
E
RISC: any computer
announced after 1985.

A Survey of RISC
Architectures for
Desktop, Server, and
Embedded Computers
Steven Przybylskic
A Designer of the Stanford MIPS

A P P E N D I X

E.1 Introduction E-3

E.2 Addressing Modes and Instruction Formats E-5

E.3 Instructions: The MIPS Core Subset E-9

E.4 Instructions: Multimedia Extensions of the Desktop/Server

RISCs E-16

E.5 Instructions: Digital Signal-Processing Extensions of the

Embedded RISCs E-19

E.6 Instructions: Common Extensions to MIPS Core E-20

E.7 Instructions Unique to MIPS-64 E-25

E.8 Instructions Unique to Alpha E-27

E.9 Instructions Unique to SPARC v.9 E-29

E.10 Instructions Unique to PowerPC E-32

E.11 Instructions Unique to PA-RISC 2.0 E-34

E.12 Instructions Unique to ARM E-36

E.13 Instructions Unique to Thumb E-38

E.14 Instructions Unique to SuperH E-39

E.15 Instructions Unique to M32R E-40

E.16 Instructions Unique to MIPS-16 E-40

E.17 Concluding Remarks E-43

 E.1 Introduction

We cover two groups of reduced instruction set computer (RISC) architectures in
this appendix. The fi rst group is the desktop and server RISCs:

Digital Alpha

Hewlett-Packard PA-RISC

IBM and Motorola PowerPC

MIPS INC MIPS-64

Sun Microsystems SPARC

■

■

■

■

■

E-4 Appendix E A Survey of RISC Architectures

The second group is the embedded RISCs:

Advanced RISC Machines ARM

Advanced RISC Machines Thumb

Hitachi SuperH

Mitsubishi M32R

MIPS INC MIPS-16

■

■

■

■

■

Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8

Date announced 1992 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, model) 64 bits, fl at 32 bits, fl at 48 bits,
segmented

32 bits, fl at 32 bits, fl at

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 1 1 5 4 2

Protection Page Page Page Page Page

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Integer registers (number, model, size) 31 GPR × 64 bits 31 GPR × 32 bits 31 GPR × 32 bits 32 GPR × 32 bits 31 GPR × 32 bits

Separate fl oating-point registers 31 × 32 or
31 × 64 bits

16 × 32 or
16 × 64 bits

56 × 32 or
28 × 64 bits

32 × 32 or
32 × 64 bits

32 × 32 or
32 × 64 bits

Floating-point format IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

FIGURE E.1.1 Summary of the fi rst version of fi ve architectures for desktops and servers. Except for the num ber of data
address modes and some instruction set details, the integer instruction sets of these architec tures are very similar. Contrast this with Figure E.17.1.
Later versions of these architectures all support a fl at, 64-bit address space.

FIGURE E.1.2 Summary of fi ve architectures for embedded applications. Except for number of data address modes and some
instruction set details, the integer instruction sets of these architectures are similar. Con trast this with Figure E.17.1.

ARM Thumb SuperH M32R MIPS-16

Date announced 1985 1995 1992 1997 1996

Instruction size (bits) 32 16 16 16/32 16/32

Address space (size, model) 32 bits, fl at 32 bits, fl at 32 bits, fl at 32 bits, fl at 32/64 bits, fl at

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing modes 6 6 4 3 2

Integer registers (number, model, size) 15 GPR x 32 bits 8 GPR + SP,
LR x 32 bits

16 GPR x 32 bits 16 GPR x 32 bits 8 GPR + SP,
RA x 32/64 bits

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of the
desktop and server RISCs are found in Figure E.1.1 and the embedded RISCs in
Figure E.1.2.

Notice that the embedded RISCs tend to have 8 to 16 general-purpose regis ters
while the desktop/server RISCs have 32, and that the length of instructions is 16 to
32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set archi tectures, Thumb
and MIPS-16 are really optional modes of ARM and MIPS invoked by call instruc-
tions. When in this mode, they execute a subset of the native architecture using
16-bit-long instructions. These 16-bit instruction sets are not intended to be full
architectures, but they are enough to encode most proce dures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have been
extended over the years. We have decided to describe the latest versions, of the
archi tectures: MIPS-64, Alpha version 3, PA-RISC 2.0, and SPARC version 9 for
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3, M32R
version 1, and MIPS-16 version 1 for the embedded ones.

