MULS, MULT MUL.S, MUL.D FMPY FMPY/dbl FMULS, FMUL FMULS, FMULD 
Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, FDIV/dbl FDIVS, FDIV FDIVS, FDIVD 
Compare CMPT_ (=, <, 

<=, UN)
C_.S, C_.D (<, >, 
<=, >=, =,...) 

FCMP, FCMP/dbl 
(<, =, >) 

FCMP FCMPS, FCMPD 

Move R-R ADDT Fd, F31, Fs MOV.S, MOV.D FCPY FMV FMOVS/D/Q 
Convert (single, double, 
integer) to (single, 
double, integer)

CVTST, CVTTS, 
CVTTQ, CVTQS, 
CVTQT 

CVT.S.D, CVT.
D.S, CVT.S.W, 
CVT.D.W, CVT.
W.S, CVT.W.D

FCNVFF,s,d 
FCNVFF,d,s 
FCNVXF,s,s 
FCNVXF,d,d 
FCNVFX,s,s 
FCNVFX,d,s

—, FRSP, —, 
FCTIW,—, — 

FSTOD, FDTOS, 
FSTOI, FDTOI, 
FITOS, FITOD 

Conventions Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0 
Return address register (any) r31 r2, r31 link (special) r31 

No-op LDQ_U r31,... SLL r0, r0, r0 OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0 
Move R-R integer BIS..., r31,... ADD..., r0,... OR..., r0,... OR rx, ry, ry OR..., r0,... 
Operand order OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd 

FIGURE E.3.4 Desktop RISC fl oating-point instructions equivalent to MIPS core. Dashes mean the operation is not available 
in that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are 
separated by commas. 

FIGURE E.3.5 Conventions of desktop RISC architectures equivalent to MIPS core. 



followed by a compare to zero that sets the fi rst condition “regis ter.” Pow erPC also 
lets the second “register” be optionally set by fl oating-point instructions. PowerPC 
provides logical operations among these eight 4-bit condition code registers (CRAND, 
CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more complex condi tions to be 
tested by a single branch. 

MIPS uses the contents of registers to evaluate conditional branches. Any two 
registers can be compared for equality (BEQ) or inequality (BNE), and then the 
branch is taken if the condition holds. The set on less than instructions (SLT, SLTI, 
SLTU, SLTIU) compare two operands and then set the destination register to 1 if 
less and to 0 otherwise. These instructions are enough to syn thesize the full set of 
relations. Because of the popularity of comparisons to 0, MIPS includes special 
compare and branch instructions for all such comparisons: greater than or equal to 
zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less 
than zero (BLTZ). Of course, equal and not equal to zero can be synthe sized using 
r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for fl oating point 
with sepa rate fl oating-point compare and branch instructions; MIPS IV expanded 
this to eight fl oating-point condition codes, with the  fl oating point comparisons 
and branch instructions specifying the condition to set or test.  

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers 
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com- 
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds and 
to 0 other wise. The branch instructions compare one register to 0 (BEQ, BGE, BGT, 
BLE, BLT, BNE) or its least signifi cant bit to 0 (BLBC, BLBS) and then branch if the 
condition holds. 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Data transfer  (instruction formats) DT DT DT DT DT 

Load byte signed LDRSB LDRSB MOV.B LDB LB 
Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU 
Load halfword signed LDRSH LDRSH MOV.W LDH LH 
Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU 
Load word LDR LDR MOV.L LD LW 
Store byte STRB STRB MOV.B STB SB 
Store halfword STRH STRH MOV.W STH SH 
Store word STR STR MOV.L ST SW 
Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE 

FIGURE E.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize 
a MIPS instruction is shown separated by semicolons. Note that fl oating point is generally not defi ned for the embedded RISCs. Thumb and 
MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architec tures, so machines can switch modes and execute the full instruction 
set. We use —1 to show sequences that are avail able in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.
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PA-RISC has many branch options, which we’ll see in Section E.8. The most 
straightforward is a compare and branch instruc tion (COMB), which compares two 
registers, branches depending on the standard relations, and then tests the least 
signifi cant bit of the result of the comparison. 

ARM is similar to SPARC, in that it provides four traditional condition codes 
that are optionally set. CMP subtracts one oper and from the other and the differ ence 
sets the condition codes. Compare negative (CMN) adds one operand to the other, and 
the sum sets the condition codes. TST performs logical AND on the two operands to 
set all condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three 
condition codes. Like SPARC, the conditional version of the ARM branch instruc-
tion tests condition codes to determine all possible unsigned and signed relations. 

Arithmetic/logical 
(instruction formats) 

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Add ADD ADD ADD ADD, ADDI, ADD3 ADDU, ADDIU 

Add (trap if overfl ow) ADDS; SWIVS ADD; BVC .+4; SWI ADDV ADDV, ADDV3 —1 

Subtract SUB SUB SUB SUB SUBU 

Subtract (trap if overfl ow) SUBS; SWIVS SUB; BVC .+1; SWI SUBV SUBV —1 

Multiply MUL MUL MUL MUL MULT, MULTU 

Multiply (trap if overfl ow) —

Divide — — DIV1, DIVoS, 
DIVoU 

DIV, DIVU DIV, DIVU 

Divide (trap if overfl ow) — — —

And AND AND AND AND, AND3 AND 

Or ORR ORR OR OR, OR3 OR 

Xor EOR EOR XOR XOR, XOR3 XOR 

Load high part register — — SETH —1 

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, SLL3 SLLV, SLL 

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, SRL3 SRLV, SRL 

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, SRA3 SRAV, SRA 

Compare CMP,CMN, 
TST,TEQ 

CMP, CMN, TST CMP/cond, 
TST 

CMP/I, CMPU/I CMP/I2, SLT/I, 
SLT/IU 

FIGURE E.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not 
available in that architecture, or not synthesized in a few instructions. Such a sequence of instruc tions is shown separated by semicolons. 
If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Thumb and MIPS-16 are just 16-bit 
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show 
sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only 
in 16-bit mode of Thumb or MIPS-16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with 
superscript 3 are just a variation of a move instruction, such as LSR3 . 



As we shall see in Section E.9, one unusual fea ture of ARM is that every instruction 
has the option of executing conditionally depending on the condition codes. (This 
bears simi larities to the annulling option of PA-RISC, seen in Section E.8.) 

Not surprisingly, Thumb follows ARM. The differences are that setting condition 
codes are not optional, the TEQ instruction is dropped, and there is no conditional 
execution of instructions. 

The Hitachi SuperH uses a single T-bit condition that is set by compare 
instructions. Two branch instructions decide to branch if either the T bit is 
1 (BT) or the T bit is 0 (BF). The two  fl avors of branches allow fewer comparison 
instructions. 

Mitsubishi M32R also offers a single condition code bit (C) used for signed and 
unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less than 
the other or not, similar to the MIPS set on less than instructions. Two branch 
instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also includes 
instructions to branch on equality or inequality of registers (BEQ and BNE) and all 
relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike BC and 
BNC, these last instructions are all 32 bits wide.   

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU), but 
instead of putting the result in one of the eight regis ters, it is placed in a special register 
named T. MIPS-16 is always implemented in machines that also have the full 32-bit 
MIPS instructions and registers; hence, register T is really reg ister 24 in the full MIPS 
architecture. The MIPS-16 branch instructions test to see if a reg ister is or is not equal 
to zero (BEQZ and BNEZ). There are also instructions that branch if regis ter T is or is 

Conventions ARM v.4 Thumb SuperH M32R MIPS-16 

Return address reg. R14 R14 PR (special) R14 RA (special) 

No-op MOV r0, r0 MOV r0, r0 NOP NOP SLL r0, r0 

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2 

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C 

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16 

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, BC, BNC, B__Z BEQZ2, BNEZ2, BTEQZ2, 
BTNEZ2

Jump, jump register MOV pc, ri MOV pc, ri BRA, JMP BRA, JMP B2, JR 

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

Trap SWI SWI TRAPA TRAP BREAK 

Return from interrupt MOVS pc, r14 —1 RTS RTE —1

FIGURE E.3.8 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS-16 are just 16-bit instruction 
subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruc tion set. We use —1 to show sequences 
that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit 
mode of Thumb or MIPS-16, such as BTEQZ2.

FIGURE E.3.9 Conventions of embedded RISC instructions equivalent to MIPS core.
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not equal to zero (BTEQZ and BTNEZ). To test if two registers are equal, MIPS added 
compare instructions (CMP, CMPI) that compute the exclusive OR of two registers and 
place the result in register T. Compare was added since MIPS-16 left out instructions 
to compare and branch if registers are equal or not (BEQ and BNE). 

Figures E.3.10 and E.3.11 summarize the schemes used for con ditional branches. 

 E.4  
Instructions: Multimedia Extensions of 
the Desktop/Server RISCs

Since every desktop microprocessor by defi nition has its own graphical displays, 
as transistor budgets increased it was inevi table that support would be added for 
graphics operations. Many graphics systems use eight bits to represent each of the 
three pri mary colors plus eight bits for the location of a pixel. 

Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Number of condition code bits 
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer, 4 × 2 FP 

Basic compare instructions 
(integer and FP) 

1 integer, 1 FP 1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP 

Basic branch instructions 
(integer and FP) 

1 2 integer, 1 FP 7 integer 1 both 3 integer, 1 FP 

Compare register with 
register/const and branch 

— =, not= =, not=, <, <=, >, >=, 
even, odd

— — 

Compare register to zero and 
branch

=, not=, <, <=, >, 
>=, even, odd 

=, not=, <, <=, 
>, >= 

=, not=, <, <=, >, >=, 
even, odd 

— =, not=, <, <=, >, >= 

FIGURE E.3.10 Summary of fi ve desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is 
accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison 
bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARM v.4 Thumb SuperH M32R MIPS-16 

Number of condition code bits 4 4 1 1 1 

Basic compare instructions 4 3 2 2 2 

Basic branch instructions 1 1 2 3 2 

Compare register with register/const 
and branch

— — =, >, >= =, not= — 

Compare register to zero and branch — —  =, >, >= =, not=, <, <=, >, >= =, not= 

FIGURE E.3.11 Summary of fi ve embedded RISC approaches to conditional branches. 
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The addition of speakers and microphones for teleconferencing and video games 
suggested support of sound as well. Audio sam ples need more than eight bits of 
precision, but 16 bits are suffi cient. 

Every microprocessor has special support so that bytes and halfwords take 
up less space when stored in memory, but due to the infrequency of arithmetic 
oper ations on these data sizes in typical integer programs, there is little support 
beyond data transfers. The architects of the Intel i860, which was justifi ed as a 
graphical accelerator within the company, recognized that many graphics and 
audio applications would perform the same operation on vectors of this data. 
Although a vector unit was beyond the transistor budget of the i860 in 1989, by 
partition ing the carry chains within a 64-bit ALU, it could per form simultaneous 
operations on short vectors of eight 8-bit oper ands, four 16-bit operands, or two 
32-bit operands. The cost of such partitioned ALUs was small. Applications that 
lend them selves to such support include MPEG (video), games like DOOM (3-D 
graphics), Adobe Photoshop (digital photography), and telecon ferencing (audio 
and image processing). 

Like a virus, over time such multimedia support has spread to nearly every desk-
top microprocessor. HP was the fi rst successful desktop RISC to include such sup-
port. As we shall see, this virus spread unevenly. The PowerPC is the only holdout, 
and rumors are that it is “running a fever.” 

These extensions have been called subword parallelism, vec tor, or SIMD (single-
instruction, multiple data) (see Chapter 7). Since Intel marketing uses SIMD 
to describe the MMX exten sion of the 8086, that has become the popular name. 
Figure E.4.1 summarizes the support by architecture. 

From Figure E.4.1, you can see that in general MIPS MDMX works on eight 
bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-
words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do 
much. The Alpha MAX opera tions are just byte versions of compare, min, max, and 
absolute difference, leaving it up to software to isolate fi elds and perform parallel 
adds, subtracts, and multiplies on bytes and halfwords. MIPS also added opera-
tions to work on two 32-bit fl oating-point operands per cycle, but they are consid-
ered part of MIPS V and not simply multimedia extensions (see Section E.7). 

One feature not generally found in general-purpose microprocessors is saturating 
operations. Saturation means that when a calculation overfl ows, the result is set to the 
largest positive number or most negative number, rather than a mod ulo calcula tion 
as in two’s complement arithmetic. Commonly found in digi tal signal processors (see 
the next section), these saturating operations are helpful in routines for fi ltering. 

These machines largely used existing register sets to hold operands: integer 
registers for Alpha and HP PA-RISC and fl oat ing-point registers for MIPS and Sun. 
Hence data transfers are accomplished with standard load and store instruc tions. 
MIPS also added a 192-bit (3*64) wide register to act as an accumula tor for some 
operations. By having three times the native data width, it can be partitioned to 
accumulate either eight bytes with 24 bits per fi eld or four halfwords with 48 bits 
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per fi eld. This wide accumu lator can be used for add, subtract, and multiply/
add instruc tions. MIPS claims performance advantages of two to four times for the 
accu mulator. 

Perhaps the surprising conclusion of this table is the lack of consistency. The only 
operations found on all four are the logical operations (AND, OR, XOR), which do 
not need a partitioned ALU. If we leave out the frugal Alpha, then the only other 
common operations are parallel adds and subtracts on four halfwords. 

Each manufacturer states that these are instructions intended to be used in 
hand-optimized subroutine libraries, an intention likely to be followed, as a com-
piler that works well with multi media extensions of all desktop RISCs would be 
challenging. 

FIGURE E.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits), and 
W for word (32 bits). Thus 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean 
two operands each with two words. Note that MDMX has vector/scalar operations, where the sca lar is specifi ed as an element of one of 
the vector registers. This table is a simplifi cation of the full mul timedia archi tectures, leaving out many details. For example, MIPS MDMX 
includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes 
instructions to set reg isters to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS. 

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS 

Add/subtract 8B, 4H 4H 4H, 2W 

Saturating add/sub 8B, 4H 4H 

Multiply 8B, 4H 4B/H 

Compare 8B (>=) 8B, 4H (=,<,<=) 4H, 2W (=, not=, >, <=) 

Shift right/left 8B, 4H 4H 

Shift right arithmetic 4H 4H 

Multiply and add 8B, 4H 

Shift and add 
(saturating) 

4H 

And/or/xor 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 

Absolute difference 8B 8B 

Max/min 8B, 4W 8B, 4H 

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H, 2*4H->8B 2*4H->8B 2W->2H, 2W->2B, 
4H->4B 

Unpack/merge 2B->2W, 4B->4H 2*4B->8B, 2*2H->4H 4B->4H, 2*4B->8B

Permute/shuffl e 8B, 4H 4H 

Register sets Integer Fl. Pt. + 192b Acc. Integer Fl. Pt. 
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 E.5  
Instructions: Digital Signal-Processing 
Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) archi tecture is support 
for integer multiply-accumulate. The multi plies tend to be on shorter words than 
regular integers, such as 16 bits, and the accumulator tends to be on longer words, 
such as 64 bits. The reason for multiply-accumulate is to effi ciently imple ment 
digital  fi lters, common in DSP applications. Since Thumb and MIPS-16 are subset 
architectures, they do not pro vide such support. Instead, programmers should use 
the DSP or multimedia extensions found in the 32-bit mode instruc tions of ARM 
and MIPS-64.

Figure E.5.1 shows the size of the multiply, the size of the accumulator, and 
the operations and instruction names for the embedded RISCs. Machines with 
accumulator sizes greater than 32 and less than 64 bits will force the upper bits to 
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fi xed-point values if the operations overfl ow.  

ARM v.4 Thumb SuperH M32R MIPS-16 

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B — 

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B — 

Accumulator name Any GPR or pairs of GPRs — MACH, MACL ACC — 

Operations 32B/64B product + 64B 
accumulate signed/
unsigned

— 32B product + 42B/32B 
accumulate (operands in 
memory); 64B product 
+ 64B/48B accumulate 
(operands in memory); clear 
MAC 

32B/48B product + 
64B accumulate, 
round, move

— 

Corresponding 
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, MAC.LS, 
CLRMAC

MACHI/MACLO, 
MACWHI/MACWLO, 
RAC, RACH, MVFACHI/
MVFACLO, MVTACHI/
MVTACLO 

— 

FIGURE E.5.1 Summary of fi ve embedded RISC approaches to multiply-accumulate.
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 E.6  
Instructions: Common Extensions 
to MIPS Core

Figures E.6.1 through E.6.7 list instructions not found in Figures E.3.5 through 
E.3.11 in the same four categories. Instructions are put in these lists if they appear in 
more than one of the standard architectures. The instructions are defi ned using the 
hardware description language defi ned in Figure E.6.8. 

Although most of the categories are self-explanatory, a few bear comment: 

The “atomic swap” row means a primitive that can exchange a register with 
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see 
Section 2.11 in Chapter 2).