The remaining sections proceed as follows: after discussing the addressing
modes and instruction formats of our RISC archi tectures, we present the survey of
the instructions in fi ve steps:

Instructions found in the MIPS core, which is defi ned in Chapters 2 and 3 of
the main text

Multimedia extensions of the desktop/server RISCs

Digital signal-processing extensions of the embedded RISCs

Instructions not found in the MIPS core but found in two or more
architectures

The unique instructions and characteristics of each of the ten architectures

We give the evolution of the instruction sets in the fi nal section and conclude with
a speculation about future directions for RISCs.

 E.2
Addressing Modes and Instruction
Formats

Figure E.2.1 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address
modes, the absolute address mode with limited range can be synthesized using

■

■

■

■

■

 E.2 Addressing Modes and Instruction Formats E-5

zero as the base in displacement addressing. (This register can be changed by ALU
 operations in PowerPC; it is always 0 in the other machines.) Similarly, reg ister indi-
rect addressing is synthesized by using displacement addressing with an offset of 0.
Simplifi ed addressing modes is one distinguishing feature of RISC architectures.

Figure E.2.2 shows the data addressing modes supported by the embedded
architectures. Unlike the desktop RISCs, these embed ded machines do not reserve
a register to contain 0. Although most have two to three simple addressing modes,
ARM and SuperH have several, including fairly complex calculations. ARM has
an addressing mode that can shift one register by any amount, add it to the other
registers to form the address, and then update one register with this new address.

References to code are normally PC-relative, although jump register indirect
is supported for returning from procedures, for case statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left
two bits before being added to the PC for the desktop RISCs, thereby increasing the
branch distance. This works because the length of all instruc tions for the desktop
RISCs is 32 bits, and instructions must be aligned on 32-bit words in memory.
Embedded architectures with 16-bit-long instructions usually shift the PC-relative
address by 1 for similar reasons.

FIGURE E.2.1 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short address
versions of the offset addressing modes. MIPS-64 has indexed addressing for fl oating-point loads and stores. (These addressing modes are
described in Figure 2.24.)

Addressing mode Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Register + offset (displacement or based) X X X X X

Register + register (indexed) X (FP) X (Loads) X X

Register + scaled register (scaled) X

Register + offset and update register X X

Register + register and update register X X

FIGURE E.2.2 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R have
separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the latter mode. This increases the
use of 16-bit instructions in the M32R, and it gives a wider set of address modes to dif ferent data transfer instructions in SuperH. To get
greater addressing range, ARM and Thumb shift the offset left one or two bits if the data size is halfword or word. (These addressing modes
are described in Figure 2.24.)

Addressing mode ARM v.4 Thumb SuperH M32R MIPS-16

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X

Register + scaled register (scaled) X

Register + offset and update register X

Register + register and update register X

Register indirect X X

Autoincrement, autodecrement X X X X

PC-relative data X X (loads) X X (loads)

E-6 Appendix E A Survey of RISC Architecture

Figure E.2.3 shows the format of the desktop RISC instruc tions, which include
the size of the address. Each instruction set architecture uses these four primary
instruction formats. Figure E.2.4 shows the six formats for the embedded RISC
machines. The desire to have smaller code size via 16-bit instructions leads to more
instruction formats.

 E.2 Addressing Modes and Instruction Formats E-7

FIGURE E.2.3 Instruction formats for desktop/server RISC architectures. These four formats
are found in all fi ve architectures. (The superscrift notation in this fi gure means the width of a fi eld in bits.)
Although the register fi elds are located in similar pieces of the instruction, be aware that the destination and
two source fi elds are scrambled. Op = the main opcode, Opx = an opcode extension, Rd = the destination
register, Rs1 = source register 1, Rs2 = source reg ister 2, and Const = a constant (used as an immediate or as an
address). Unlike the other RISCs, Alpha has a format for immediates in arithmetic and logical operations that
is different from the data transfer format shown here. It pro vides an 8-bit immediate in bits 20 to 13 of the RR
format, with bits 12 to 5 remaining as an opcode exten sion.