The 64-bit data transfer and operation rows show how MIPS, PowerPC, 
and SPARC defi ne 64-bit addressing and integer operations. SPARC simply 
defi nes all register and addressing operations to be 64 bits, adding  only special 

■

■

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Atomic swap R/M 
(for locks and 
semaphores) 

Temp<---Rd;  Rd<–Mem[x]; 
Mem[x]<---Temp

LDL/Q_L; 
STL/Q_C 

LL; SC —(see D.8) LWARX; 
STWCX 

CASA, CASX

Load 64-bit integer Rd<–64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer 
unsigned 

Rd32..63<–32 Mem[x]; 
Rd0..31<–32 0 

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer 
signed 

Rd32..63<–32 Mem[x]; 32 
Rd0..31<–32 Mem[x]0 

LDL LW LDW; EXTRD,S 
63, 8 

LWA LDSW

Prefetch Cache[x]<–hint FETCH, 
FETCH_M*

PREF, PREFX LDD, r0 
LDW, r0 

DCBT, 
DCBTST 

PRE-FETCH 

Load coprocessor Coprocessor<– Mem[x] —  LWCi CLDWX, CLDWS —  — 

Store coprocessor Mem[x]<– Coprocessor —  SWCi CSTWX, CSTWS — — 

Endian (Big/little endian?) Either Either Either Either Either

Cache fl ush (Flush cache block at this 
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared memory 
synchronization

(All prior data transfers 
complete before next data 
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

FIGURE E.6.1 Data transfer instructions not found in MIPS core but found in two or more of the fi ve desktop 
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing 
data to be read from memory, modifi ed, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see  
Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, 
and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190).



instructions for 64-bit shifts, data transfers, and branches. MIPS includes the 
same extensions, plus it adds separate 64-bit signed arithmetic instructions. 
PowerPC adds 64-bit right shift, load, store, divide, and compare and has a 
separate mode determining whether instructions are interpreted as 32- or 
64-bit operations; 64-bit operations will not work in a machine that only 

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

64-bit integer 
arithmetic ops

Rd<–64Rs1 op64 Rs2 ADD, 
SUB, MUL

DADD, DSUB 
DMULT, DDIV

ADD, SUB, 
SHLADD, DS

ADD, SUBF, 
MULLD, DIVD

ADD, SUB, 
MULX, 
S/UDIVX 

64-bit integer 
logical ops

Rd<–64Rs1 op64 Rs2 AND, OR, 
XOR

AND, OR, 
XOR

AND, OR, XOR AND, OR, XOR AND, OR, 
XOR

64-bit shifts Rd<–64Rs1 op64 Rs2 SLL, 
SRA, SRL

DSLL/V, 
DSRA/V, 
DSRL/V

DEPD,Z 
EXTRD,S 
EXTRD,U

SLD, SRAD, 
SRLD

SLLX, SRAX, 
SRLX 

Conditional move if (cond) Rd<–Rs CMOV_ MOVN/Z SUBc, n; ADD — MOVcc, MOVr 

Support for 
multiword integer 
add

CarryOut, Rd <– Rs1 + 
Rs2 + OldCarryOut

— ADU; SLTU; 
ADDU, DADU; 
SLTU; DADDU

ADDC ADDC, ADDE ADDcc 

Support for 
multiword integer 
sub 

CarryOut, Rd <– Rs1 
Rs2 + OldCarryOut

— SUBU; SLTU; 
SUBU, 
DSUBU; 
SLTU; DSUBU 

SUBB SUBFC, SUBFE SUBcc  

And not Rd <– Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN 

Or not Rd <– Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<–Rs10..15 + 
(Const<<16);

— — ADDIL (R-I) ADDIS (R-I) — 

Coprocessor 
operations

(Defi ned by coprocessor) — COPi COPR,i — IMPDEPi 

FIGURE E.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve desktop 
architectures.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Optimized delayed 
branches

(Branch not always 
delayed) 

— BEQL, BNEL, 
B_ZL (<, >, 
<=, >=)

COMBT, n, 
COMBF, n

— BPcc, A, 
FPBcc, A 

Conditional trap if (COND) {R31<---PC; PC 
<–0..0#i} 

— T_,,T_I (=, 
not=, <, >, 
<=, >=)

SUBc, n; BREAK TW, TD, TWI, 
TDI 

Tcc 

No. control 
registers 

Misc. regs (virtual 
memory, interrupts, . . .)

6 equiv. 12 32 33 29

FIGURE E.6.3 Control instructions not found in MIPS core but found in two or more of the fi ve desktop 
architectures.
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supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and 
operations in version 2.0.  

The “prefetch” instruction supplies an address and hint to the implementation 
about the data. Hints include whether the data is likely to be read or written 
soon, likely to be read or written only once, or likely to be read or written 
many times. Prefetch does not cause exceptions. MIPS has a version that 
adds two registers to get the address for fl oating-point programs, unlike 
nonfl oating-point MIPS programs. 

In the “Endian” row, “Big/little” means there is a bit in the program status 
regis ter that allows the processor to act either as big endian or little endian 
(see Appen dix B). This can be accomplished by simply comple menting some 
of the least signifi cant bits of the address in data transfer instructions. 

■

■

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9 

Multiply and add Fd <– ( Fs1 × Fs2) 
+ Fs3 

— MADD.S/D FMPYFADD sgl/dbl FMADD/S 

Multiply and sub Fd <– ( Fs1 × Fs2) 
– Fs3 

— MSUB.S/D FMSUB/S 

Neg mult and add Fd <– -(( Fs1 × Fs2) 
+ Fs3) 

— NMADD.S/D FMPYFNEG sgl/dbl FNMADD/S 

Neg mult and sub Fd <– -(( Fs1 × Fs2) 
– Fs3) 

— NMSUB.S/D FNMSUB/S 

Square root Fd <– SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<–Fs FCMOV_ MOVF/T, 
MOVF/T.S/D 

FTESTFCPY — FMOVcc 

Negate Fd <– Fs ^ 
x80000000 

CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q 

Absolute value Fd <– Fs & 
x7FFFFFFF 

— ABS.S/D FABS/dbl FABS FABSS/D/Q 

FIGURE E.6.4 Floating-point instructions not found in MIPS core but found in two or more of the fi ve desktop 
architectures.

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16 

Atomic swap R/M (for 
semaphores)

Temp<–Rd; Rd<–Mem[x]; 
Mem[x]<–Temp

SWP, SWPB —1 (see TAS) LOCK; UNLOCK —1 

Memory management unit Paged address translation Via coprocessor 
instructions

—1 LDTLB —1

Endian (Big/little endian?) Either Either Either Big Either 

FIGURE E.6.5 Data transfer instructions not found in MIPS core but found in two or more of the fi ve embedded 
architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. 



The “shared memory synchronization” helps with cache-coherent multi pro-
cessors: all loads and stores executed before the instruction must complete 
before loads and stores after it can start. (See Chapter 2.) 

The “coprocessor operations” row lists several categories that allow for the 
pro cessor to be extended with special-purpose hardware. 

■

■

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16 

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI 

Support for multiword integer add CarryOut, Rd <--- Rd + Rs1 + 
OldCarryOut

ADCS ADC ADDC ADDX  —1 

Support for multiword integer sub CarryOut, Rd <--- Rd – Rs1 + 
OldCarryOut

SBCS SBC SUBC SUBX —1 

Negate Rd <--- 0 – Rs1  NEG2 NEG NEG NEG 

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT 

Move Rd <--- Rs1 MOV MOV MOV MV MOVE 

Rotate right Rd <--- Rs i, >> Rd0. . . i–1 <--- 
Rs31–i. . . 31

ROR ROR ROTC

And not Rd <--- Rs1 & ~(Rs2) BIC BIC 

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16 

No. control registers Misc. registers 21 29  9 5 36 

FIGURE E.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve embed-
ded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb or MIPS-16. The 
superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS-16, such as NEG2 . 

FIGURE E.6.7 Control information in the fi ve embedded architectures. 

One difference that needs a longer explanation is the optimized branches. Figure 
E.6.9 shows the options. The Alpha and PowerPC offer branches that take effect 
immediately, like branches on earlier architectures. To accelerate branches, these 
machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs 
offer delayed branches (see Appendix B). The embedded RISCs generally do not 
support delayed branch, with the exception of SuperH, which has it as an option.  

The other three desktop RISCs provide a version of delayed branch that makes it 
easier to fi ll the delay slot. The SPARC “annulling” branch executes the instruction 
in the delay slot only if the branch is taken; otherwise the instruction is annulled. 
This means the instruction at the target of the branch can safely be copied into the 
delay slot, since it will only be executed if the branch is taken. The restrictions are 
that the target is not another branch and that the target is known at compile time. 
(SPARC also offers a nondelayed jump because an unconditional branch with the 
annul bit set does not execute the following instruction.) Later versions of the MIPS 
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Notation Meaning Example Meaning 

<- - Data transfer. Length of transfer is given by 
the destination’s length; the length is specifi ed 
when not clear. 