Register-register

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 4 0

31 25 20 15 10 4 0

Op6 Opx11

Opx6

Opx11

Opx8

Opx11

Op6

Op6

Op6

Rs15

Rs15

Rs15

Rd5

Rd5

Rd5

Rd5

Const5

Op2 Opx6

Rs25

Rs15 0

Rs25

Rs25

Rs25

Rs25

Rs15

Rd5

Register-immediate

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 24 18 13 12 0

31 25 20 15 0

Op6 Const16

Const16

Const16

Const16

Const13

Op6

Op6

Op6

Rd5

Rs15

Rs25

Rd5

Op2 Opx6

Rs15

Rs15 1

Rd5

Rd5

Rs15

Rd5

Branch

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 18 12 01

31 25 20 15 0

Op6 Const21

Const16

Const14 Opx2

Const11 O C

Const19

Op6

Op6

Op6

Rs15

Rs15

Rs25

Opx6

Op2 Opx11

Opx3

Opx5/Rs25

Rs15

Rs15

Jump/call

Alpha

MIPS

PowerPC

PA-RISC

SPARC

31 29 20 15 12 01

31 25 20 0

Op6 Const21

Const26

Const24 Opx2

Const21 O1 C1

Const30

Op6

Op6

Op6

Rs15

Op2

Opcode Register Constant

Opcode Register Constant

Register-register

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 1 0

31 27 19 15 11 3 0

Opx4

Opx4

Opx4

Opx4

Opx4

Opx8

Op6

Op4

Op4 Rd4

Rd4

Rs24

Op5 Rs13 Rs23

Rs14 Rd4

Opx2

Rd3Rs3

Rs4

Rd3

Rs14

Register-immediate

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4

Op5 Rs3 Const5

Rs14 Rd4

Rd3 Const8

Const8

Rs4

Rd3

Const16

Data transfer

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 4 0

31 27 19 15 11 0

Opx4

Opx4

Op3 Const12

Op5

Op4

Op4 Rd4

Rd4 Rs4

Op5 Rs3 Const5

Rs14 Rd4

Const5 Rs3 Rd3

Const4

Rs4

Rd3

Const16

Branch

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 7 0

31 27 23 0

Opx4

Opx4

Opx4

Op4 Const24

Op4

Op8

Op4 Rd4

Op5 Const8

Const8

Const8

Rs4

Rd3

Const16

Jump

ARM

Thumb

SuperH

M32R

MIPS-16

15 10 0

31 27 23 0

Opx4

Opx4

Op4 Const24

Op5

Op4

Op4

Op5 Const11

Const11

Const12

Const8

Call

ARM

Thumb

SuperH

M32R

MIPS-16

15 25 0

31 27 23 0

Opx4

Op8

Op4 Const24

Op5

Op4

Op6 Const26

Const11 Opx5 Const11

Const12

Const24

FIGURE E.2.4 Instruction formats for embedded RISC architectures. These six formats are
found in all fi ve architectures. The notation is the same as in Figure E.2.3. Note the similarities in branch,
jump, and call formats, and the diversity in register-register, register-immediate, and data transfer formats.
The differences result from whether the architecture has 8 or 16 registers, whether it is a 2- or 3-operand
format, and whether the instruction length is 16 or 32 bits.

E-8 Appendix E A Survey of RISC Architectures

Figures E.2.5 and E.2.6 show the variations in extending constant fi elds to the full
width of the registers. In this subtle point, the RISCs are similar but not identical.

 E.3 Instructions: the MIPS Core Subset

The similarities of each architecture allow simultaneous descrip tions, starting with
the operations equivalent to the MIPS core.

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other architectures, as
Figures E.3.1 through E.3.5 show. (For reference, defi nitions of the MIPS instructions
are found in the MIPS Reference Data Card at the beginning of the book.) Instruc-
tions are listed under four categories: data transfer (Figure E.3.1); arithmetic/logical
(Figure E.3.2); control (Figure E.3.3); and fl oating point (Figure E.3.4). A fi fth cat-
egory (Figure E.3.5) shows conventions for register usage and pseudoinstructions on

 E.3 Instructions: the MIPS Core Subset E-9

FIGURE E.2.5 Summary of constant extension for desktop RISCs. The constants in the jump and call instructions of MIPS
are not sign-extended, since they only replace the lower 28 bits of PC, leaving the upper 4 bits unchanged. PA-RISC has no logical immediate
instructions.