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. 
Registers have a fi xed length, so 
transfers shorter than the register 
size must indicate which bits are 
used. 

M Array of memory accessed in bytes. The 
starting address for a transfer is indicated as 
the index to the memory array. 

Regs[R1]<--M[x]; Place contents of memory location x 
into R1. If a transfer starts at M[i] 
and requires 4 bytes, the transferred 
bytes are M[i], M[i+1], M[i+2], 
and M[i+3]. 

<- -n Transfer an n-bit  fi eld, used whenever length 
of transfer is not clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory 
location x to memory location y. The 
length of the two sides should match. 

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are 
numbered from MSB starting at 0.) 

Xm..n Subscript selects a fi eld. Regs[R3]24..31<--M[x]; Moves contents of memory location x 
into low-order byte of R3. 

Xn Superscript replicates a bit fi eld. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0. 

## Concatenates two fi elds. Regs[R3]<--240## M[x]; 
F2##F3<--64M[x]; 

Moves contents of location x into low 
byte of R3; clears upper three bytes. 
Moves 64 bits from memory starting 
at location x; 1st 32 bits go into F2, 
2nd 32 into F3. 

*, & Dereference a pointer; get the address of a 
variable.

p*<--&x; Assign to object pointed to by p the 
address of the variable x. 

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits. 

==, !=, >, <, 
>=, <= 

C relational operators; equal, not equal, 
greater, less, greater or equal, less or equal. 

(Regs[R1]== Regs[R2]) & 
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the 
contents of R2 and contents of R3 do 
not equal the contents of R4. 

&, |, ^, ! C bitwise logical operations: AND, OR, 
exclusive OR, and complement. 

(Regs[R1] & (Regs[R2]| 
Regs[R3])) 

Bitwise AND of R1 and bitwise OR of 
R2 and R3. 

FIGURE E.6.8 Hardware description notation (and some standard C operators).

(Plain) branch Delayed branch Annulling delayed branch 

Found in architectures Alpha, PowerPC, ARM, Thumb, 
SuperH, M32R, MIPS-16

MIPS-64, PA-RISC, 
SPARC, SuperH

MIPS-64, SPARC PA-RISC 

Execute following instruction Only if branch not taken Always Only if branch 
taken

If forward branch not 
taken or backward 
branch taken 

FIGURE E.6.9 When the instruction following the branch is executed for three types of branches.



architecture have added a branch likely instruction that also annuls the following 
instruction if the branch is not taken. PA-RISC allows almost any instruction to 
annul the next instruction, including branches. Its “nul lifying” branch option will 
execute the next instruction depending on the direc tion of the branch and whether 
it is taken (i.e., if a forward branch is not taken or a backward branch is taken). 
 Presumably this choice was made to optimize loops, allowing the instructions 
following the exit branch and the looping branch to exe cute in the common case. 

Now that we have covered the similarities, we will focus on the unique fea tures 
of each architecture. We  fi rst cover the desktop/server RISCs, ordering them by 
length of description of the unique features from shortest to longest, and then the 
embedded RISCs. 

 E.7 Instructions Unique to MIPS-64 

MIPS has gone through fi ve generations of instruction sets, and this evolution 
has generally added features found in other architectures. Here are the salient 
unique features of MIPS, the fi rst several of which were found in the original 
instruction set.

Nonaligned Data Transfers 
MIPS has special instructions to handle misaligned words in memory. A rare event 
in most programs, it is included for supporting 16-bit minicomputer applications 
and for doing memcpy and strcpy faster. Although most RISCs trap if you try to 
load a word or store a word to a misaligned address, on all architectures misaligned 
words can be accessed without traps by using four load byte instructions and then 
assembling the result using shifts and logical ORs. The MIPS load and store word 
left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just two 
instructions: LWL loads the left portion of the register and LWR loads the right por-
tion of the register. SWL and SWR do the corresponding stores. Figure E.7.1 shows 
how they work. There are also 64-bit versions of these instructions.

Remaining Instructions 
Below is a list of the remaining unique details of the MIPS-64 architecture: 

NOR—This logical instruction calculates ~(Rs1 | Rs2). 

Constant shift amount—Nonvariable shifts use the 5-bit constant fi eld shown 
in the register-register format in Figure E.2.3.

SYSCALL—This special trap instruction is used to invoke the operating 
system.

■

■

■
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Move to/from control registers—CTCi and CFCi move between the integer 
registers and control registers.

Jump/call not PC-relative—The 26-bit address of jumps and calls is not added 
to the PC. It is shifted left two bits and replaces the lower 28 bits of the PC. 
This would only make a difference if the program were located near a 256 MB 
boundary.

TLB instructions—Translation-lookaside buffer (TLB) misses were handled 
in software in MIPS I, so the instruction set also had instructions for 
manipulating the registers of the TLB (see Chapter 7 for more on TLBs).
These registers are considered part of the “system coprocessor.” Since MIPS I 

■

■

■

Case 1
        Before

M[100]

100 101 102 103

D A V

M[104]

R2

R2

After

After

104 105 106 107

E

E

OJ H N

N

LWL R2, 101:

D A V

R2

LWR R2, 104:

D A V

Case 2
        Before

M[200]

200 201 202 203

D

M[204]

R4

R4

After

After

204 205 206 207

EVA

E

OJ H N

N

LWL R4, 203:

D O H

R4

LWR R4, 206:

D A V

FIGURE E.7.1 MIPS instructions for unaligned word reads. This fi gure assumes operation in 
big-endian mode. Case 1 fi rst loads the three bytes 101, 102, and 103 into the left of R2, leaving the least 
signifi cant byte undisturbed. The following LWR simply loads byte 104 into the least signifi cant byte of 
R2, leaving the other bytes of the register unchanged using LWL. Case 2 fi rst loads byte 203 into the most 
signifi cant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204, 
205, and 206. LWL reads the word with the fi rst byte from memory, shifts to the left to discard the unneeded 
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the fi rst byte to the lowest-order 
byte of the word. The following LWR addresses the last byte, right-shifts to discard the unneeded byte(s), 
and fi nally changes only those bytes of Rd. The byte(s) transferred are from the last byte up to the highest-
order byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is 
the inverse of LWR. Changing to little-endian mode fl ips which bytes are selected and discarded. (If big-little, 
left-right, load-store seem confusing, don’t worry; they work!) 



the instructions differ among versions of the architecture; they are more part 
of the implementations than part of the instruction set architecture.

Reciprocal and reciprocal square root—These instructions, which do not 
follow IEEE 754 guidelines of proper rounding, are included apparently for 
applications that value speed of divide and square root more than they value 
accuracy.

Conditional procedure call instructions—BGEZAL saves the return address 
and branches if the content of Rs1 is greater than or equal to zero, and 
BLTZAL does the same for less than zero. The purpose of these instructions 
is to get a PC-relative call. (There are “likely” versions of these instructions 
as well.)

Parallel single precision fl oating-point operations—As well as extending 
the architecture with parallel integer operations in MDMX, MIPS-64 also 
supports two parallel 32-bit fl oating-point operations on 64-bit registers 
in a single instruction. “Paired single” operations include add (ADD.PS), 
subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL,
CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS,
MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and 
multiply-subtract (MSUB.PS).

There is no specifi c provision in the MIPS architecture for fl oating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementations 
of fl oating point allow this to happen by checking to see if arithmetic interrupts are 
possible early in the cycle. Normally, exception detection would force serialization 
of execution of integer and fl oating-point operations.  

 E.8 Instructions Unique to Alpha

The Alpha was intended to be an architecture that made it easy to build high-
 performance implementations. Toward that goal, the architects originally made 
two controversial decisions: impre cise  fl oating-point exceptions and no byte or 
halfword data transfers. 

To simplify pipelined execution, Alpha does not require that an exception act 
as if no instructions past a certain point are exe cuted and that all before that point 
have been executed. It sup plies the TRAPB instruction, which stalls until all prior 
arithmetic instructions are guaranteed to complete without incurring arith metic 
exceptions. In the most conservative mode, placing one TRAPB per exception-
causing instruction slows execution by roughly  fi ve times but provides precise 
exceptions (see Darcy and Gay [1996]). 