Format: instruction category Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immedaite: arithmetic Zero Sign Sign Sign Sign

Register-immediate: logical Zero Zero — Zero Sign

FIGURE E.2.6 Summary of constant extension for embedded RISCs. The 16-bit-length instructions have much shorter
immediates than those of the desktop RISCs, typically only fi ve to eight bits. Most embedded RISCs, however, have a way to get a long address
for procedure calls from two sequencial halfwords. The constants in the jump and call instructions of MIPS are not sign-extended, since they
only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged. The 8-bit immediates in ARM can be rotated right an even number
of bits between 2 and 30, yielding a large range of immediate values. For example, all powers of two are immediates in ARM.

Format: instruction category Arm v.4 Thumb SuperH M32R MIPS-16

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign Sign/Zero Sign Sign —

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immedaite: arithmetic Zero Zero Sign Sign Zero/Sign

Register-immediate: logical Zero — Zero Zero —

E-10 Appendix E A Survey of RISC Architectures

Data transfer
(instruction formats)

R-I R-I R-I, R-R R-I, R-R R-I, R-R

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Load byte signed LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB
Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB
Load halfword signed LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH
Load halfword unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH
Load word LDLS LW LDW, LDWX, LDWS LW LD
Load SP fl oat LDS* LWC1 FLDWX, FLDWS LFS LDF
Load DP fl oat LDT LDC1 FLDDX, FLDDS LFD LDDF
Store byte STB SB STB, STBX, STBS STB STB
Store halfword STW SH STH, STHX, STHS STH STH
Store word STL SW STW, STWX, STWS STW ST
Store SP fl oat STS SWC1 FSTWX, FSTWS STFS STF
Store DP fl oat STT SDC1 FSTDX, FSTDS STFD STDF
Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_,

MTSPR, MT_
RD, WR, RDPR, WRPR,
LDXFSR, STXFSR

Move integer to FP register ITOFS MFC1/DMFC1 STW; FLDWX STW; LDFS ST; LDF
Move FP to integer register FTTOIS MTC1/DMTC1 FSTWX; LDW STFS; LW STF; LD

FIGURE E.3.1 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to
synthe size a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are
separated by commas. For this fi gure, halfword is 16 bits and word is 32 bits. Note that in Alpha, LDS converts single precision fl oating point
to double precision and loads the entire 64-bit register.

each architecture. If a MIPS core instruction requires a short sequence of instructions
in other architectures, these instruc tions are sepa rated by semicolons in Figures E.3.1
through E.3.5. (To avoid confusion, the desti nation register will always be the left-
most operand in this appendix, independent of the notation normally used with each
architecture.) Figures E.3.6 through E.3.9 show the equivalent listing for embedded
RISCs. Note that fl oating point is generally not defi ned for the embedded RISCs.

Every architecture must have a scheme for compare and con ditional branch, but
despite all the similarities, each of these architectures has found a different way to
perform the opera tion.

Compare and Conditional Branch
SPARC uses the traditional four condition code bits stored in the program status
word: negative, zero, carry, and overfl ow. They can be set on any arithmetic or log ical
instruction; unlike earlier architectures, this setting is optional on each instruc tion.
An explicit option leads to fewer problems in pipelined implementa tion. Although
condition codes can be set as a side effect of an operation, explicit com pares are
 synthesized with a subtract using r0 as the destination. SPARC condi tional branches

FIGURE E.3.2 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. Such a sequence of instruc tions is shown separated by semicolons. If
there are several choices of instructions equivalent to MIPS core, they are separated by commas. Note that in the “Arithmetic/logical” category,
all machines but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of these
instructions but uses a single mne monic. (Of course these are separate opcodes!)

Arithmetic/logical
(instruction formats)

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Add ADDL ADDU, ADDU ADDL, LD0, ADDI,
UADDCM

ADD, ADDI ADD

Add (trap if overfl ow) ADDLV ADD, ADDI ADDO, ADDIO ADDO; MCRXR; BC ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overfl ow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT, MULTU SHiADD;...; (i=1,2,3) MULLW, MULLI MULX

Multiply (trap if overfl ow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overfl ow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI
(B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL
Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL
Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA
Compare CMPEQ, CMPLT,

CMPLE
SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,...

FIGURE E.3.3 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions equivalent
to MIPS core, they are separated by commas.