■

■

■
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Code that does not include TRAPB does not obey the IEEE 754  fl oating-point 
standard. The reason is that parts of the standard (NaNs, infi nities, and denormals) 
are implemented in software on Alpha, as they are on many other  microprocessors. 
To implement these operations in software, however, programs must fi nd the 
offending instruction and operand values, which cannot be done with imprecise 
interrupts! 

When the architecture was developed, it was believed by the architects that byte 
loads and stores would slow down data transfers. Byte loads require an extra shifter 
in the data trans fer path, and byte stores require that the memory system per form a 
read-modify-write for memory systems with error correction codes, since the new 
ECC value must be recalculated. This omission meant that byte stores required the 
sequence load word, replaced the desired byte, and then stored the word. (Inconsis-
tently, fl oating-point loads go through  considerable byte swap ping to convert the 
obtuse VAX  fl oating-point formats into a canonical form.) 

To reduce the number of instructions to get the desired data, Alpha includes 
an elaborate set of byte manipulation instructions: extract fi eld and zero rest of a 
register (EXTxx), insert fi eld (INSxx), mask rest of a register (MSKxx), zero fi elds 
of a regis ter (ZAP), and compare multiple bytes (CMPGE). 

Apparently, the implementors were not as bothered by load and store byte as 
were the original architects. Beginning with the shrink of the second version of the 
Alpha chip (21164A), the architecture does include loads and stores for bytes and 
half words. 

Remaining Instructions 

Below is a list of the remaining unique instructions of the Alpha architecture: 

PAL code—To provide the operations that the VAX performed in microcode, 
Alpha provides a mode that runs with all priv ileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged archi tecture library) code is used for TLB management, atomic memory 
operations, and some operating system primitives. PAL code is called via the 
CALL_PAL instruction. 

No divide—Integer divide is not supported in hardware. 

“Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using 
addresses that ignore the least signifi cant three bits. Extract instructions then 
select the desired unaligned word using the lower address bits. These instruc -
tions are similar to LWL/R, SWL/R in MIPS. 

Floating-point single precision represented as double preci sion—Single 
precision data is kept as conventional 32-bit formats in memory but is con-
verted to 64-bit double preci sion format in registers. 

Floating-point register F31 is fi xed at zero—To simplify comparisons to zero. 

■
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■

■



VAX fl oating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single and double precision formats 
called S and T, Alpha supports the VAX single and double precision formats 
called F and G, but not VAX format D. (D had too narrow an exponent fi eld 
to be useful for double precision and was replaced by G in VAX code.) 

Bit count instructions—Version 3 of the architecture added instructions to 
count the number of leading zeros (CTLZ), count the number of trailing 
zeros (CTTZ), and count the number of ones in a word (CTPOP). Originally 
found on Cray computers, these instructions help with decryption. 

 E.9 Instructions Unique to SPARC v.9 

Several features are unique to SPARC. 

Register Windows 

The primary unique feature of SPARC is register windows, an optimization for 
reducing register traffi c on procedure calls. Several banks of registers are used, with 
a new one allocated on each procedure call. Although this could limit the depth of 
proce dure calls, the limitation is avoided by operating the banks as a cir cular buffer, 
providing unlimited depth. The knee of the cost/performance curve seems to be six 
to eight banks. 

SPARC can have between 2 and 32 windows, typically using 8 registers each 
for the globals, locals, incoming parameters, and outgoing parameters. (Given that 
each window has 16 unique reg isters, an implementation of SPARC can have as 
few as 40 phys ical registers and as many as 520, although most have 128 to 136, so 
far.) Rather than tie window changes with call and return instruc tions, SPARC has 
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s 
window by pointing to the next window of registers in addition to performing an 
add instruction. The trick is that the source registers are from the caller’s window 
of the addition operation, while the destination register is in the callee’s window. 
SPARC compilers typically use this instruction for changing the stack pointer 
to allocate local variables in a new stack frame. RESTORE is the inverse of SAVE, 
bringing back the caller’s window while acting as an add instruc tion, with the 
source registers from the callee’s window and the destination regis ter in the caller’s 
window. This auto matically deallocates the stack frame. Compilers can also make 
use of it for generating the callee’s fi nal return value. 

The danger of register windows is that the larger number of registers could slow 
down the clock rate. This was not the case for early implementations. The SPARC 
architecture (with regis ter windows) and the MIPS R2000 architecture (without) 

■
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have been built in several technologies since 1987. For several genera tions, the 
SPARC clock rate has not been slower than the MIPS clock rate for implementa-
tions in similar technologies, probably because cache access times dominate 
register access times in these implementations. The current-generation machines 
took different implementation strategies—in order versus out of order—and it’s 
unlikely that the number of registers by them selves determined the clock rate 
in either machine. Recently, other architectures have included register win dows: 
Tensilica and IA-64. 

Another data transfer feature is alternate space option for loads and stores. 
This simply allows the memory system to iden tify memory accesses to input/
output devices, or to control reg isters for devices such as the cache and memory 
management unit. 

Fast Traps 

Version 9 SPARC includes support to make traps fast. It expands the single level 
of traps to at least four levels, allowing the win dow overfl ow and underfl ow trap 
handlers to be interrupted. The extra levels mean the handler does not need to 
check for page faults or misaligned stack pointers explicitly in the code, thereby 
making the handler faster. Two new instructions were added to return from this 
multilevel handler: RETRY (which retries the interrupted instruction) and DONE 
(which does not). To support user-level traps, the instruction RETURN will return 
from the trap in nonprivileged mode. 

Support for LISP and Smalltalk 

The primary remaining arithmetic feature is tagged addition and subtraction. 
The designers of SPARC spent some time thinking about languages like LISP and 
Smalltalk, and this infl uenced some of the features of SPARC already discussed: 
register windows, conditional trap instructions, calls with 32-bit instruction 
addresses, and multiword arithmetic (see Taylor, et al. [1986] and Ungar, et al. 
[1984]). A small amount of support is offered for tagged data types with opera tions 
for addition, subtraction, and, hence, comparison. The two least signifi cant bits 
indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc 
set the overfl ow bit if either operand is not tagged as an integer or if the result is 
too large. A subsequent conditional branch or trap instruction can decide what to 
do. (If the operands are not integers, software recovers the operands, checks the 
types of the operands, and invokes the correct operation based on those types.) It 
turns out that the misaligned memory access trap can also be put to use for tagged 
data, since loading from a pointer with the wrong tag can be an invalid access. 
Figure E.9.1 shows both types of tag support. 
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Overlapped Integer and Floating-Point Operations 
SPARC allows fl oating-point instructions to overlap execution with integer instruc-
tions. To recover from an interrupt during such a situation, SPARC has a queue of 
pending  fl oating-point instructions and their addresses. RDPR allows the processor 
to empty the queue. The second  fl oating-point feature is the inclu sion of  fl oating-
point square root instructions FSQRTS, FSQRTD, and FSQRTQ. 

Remaining Instructions 

The remaining unique features of SPARC are as follows: 

JMPL uses Rd to specify the return address register, so specifying r31 makes 
it similar to JALR in MIPS and specify ing r0 makes it like JR. 

LDSTUB loads the value of the byte into Rd and then stores FF16 into 
the addressed byte. This version 8 instruction can be used to implement 
synchronization (see Chapter 2). 

CASA (CASXA) atomically compares a value in a processor register to a 
32-bit (64-bit) value in memory; if and only if they are equal, it swaps the 
value in memory with the value in a second processor register. This version 9 

■
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FIGURE E.9.1 SPARC uses the two least signifi cant bits to encode dif ferent data types for 
the tagged arithmetic instructions. a. Integer arith metic takes a single cycle as long as the operands and 
the result are integers. b. The misaligned trap can be used to catch invalid memory accesses, such as trying to use 
an integer as a pointer. For languages with paired data like LISP, an offset of –3 can be used to access the even 
word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR). 

a.  Add, sub, or
compare integers
(coded as 00)

TADDcc r7, r5, r6

00

00

00

(R5)

(R7)

(R6)

b.  Loading via
valid pointer
(coded as 11)

LD rD, r4, –3
–

11

00

3

(R4)

(Word
address)
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instruction can be used to construct wait-free synchronization algorithms that 
do not require the use of locks. 

XNOR calculates the exclusive OR with the complement of the second operand. 

BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler 
can give hints to the machine about whether a branch is likely to be taken 
or not. 

ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how 
this is used for proper execution of aggregate returning procedures in C. 

POPC counts the number of bits set to one in an operand, also found in the 
third version of the Alpha architecture. 

Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will 
be executed speculatively. 

Quadruple precision fl oating-point arithmetic and data trans fer allow the 
fl oating-point registers to act as eight 128-bit registers for  fl oating-point 
oper ations and data transfers. 