Control
(instruction formats)

B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Branch on integer compare B_ (<, >, <=,
>=, =, not=)

BEQ, BNE, B_Z
(<, >, <=, >=)

COMB, COMIB BC BR_Z, BPcc (<,
>, <=, >=, =,
not=)

Branch on fl oating-point
compare

FB_(<, >, <=,
>=, =, not=)

BC1T, BC1F FSTWX f0;
LDW t; BB t

BC FBPfcc (<, >,
<=, >=, =,...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...
Call, call register BSR JAL, JALR BL, BLE BL, BLA,

BCLRL, BCCTRL
CALL, JMPL

Trap CALL_PAL
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL REI JR; ERET RFI, RFIR RFI DONE, RETRY,
RETURN

 E.3 Instructions: the MIPS Core Subset E-11

E-12 Appendix E A Survey of RISC Architectures

test condition codes to determine all possible unsigned and signed relations. Float-
ing point uses separate condition codes to encode the IEEE 754 conditions, requiring
a fl oating-point compare instruction. Version 9 expanded SPARC branches in four
ways: a separate set of condition codes for 64-bit opera tions; a branch that tests the
contents of a register and branches if the value is =, not=, <, <=, >=, or <= 0 (see MIPS
below); three more sets of fl oating-point condition codes; and branch instructions
that encode static branch predic tion.

PowerPC also uses four condition codes—less than, greater than, equal, and
summary overfl ow—but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without confl ict, essentially
giving PowerPC eight extra 4-bit registers. Any of these eight condi tion codes can
be the target of a compare instruction, and any can be the source of a conditional
branch. The integer instructions have an option bit that behaves as if the integer op is

Floating point
(instruction formats) R-R R-R R-R R-R R-R

Instruction name Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Add single, double ADDS, ADDT ADD.S, ADD.D FADD FADD/dbl FADDS, FADD FADDS, FADDD
Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB FSUB/dbl FSUBS, FSUB FSUBS, FSUBD
Multiply single, double MULS, MULT MUL.S, MUL.D FMPY FMPY/dbl FMULS, FMUL FMULS, FMULD
Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV, FDIV/dbl FDIVS, FDIV FDIVS, FDIVD
Compare CMPT_ (=, <,

<=, UN)
C_.S, C_.D (<, >,
<=, >=, =,...)

FCMP, FCMP/dbl
(<, =, >)

FCMP FCMPS, FCMPD

Move R-R ADDT Fd, F31, Fs MOV.S, MOV.D FCPY FMV FMOVS/D/Q
Convert (single, double,
integer) to (single,
double, integer)

CVTST, CVTTS,
CVTTQ, CVTQS,
CVTQT

CVT.S.D, CVT.
D.S, CVT.S.W,
CVT.D.W, CVT.
W.S, CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—, FRSP, —,
FCTIW,—, —

FSTOD, FDTOS,
FSTOI, FDTOI,
FITOS, FITOD

Conventions Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0
Return address register (any) r31 r2, r31 link (special) r31

No-op LDQ_U r31,... SLL r0, r0, r0 OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0
Move R-R integer BIS..., r31,... ADD..., r0,... OR..., r0,... OR rx, ry, ry OR..., r0,...
Operand order OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd OP Rd, Rs1, Rs2 OP Rs1, Rs2, Rd

FIGURE E.3.4 Desktop RISC fl oating-point instructions equivalent to MIPS core. Dashes mean the operation is not available
in that architecture, or not synthesized in a few instructions. If there are several choices of instructions equivalent to MIPS core, they are
separated by commas.

FIGURE E.3.5 Conventions of desktop RISC architectures equivalent to MIPS core.

followed by a compare to zero that sets the fi rst condition “regis ter.” Pow erPC also
lets the second “register” be optionally set by fl oating-point instructions. PowerPC
provides logical operations among these eight 4-bit condition code registers (CRAND,
CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more complex condi tions to be
tested by a single branch.

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set on less than instructions (SLT, SLTI,
SLTU, SLTIU) compare two operands and then set the destination register to 1 if
less and to 0 otherwise. These instructions are enough to syn thesize the full set of
relations. Because of the popularity of comparisons to 0, MIPS includes special
compare and branch instructions for all such comparisons: greater than or equal to
zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ), and less
than zero (BLTZ). Of course, equal and not equal to zero can be synthe sized using
r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for fl oating point
with sepa rate fl oating-point compare and branch instructions; MIPS IV expanded
this to eight fl oating-point condition codes, with the fl oating point comparisons
and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com-
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds and
to 0 other wise. The branch instructions compare one register to 0 (BEQ, BGE, BGT,
BLE, BLT, BNE) or its least signifi cant bit to 0 (BLBC, BLBS) and then branch if the
condition holds.