Multiple precision fl oating-point results for multiply mean that two single 
precision operands can result in a double precision product and two double 
precision operands can result in a quadruple precision product. These instruc-
tions can be useful in complex arithmetic and some models of fl oating-
point calculations.

 E.10 Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800. 

Branch Registers: Link and Counter 

Rather than dedicate one of the 32 general-purpose registers to save the return 
address on procedure call, PowerPC puts the address into a special register called 
the link register. Since many procedures will return without calling another pro-
cedure, the link doesn’t always have to be saved. Making the return address a special 
register makes the return jump faster, since the hardware need not go through the 
register read pipeline stage for return jumps. 

In a similar vein, PowerPC has a count register to be used in for loops where the 
program iterates a fi xed number of times. By using a special register, the branch 

■
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hardware can determine quickly whether a branch based on the count reg ister is 
likely to branch, since the value of the register is known early in the exe cution cycle. 
Tests of the value of the count register in a branch instruction will automatically 
decrement the count reg ister. 

Given that the count register and link register are already located with the hard-
ware that controls branches, and that one of the problems in branch predic tion 
is getting the target address early in the pipeline (see Appendix B), the PowerPC 
architects decided to make a second use of these registers. Either regis ter can hold a 
target address of a conditional branch. Thus, PowerPC supplements its basic con-
ditional branch with two instructions that get the target address from these regis-
ters (BCLR, BCCTR). 

Remaining Instructions 

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It 
cannot be used as a base register—that is, it gen erates a 0 in this case—but in base 
+ index addressing it can be used as the index. The other unique features of the 
PowerPC are as follows: 

Load multiple and store multiple save or restore up to 32 registers in a single 
instruction. 

LSW and STSW permit fetching and storing of  fi xed- and vari able-length 
strings that have arbitrary alignment. 

Rotate with mask instructions support bit fi eld extraction and insertion. One 
version rotates the data and then per forms logical AND with a mask of ones, 
thereby extracting a fi eld. The other version rotates the data but only places 
the bits into the destination register where there is a corre sponding 1 bit in 
the mask, thereby inserting a fi eld.

Algebraic right shift sets the carry bit (CA) if the operand is negative and any 
1 bits are shifted out. Thus, a signed divide by any constant power of two that 
rounds toward 0 can be accomplished with an SRAWI followed by ADDZE, 
which adds CA to the register. 

CBTLZ will count leading zeros. 

SUBFIC computes (immediate – RA), which can be used to develop a one’s 
or two’s complement. 

Logical shifted immediate instructions shift the 16-bit immediate to the left 
16 bits before performing AND, OR, or XOR.

■
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 E.11 Instructions Unique to PA-RISC 2.0 

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi cantly 
in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual 
features of any desktop RISC machine. For example, it has the most addressing 
modes and instruction formats, and, as we shall see, several instructions that are 
really the combination of two simpler instructions. 

Nullifi cation 

As shown in Figure E.6.9, several RISC machines can choose not to execute the 
instruction following a delayed branch to improve utilization of the branch slot. 
This is called nullifi cation in PA-RISC, and it has been generalized to apply to any 
arith metic/logical instruction as well as to all branches. Thus, an add instruction 
can add two operands, store the sum, and cause the following instruc tion to be 
skipped if the sum is zero. Like condi tional move instructions, nullifi cation allows 
PA-RISC to avoid branches in cases where there is just one instruction in the then 
part of an if statement. 

A Cornucopia of Conditional Branches 

Given nullifi cation, PA-RISC did not need to have separate condi tional branch 
instructions. The inventors could have recommended that nullifying instructions 
precede unconditional branches, thereby simplifying the instruction set. Instead, 
PA-RISC has the largest number of conditional branches of any RISC machine. 
Figure E.11.1 shows the conditional branches of PA-RISC. As you can see, several 
are really combinations of two instruc tions. 

Synthesized Multiply and Divide 

PA-RISC provides several primitives so that multiply and divide can be synthe sized 
in software. Instructions that shift one oper and 1, 2, or 3 bits and then add, trapping 
or not on overfl ow, are useful in multiplies. (Alpha also includes instruc tions that 
multi ply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD, 
S4SUB, and S8SUB.) The divide step performs the critical step of nonrestoring 
divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer, et al. [1988] measured the size of operands in multiplies and divides to 
show how well the multiply step would work. Using this data for C programs, 
Muchnick [1988] found that by making special cases, the average multiply by a 
constant takes 6 clock cycles and the mul tiply of variables takes 24 clock cycles. 
PA- RISC has ten instructions for these operations. 



The original SPARC architecture used similar optimizations, but with increasing 
numbers of transistors the instruction set was expanded to include full multiply 
and divide operations. PA-RISC gives some support along these lines by putting 
a full 32-bit integer multiply in the fl oating-point unit; however, the inte ger data 
must fi rst be moved to fl oating-point registers. 

Decimal Operations 
COBOL programs will compute on decimal values, stored as four bits per digit, 
rather than converting back and forth between binary and decimal. PA-RISC has 
instruc tions that will convert the sum from a normal 32-bit add into proper decimal 
digits. It also pro vides logical and arithmetic operations that set the condition codes 
to test for carries of digits, bytes, or halfwords. These opera tions also test whether 
bytes or halfwords are zero. These opera tions would be useful in arithmetic on 8-bit 
ASCII characters. Five PA-RISC instructions provide decimal support. 

Remaining Instructions 

Here are some remaining PA-RISC instructions: 

Branch vectored shifts an index register left three bits, adds it to a base register, 
and then branches to the calculated address. It is used for case statements. 

Extract and deposit instructions allow arbitrary bit fi elds to be selected from 
or inserted into registers. Variations include whether the extracted fi eld is 
sign-extended, whether the bit fi eld is specifi ed directly in the instruction or 
indirectly in another register, and whether the rest of the register is set to zero 
or left unchanged. PA-RISC has 12 such instructions. 

■
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Name Instruction Notation 

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <-- PC + offset12} 
COMIB Compare immediate 

and branch 
if (cond(imm5,Rs2)) {PC <-- PC + offset12} 

MOVB Move and branch Rs2 <-- Rs1, if (cond(Rs1,0)) {PC <-- PC + offset12} 
MOVIB Move immediate 

and branch 
Rs2 <-- imm5, if (cond(imm5,0)) {PC <-- PC + offset12} 

ADDB Add and branch Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) {PC <-- PC + offset12} 
ADDIB Add immediate 

and branch 
Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12} 

BB Branch on bit if (cond(Rsp,0)) {PC <-- PC + offset12} 
BVB Branch on variable bit if (cond(Rssar,0)) {PC <-- PC + offset12} 

FIGURE E.11.1 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the 5-bit 
immediate is called imm5. The 16 conditions are =, <, <=, odd, signed overfl ow, unsigned no overfl ow, zero or no overfl ow unsigned, never, and 
their respective complements. The BB instruction selects one of the 32 bits of the reg ister and branches depending if its value is 0 or 1. The BVB 
selects the bit to branch using the shift amount register, a special-purpose register. The subscript notation specifi es a bit fi eld.
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To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which 
adds a left-adjusted 21-bit constant to a register and places the result in 
register 1. The following data transfer instruction uses offset addressing to 
add the lower 11 bits of the address to register 1. This pair of instructions 
allows PA-RISC to add a 32-bit constant to a base register, at the cost of 
changing regis ter 1. 

PA-RISC has nine debug instructions that can set breakpoints on instruction 
or data addresses and return the trapped addresses. 

Load and clear instructions provide a semaphore or lock that reads a value 
from memory and then writes zero. 

Store bytes short optimizes unaligned data moves, moving either the leftmost 
or the rightmost bytes in a word to the effective address, depending on the 
instruction options and condition code bits. 

Loads and stores work well with caches by having options that give hints 
about whether to load data into the cache if it’s not already in the cache. For 
example, a load with a desti nation of register 0 is defi ned to be a software-
controlled cache prefetch. 

PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in 
the cache. It also can suggest that on loads and stores, there is spatial locality 
to prepare the cache for subsequent sequential accesses. 

PA-RISC 2.0 also provides an optional branch target stack to predict indirect 
jumps used on subroutine returns. Software can suggest which addresses get 
placed on and removed from the branch target stack, but hardware controls 
whether or not these are valid. 

Multiply/add and multiply/subtract are fl oating-point oper ations that can 
launch two independent fl oating-point opera tions in a single instruction in 
addition to the fused multiply/add and fused multiply/negate/add introduced 
in version 2.0 of PA-RISC.  