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16

Data transfer (instruction formats) DT DT DT DT DT

Load byte signed LDRSB LDRSB MOV.B LDB LB
Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU
Load halfword signed LDRSH LDRSH MOV.W LDH LH
Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU
Load word LDR LDR MOV.L LD LW
Store byte STRB STRB MOV.B STB SB
Store halfword STRH STRH MOV.W STH SH
Store word STR STR MOV.L ST SW
Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE

FIGURE E.3.6 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthesize
a MIPS instruction is shown separated by semicolons. Note that fl oating point is generally not defi ned for the embedded RISCs. Thumb and
MIPS-16 are just 16-bit instruction subsets of the ARM and MIPS architec tures, so machines can switch modes and execute the full instruction
set. We use —1 to show sequences that are avail able in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.

 E.3 Instructions: the MIPS Core Subset E-13

E-14 Appendix E A Survey of RISC Architectures

PA-RISC has many branch options, which we’ll see in Section E.8. The most
straightforward is a compare and branch instruc tion (COMB), which compares two
registers, branches depending on the standard relations, and then tests the least
signifi cant bit of the result of the comparison.

ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one oper and from the other and the differ ence
sets the condition codes. Compare negative (CMN) adds one operand to the other, and
the sum sets the condition codes. TST performs logical AND on the two operands to
set all condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three
condition codes. Like SPARC, the conditional version of the ARM branch instruc-
tion tests condition codes to determine all possible unsigned and signed relations.

Arithmetic/logical
(instruction formats)

R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16

Add ADD ADD ADD ADD, ADDI, ADD3 ADDU, ADDIU

Add (trap if overfl ow) ADDS; SWIVS ADD; BVC .+4; SWI ADDV ADDV, ADDV3 —1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overfl ow) SUBS; SWIVS SUB; BVC .+1; SWI SUBV SUBV —1

Multiply MUL MUL MUL MUL MULT, MULTU

Multiply (trap if overfl ow) —

Divide — — DIV1, DIVoS,
DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overfl ow) — — —

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR

Load high part register — — SETH —1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI, SLL3 SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI, SRL3 SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI, SRA3 SRAV, SRA

Compare CMP,CMN,
TST,TEQ

CMP, CMN, TST CMP/cond,
TST

CMP/I, CMPU/I CMP/I2, SLT/I,
SLT/IU

FIGURE E.3.7 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. Such a sequence of instruc tions is shown separated by semicolons.
If there are several choices of instructions equivalent to MIPS core, they are separated by commas. Thumb and MIPS-16 are just 16-bit
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruction set. We use —1 to show
sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only
in 16-bit mode of Thumb or MIPS-16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with
superscript 3 are just a variation of a move instruction, such as LSR3 .

As we shall see in Section E.9, one unusual fea ture of ARM is that every instruction
has the option of executing conditionally depending on the condition codes. (This
bears simi larities to the annulling option of PA-RISC, seen in Section E.8.)

Not surprisingly, Thumb follows ARM. The differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare
instructions. Two branch instructions decide to branch if either the T bit is
1 (BT) or the T bit is 0 (BF). The two fl avors of branches allow fewer comparison
instructions.

Mitsubishi M32R also offers a single condition code bit (C) used for signed and
unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less than
the other or not, similar to the MIPS set on less than instructions. Two branch
instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also includes
instructions to branch on equality or inequality of registers (BEQ and BNE) and all
relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ). Unlike BC and
BNC, these last instructions are all 32 bits wide.

MIPS-16 keeps set on less than instructions (SLT, SLTI, SLTU, SLTIU), but
instead of putting the result in one of the eight regis ters, it is placed in a special register
named T. MIPS-16 is always implemented in machines that also have the full 32-bit
MIPS instructions and registers; hence, register T is really reg ister 24 in the full MIPS
architecture. The MIPS-16 branch instructions test to see if a reg ister is or is not equal
to zero (BEQZ and BNEZ). There are also instructions that branch if regis ter T is or is

Conventions ARM v.4 Thumb SuperH M32R MIPS-16

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV r0, r0 MOV r0, r0 NOP NOP SLL r0, r0

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C

Instruction name ARM v.4 Thumb SuperH M32R MIPS-16

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE, BC, BNC, B__Z BEQZ2, BNEZ2, BTEQZ2,
BTNEZ2

Jump, jump register MOV pc, ri MOV pc, ri BRA, JMP BRA, JMP B2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

Trap SWI SWI TRAPA TRAP BREAK

Return from interrupt MOVS pc, r14 —1 RTS RTE —1

FIGURE E.3.8 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS-16 are just 16-bit instruction
subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruc tion set. We use —1 to show sequences
that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16. The superscript 2 shows new instructions found only in 16-bit
mode of Thumb or MIPS-16, such as BTEQZ2.

FIGURE E.3.9 Conventions of embedded RISC instructions equivalent to MIPS core.

 E.3 Instructions: the MIPS Core Subset E-15

not equal to zero (BTEQZ and BTNEZ). To test if two registers are equal, MIPS added
compare instructions (CMP, CMPI) that compute the exclusive OR of two registers and
place the result in register T. Compare was added since MIPS-16 left out instructions
to compare and branch if registers are equal or not (BEQ and BNE).

Figures E.3.10 and E.3.11 summarize the schemes used for con ditional branches.

 E.4
Instructions: Multimedia Extensions of
the Desktop/Server RISCs

Since every desktop microprocessor by defi nition has its own graphical displays,
as transistor budgets increased it was inevi table that support would be added for
graphics operations. Many graphics systems use eight bits to represent each of the
three pri mary colors plus eight bits for the location of a pixel.

Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Number of condition code bits
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer, 4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer, 1 FP 1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP

Basic branch instructions
(integer and FP)

1 2 integer, 1 FP 7 integer 1 both 3 integer, 1 FP

Compare register with
register/const and branch

— =, not= =, not=, <, <=, >, >=,
even, odd

— —

Compare register to zero and
branch

=, not=, <, <=, >,
>=, even, odd

=, not=, <, <=,
>, >=

=, not=, <, <=, >, >=,
even, odd

— =, not=, <, <=, >, >=

FIGURE E.3.10 Summary of fi ve desktop RISC approaches to conditional branches. Floating-point branch on PA-RISC is
accomplished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP comparison
bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using r0 as the destination.

ARM v.4 Thumb SuperH M32R MIPS-16

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/const
and branch

— — =, >, >= =, not= —

Compare register to zero and branch — — =, >, >= =, not=, <, <=, >, >= =, not=

FIGURE E.3.11 Summary of fi ve embedded RISC approaches to conditional branches.

E-16 Appendix E A Survey of RISC Architectures

The addition of speakers and microphones for teleconferencing and video games
suggested support of sound as well. Audio sam ples need more than eight bits of
precision, but 16 bits are suffi cient.

Every microprocessor has special support so that bytes and halfwords take
up less space when stored in memory, but due to the infrequency of arithmetic
oper ations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justifi ed as a
graphical accelerator within the company, recognized that many graphics and
audio applications would perform the same operation on vectors of this data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partition ing the carry chains within a 64-bit ALU, it could per form simultaneous
operations on short vectors of eight 8-bit oper ands, four 16-bit operands, or two
32-bit operands. The cost of such partitioned ALUs was small. Applications that
lend them selves to such support include MPEG (video), games like DOOM (3-D
graphics), Adobe Photoshop (digital photography), and telecon ferencing (audio
and image processing).

Like a virus, over time such multimedia support has spread to nearly every desk-
top microprocessor. HP was the fi rst successful desktop RISC to include such sup-
port. As we shall see, this virus spread unevenly. The PowerPC is the only holdout,
and rumors are that it is “running a fever.”

These extensions have been called subword parallelism, vec tor, or SIMD (single-
instruction, multiple data) (see Chapter 7). Since Intel marketing uses SIMD
to describe the MMX exten sion of the 8086, that has become the popular name.
Figure E.4.1 summarizes the support by architecture.

From Figure E.4.1, you can see that in general MIPS MDMX works on eight
bytes or four halfwords per instruction, HP PA-RISC MAX2 works on four half-
words, SPARC VIS works on four halfwords or two words, and Alpha doesn’t do
much. The Alpha MAX opera tions are just byte versions of compare, min, max, and
absolute difference, leaving it up to software to isolate fi elds and perform parallel
adds, subtracts, and multiplies on bytes and halfwords. MIPS also added opera-
tions to work on two 32-bit fl oating-point operands per cycle, but they are consid-
ered part of MIPS V and not simply multimedia extensions (see Section E.7).