 E.12 Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional 
execution of instructions. Every instruction starts with a 4-bit fi eld that deter-
mines whether it will act as a nop or as a real instruction, depending on the condi-
tion codes. Hence, conditional branches are properly considered as conditionally 
executing the unconditional branch instruction. Conditional exe cution allows 
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avoiding a branch to jump over a single instruction. It takes less code space and 
time to simply conditionally execute one instruction. 

The 12-bit immediate fi eld has a novel interpretation. The eight least signifi cant 
bits are zero-extended to a 32-bit value, then rotated right the number of bits specifi ed 
in the fi rst four bits of the fi eld multiplied by two. Whether this split actually catches 
more immediates than a simple 12-bit fi eld would be an inter esting study. One 
advantage is that this scheme can represent all powers of two in a 32-bit word. 

Operand shifting is not limited to immediates. The second register of all 
arithmetic and logical processing operations has the option of being shifted before 
being operated on. The shift options are shift left logical, shift right logi cal, shift right 
arithmetic, and rotate right. Once again, it would be interesting to see how often opera-
tions like rotate-and-add, shift-right-and-test, and so on occur in ARM programs. 

Remaining Instructions 

Below is a list of the remaining unique instructions of the ARM architecture: 

Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single 
instruction. These instructions can save and restore registers on procedure 
entry and return. These instructions can also be used for block memory 
copy—offering up to four times the bandwidth of a single register load-
store—and today, block copies are the most important use. 

Reverse subtract—RSB allows the fi rst register to be sub tracted from the 
immediate or shifted register. RSC does the same thing, but includes the 
carry when calculating the difference. 

Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed 
product (SMULL) or the 64-bit unsigned prod uct (UMULL). 

No divide—Like the Alpha, integer divide is not supported in hardware. 

Conditional trap—A common extension to the MIPS core found in desktop 
RISCs (Figures E.6.1 through E.6.4), it comes for free in the conditional exe-
cution of all ARM instructions, including SWI. 

Coprocessor interface—Like many of the desktop RISCs, ARM defi nes a full 
set of coprocessor instructions: data transfer, moves between general- purpose 
and coprocessor registers, and coprocessor operations. 

Floating-point architecture—Using the coprocessor inter face, a fl oating-point 
architecture has been defi ned for ARM. It was implemented as the FPA10 
coprocessor. 

Branch and exchange instruction sets—The BX instruction is the transition 
between ARM and Thumb, using the lower 31 bits of the register to set the PC 
and the most signifi cant bit to determine if the mode is ARM (1) or Thumb (0).
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 E.13 Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM 
instructions to get maximum performance, with the less frequently executed ones 
using Thumb to reduce the overall code size of the program. Since typically only a 
few procedures dominate execution time, the hope is that this hybrid gets the best 
of both worlds. 

Although Thumb instructions are translated by the hardware into conven tional 
ARM instructions for execution, there are sev eral restrictions. First, condi tional 
execution is dropped from almost all instructions. Second, only the fi rst eight 
registers are easily available in all instructions, with the stack pointer, link register, 
and program counter used implicitly in some instructions. Third, Thumb uses a two-
operand format to save space. Fourth, the unique shifted immediates and shifted 
second oper ands have disappeared and are replaced by separate shift instructions. 
Fifth, the addressing modes are simplifi ed. Finally, putting all instructions into 
16 bits forces many more instruction formats. 

In many ways, the simplifi ed Thumb architecture is more con ventional than 
ARM. Here are additional changes made from ARM in going to Thumb: 

Drop of immediate logical instructions—Logical immediates are gone. 

Condition codes implicit—Rather than have condition codes set optionally, 
they are defi ned by the opcode. All ALU instructions and none of the data 
transfers set the condition codes. 

Hi/Lo register access—The 16 ARM registers are halved into Lo registers and Hi 
registers, with the eight Hi registers including the stack pointer (SP), link reg-
ister, and PC. The Lo registers are available in all ALU operations. Variations 
of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi regis-
ters. SP and PC registers are also available in variations of data transfers and 
add immediates. Any other operations on the Hi registers require one MOV 
to put the value into a Lo register, perform the operation there, and then 
transfer the data back to the Hi register. 

Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is spec-
ifi ed in two instructions, concatenating 11 bits from each instruction and 
shifting them left to form a 23-bit address to load into PC. 

Distance for data transfer offsets—The offset is now fi ve bits for the general-
 purpose registers and eight bits for SP and PC. 
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 E.14 Instructions Unique to SuperH 

Register 0 plays a special role in SuperH address modes. It can be added to 
another register to form an address in indirect indexed addressing and PC-relative 
addressing. R0 is used to load con stants to give a larger addressing range than can 
easily be fi t into the 16-bit instructions of the SuperH. R0 is also the only register 
that can be an operand for immediate versions of AND, CMP, OR, and XOR. 

Below is a list of the remaining unique details of the SuperH architecture: 

Decrement and test—DT decrements a register and sets the T bit to 1 if the 
result is 0. 

Optional delayed branch—Although the other embedded RISC machines 
generally do not use delayed branches (see Appen dix B), SuperH offers 
optional delayed branch execution for BT and BF. 

Many multiplies—Depending if the operation is signed or unsigned, if the 
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the proper 
multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The product is 
found in the MACL and MACH registers. 

Zero and sign extension—Byte or halfwords are either zero-extended (EXTU) 
or sign-extended (EXTS) within a 32-bit register. 

One-bit shift amounts—Perhaps in an attempt to make them fi t within the 
16-bit instructions, shift instructions only shift a single bit at a time. 

Dynamic shift amount—These variable shifts test the sign of the amount in a 
register to determine whether they shift left (positive) or shift right (negative). 
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These 
instructions help offset the 1-bit constant shift amounts of standard shifts. 

Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which 
set the T bit with the value rotated, and also have variations that include the 
T bit in the rotations (ROTCL and ROTCR). 

SWAP—This instruction either swaps the high and low bytes of a 32-bit word 
or the two bytes of the rightmost 16 bits. 

Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are 
placed in another register. 

Negate with carry—Like SUBC (Figure E.6.6), except the fi rst operand is 0. 

Cache prefetch—Like many of the desktop RISCs (Figures E.6.1 through 
E.6.4), SuperH has an instruction (PREF) to prefetch data into the cache. 
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Test-and-set—SuperH uses the older test-and-set (TAS) instruction to 
perform atomic locks or semaphores (see Chapter 2). TAS fi rst loads a byte 
from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is 
not 0. Finally, it sets the most signifi cant bit of the byte to 1 and writes the 
result back to memory.  

 E.15 Instructions Unique to M32R 

The most unusual feature of the M32R is a slight VLIW approach to the pairs of 
16-bit instructions. A bit is reserved in the fi rst instruction of the pair to say whether 
this instruction can be executed in parallel with the next instruction— that is, the 
two instructions are independent—or if these two must be executed sequentially. 
(An earlier machine that offered a similar option was the Intel i860.) This feature is 
included for future implemen tations of the architecture. 

One surprise is that all branch displacements are shifted left 2 bits before being 
added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions 
are only 16 bits long, this shift means that a branch cannot go to any instruction 
in the pro gram: it can only branch to instructions on word boundaries. A similar 
restriction is placed on the return address for the branch-and-link and jump-and-
link instructions: they can only return to a word boundary. Thus, for a slightly 
larger branch dis tance, software must ensure that all branch addresses and all 
return addresses are aligned to a word boundary. The M32R code space is probably 
slightly larger, and it probably executes more nop instructions than it would if the 
branch address was only shifted left 1 bit. 

However, the VLIW feature above means that a nop can exe cute in parallel with 
another 16-bit instruction so that the pad ding doesn’t take more clock cycles. The 
code size expansion depends on the ability of the compiler to sched ule code and to 
pair successive 16-bit instructions; Mitsubishi claims that code size overall is only 
7% larger than that for the Motorola 6800 archi tecture. 

The last remaining novel feature is that the result of the divide operation is the 
remainder instead of the quotient.  

 E.16 Instructions Unique to MIPS-16 

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full 
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS 
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA 
mode bit determines the width of instructions: 0 means 32-bit-wide instructions 
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and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA 
mode bit to switch to the other ISA. JR and JALR have been redefi ned to set the ISA 
mode bit from the most signifi cant bit of the register containing the branch address, 
and this bit is not considered part of the address. All jump-and-link instructions 
save the current mode bit as the most signifi cant bit of the return address. 

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit 
instructions, but it does not support mixing the two lengths together in a single 
procedure. The one exception is the JAL and JALX: these two instructions need 
32 bits even in the 16-bit mode, presumably to get a large enough address to branch 
to far procedures. 

In picking this subset, MIPS decided to include opcodes for some three- operand 
instructions and to keep 16 opcodes for 64-bit operations. The combina tion of 
this many opcodes and oper ands in 16 bits led the architects to provide only eight 
easy-to-use registers—just like Thumb—whereas the other embedded RISCs offer 
about 16 registers. Since the hardware must include the full 32 regis ters of the 32-bit 
ISA mode, MIPS-16 includes move instructions to copy values between the eight 
MIPS-16 registers and the remaining 24 registers of the full MIPS architecture. 
To reduce pressure on the eight visible registers, the stack pointer is considered 
a separate register. MIPS-16 includes a variety of separate opcodes to do data 
transfers using SP as a base register and to increment SP: LWSP, LDSP, SWSP, SDSP, 
ADJSP, DADJSP, ADDIUSPD, and DADDIUSP. 

To fi t within the 16-bit limit, immediate fi elds have generally been shortened 
to fi ve to eight bits. MIPS-16 provides a way to extend its shorter immediates into 
the full width of immediates in the 32-bit mode. Borrowing a trick from the Intel 
8086, the EXTEND instruction is really a 16-bit prefi x that can be prepended to 
any MIPS-16 instruction with an address or immediate fi eld. The prefi x supplies 
enough bits to turn the 5-bit fi eld of data trans fers and 5- to 8-bit fi elds of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU and 
DADDIU start with 4-bit immediate fi elds, but since EXTEND can only sup ply 11 
more bits, the wider immediate is limited to 15 bits. EXTEND also extends the 3-bit 
shift fi elds into 5-bit fi elds for shifts. (In case you were wondering, the EXTEND 
prefi x does not need to start on a 32-bit boundary.) 

To further address the supply of constants, MIPS-16 added a new addressing 
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts 
an 8-bit immediate fi eld by two or three bits, respectively, adding it to the PC with 
the lower two or three bits cleared. The constant word or doubleword is then loaded 
into a register. Thus 32-bit or 64-bit constants can be included with MIPS-16 code, 
despite the loss of LIU to set the upper register bits. Given the new addressing 
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and 
place it in a register. 

MIPS-16 differs from the other embedded RISCs in that it can subset a 64-bit 
address architecture. As a result it has 16-bit instruction-length versions of 64-bit 
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data operations: data trans fer (LD, SD, LWU), arithmetic operations (DADDU/IU, 
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V). 

Since MIPS plays such a prominent role in this book, we show all the addi tional 
changes made from the MIPS core instructions in going to MIPS-16: 

Drop of signed arithmetic instructions—Arithmetic instruc tions that can trap 
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB. 

Drop of immediate logical instructions—Logical immediates are gone too: 
ANDI, ORI, XORI. 

Branch instructions pared down—Comparing two registers and then branch-
ing did not fi t, nor did all the other compari sons of a register to zero. Hence 
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and 
BLTZ. As men tioned in Section E.3, to help compensate MIPS-16 includes 
compare instructions to test if two registers are equal. Since compare and 
set on less than set the new T register, branches were added to test the 
T register. 

Branch distance—Since instructions are 16 bits wide, the branch address is 
shifted by one instead of by two. 

Delayed branches disappear—The branches take effect before the next 
instruction. Jumps still have a one-slot delay. 

Extension and distance for data transfer offsets—The 5-bit and 8-bit fi elds 
are zero-extended instead of sign-extended in 32-bit mode. To get greater 
range, the immediate fi elds are shifted left one, two, or three bits depending 
on whether the data is halfword, word, or doubleword. If the EXTEND prefi x 
is prepended to these instructions, they use the conventional signed 16-bit 
immediate of the 32-bit mode. 

Extension of arithmetic immediates—The 5-bit and 8-bit fi elds are zero-
extended for set on less than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register 
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefi x is prepended to 
these instructions, they use the conventional signed 16-bit immediate of the 
32-bit mode. They are still sign-extended for general adds and for adding to 
SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density and 
orthog  onality are strange bedfellows in MIPS-16! 

Redefi ning shift amount of 0—MIPS-16 defi nes the value 0 in the 3-bit shift 
 fi eld to mean a shift of 8 bits. 

New instructions added due to loss of register 0 as zero—Load immediate, 
negate, and not were added, since these operations could no longer be synthe-
sized from other instructions using r0 as a source.  
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 E.17 Concluding Remarks 

This appendix covers the addressing modes, instruction formats, and all instruc-
tions found in ten RISC architectures. Although the later sections of the appendix 
concen trate on the differences, it would not be possible to cover ten architectures in 
these few pages if there were not so many similarities. In fact, we would guess that 
more than 90% of the instructions executed for any of these architec tures would be 
found in Figures E.3.5 through E.3.11. To contrast this homogeneity, Figure E.17.1 
gives a summary for four archi tectures from the 1970s in a format similar to that 
shown in Fig ure E.1.1. (Imagine trying to write a single chapter in this style for 
those architectures!) In the history of computing, there has never been such wide-
spread agreement on computer architec ture.  

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX 

Date announced 1964/1970 1978 1980 1977 

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, . . . ,  432 

Addressing (size, model) 24 bits, fl at/31 bits, 
fl at 

4 + 16 bits, 
segmented

24 bits, fl at 32 bits, fl at 

Data aligned? Yes 360/No 370 No 16-bit aligned No 

Data addressing modes 2/3 5 9 = 14 

Protection Page None Optional Page 

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB 

I/O Opcode Opcode Memory mapped Memory mapped 

Integer registers (size, 
model, number)

16 GPR × 32 bits 8 dedicated data × 
16 bits 

8 data and 8 address × 
32 bits 

15 GPR × 32 bits 

Separate fl oating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0 

Floating-point format IBM (fl oating 
hexadecimal) 

IEEE 754 single, 
double, extended 

IEEE 754 single, 
double, extended 

DEC 

FIGURE E.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure E.1.1, there is lit tle agreement between 
these architectures in any category. 

This style of architecture cannot remain static, however. Like people, instruc tion 
sets tend to get bigger as they get older. Fig ure E.17.2 shows the genealogy of these 
instruction sets, and Figure E.17.3 shows which features were added to or deleted 
from generations of desktop RISCs over time. 

As you can see, all the desktop RISC machines have evolved to 64-bit address 
architectures, and they have done so fairly pain lessly.   
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FIGURE E.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in bold. 
The CDC 6600 and Cray-1 were load-store machines with register 0 fi xed at 0, and sepa rate integer and fl oating-point registers. Instructions 
could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801 leading to the 
unsuccessful RT/PC and America leading to the suc cessful Power architecture. Some people who worked on the 801 later joined Hewlett-
Packard to work on the PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996], the 
Berke ley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both architectures and 
chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (There are no ARM v.4 and ARM5 chips, 
but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not introduce it. Instead, 
DEC shipped workstations using MIPS microprocessors for three years before they brought out their own RISC instruction set, Alpha 21064, 
which is very similar to MIPS III and PRISM. The Alpha architecture has had small extensions, but they have not been formalized with version 
numbers; we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and halfword loads and 
stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Dig ital names chips after the fabrication 
technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264).“EV” stands for “extended VAX.” 
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PA-RISC SPARC MIPS Power 

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC 

Interlocked loads X ” ” X ” + ” ” X ” ” 

Load-store FP double X ” ” X ” + ” ” X ” ” 

Semaphore X ” ” X ”  + ” ” X ” ” 

Square root X ” ” X ” + ” ” + ” 

Single precision FP ops X ” ” X ” X ” ” ”  +

Memory synchronize X ” ” X ” + ” ” X ” ” 

Coprocessor X ” ” X — X ” ” ” 

Base + index addressing X ” ” X ” + X ” ” 

Equiv. 32 64-bit FP registers ” ”  + + ” X ” ”

Annulling delayed branch X ” ” X ” + ” ” 

Branch register contents X ” ” + X ” ” ” 

Big/little endian + ” + X ” ” ”  +

Branch prediction bit + + ” ” X ” ” 

Conditional move + + X ” —

Prefetch data into cache + + + X ” ” 

64-bit addressing/int. ops + + + ” + 

32-bit multiply, divide + ” + X ” ” ” X ” ” 

Load-store FP quad + + — 

Fused FP mul/add + + X ” ” 

String instructions X ” ” X ” — 

Multimedia support X ” X X

FIGURE E.17.3 Features added to desktop RISC machines. X means in the original machine, + means added later, ” means 
continued from prior machine, and—means removed from architecture. Alpha is not included, but it added byte and word loads and stores, 
and bit count and multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single fl oating-point operations. 
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