One feature not generally found in general-purpose microprocessors is saturating
operations. Saturation means that when a calculation overfl ows, the result is set to the
largest positive number or most negative number, rather than a mod ulo calcula tion
as in two’s complement arithmetic. Commonly found in digi tal signal processors (see
the next section), these saturating operations are helpful in routines for fi ltering.

These machines largely used existing register sets to hold operands: integer
registers for Alpha and HP PA-RISC and fl oat ing-point registers for MIPS and Sun.
Hence data transfers are accomplished with standard load and store instruc tions.
MIPS also added a 192-bit (3*64) wide register to act as an accumula tor for some
operations. By having three times the native data width, it can be partitioned to
accumulate either eight bytes with 24 bits per fi eld or four halfwords with 48 bits

 E.4 Instructions: Multimedia Extensions of the Desktop/Server RISCs E-17

per fi eld. This wide accumu lator can be used for add, subtract, and multiply/
add instruc tions. MIPS claims performance advantages of two to four times for the
accu mulator.

Perhaps the surprising conclusion of this table is the lack of consistency. The only
operations found on all four are the logical operations (AND, OR, XOR), which do
not need a partitioned ALU. If we leave out the frugal Alpha, then the only other
common operations are parallel adds and subtracts on four halfwords.

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a com-
piler that works well with multi media extensions of all desktop RISCs would be
challenging.

FIGURE E.4.1 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits), and
W for word (32 bits). Thus 8B means an operation on eight bytes in a single instruction. Pack and unpack use the notation 2*2W to mean
two operands each with two words. Note that MDMX has vector/scalar operations, where the sca lar is specifi ed as an element of one of
the vector registers. This table is a simplifi cation of the full mul timedia archi tectures, leaving out many details. For example, MIPS MDMX
includes instructions to multiplex between two operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes
instructions to set reg isters to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2 PowerPC SPARC VIS

Add/subtract 8B, 4H 4H 4H, 2W

Saturating add/sub 8B, 4H 4H

Multiply 8B, 4H 4B/H

Compare 8B (>=) 8B, 4H (=,<,<=) 4H, 2W (=, not=, >, <=)

Shift right/left 8B, 4H 4H

Shift right arithmetic 4H 4H

Multiply and add 8B, 4H

Shift and add
(saturating)

4H

And/or/xor 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W

Absolute difference 8B 8B

Max/min 8B, 4W 8B, 4H

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H, 2*4H->8B 2*4H->8B 2W->2H, 2W->2B,
4H->4B

Unpack/merge 2B->2W, 4B->4H 2*4B->8B, 2*2H->4H 4B->4H, 2*4B->8B

Permute/shuffl e 8B, 4H 4H

Register sets Integer Fl. Pt. + 192b Acc. Integer Fl. Pt.

E-18 Appendix E A Survey of RISC Architectures

 E.5
Instructions: Digital Signal-Processing
Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) archi tecture is support
for integer multiply-accumulate. The multi plies tend to be on shorter words than
regular integers, such as 16 bits, and the accumulator tends to be on longer words,
such as 64 bits. The reason for multiply-accumulate is to effi ciently imple ment
digital fi lters, common in DSP applications. Since Thumb and MIPS-16 are subset
architectures, they do not pro vide such support. Instead, programmers should use
the DSP or multimedia extensions found in the 32-bit mode instruc tions of ARM
and MIPS-64.

Figure E.5.1 shows the size of the multiply, the size of the accumulator, and
the operations and instruction names for the embedded RISCs. Machines with
accumulator sizes greater than 32 and less than 64 bits will force the upper bits to
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fi xed-point values if the operations overfl ow.

ARM v.4 Thumb SuperH M32R MIPS-16

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B —

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B —

Accumulator name Any GPR or pairs of GPRs — MACH, MACL ACC —

Operations 32B/64B product + 64B
accumulate signed/
unsigned

— 32B product + 42B/32B
accumulate (operands in
memory); 64B product
+ 64B/48B accumulate
(operands in memory); clear
MAC

32B/48B product +
64B accumulate,
round, move

—

Corresponding
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L, MAC.LS,
CLRMAC

MACHI/MACLO,
MACWHI/MACWLO,
RAC, RACH, MVFACHI/
MVFACLO, MVTACHI/
MVTACLO

—

FIGURE E.5.1 Summary of fi ve embedded RISC approaches to multiply-accumulate.

 E.5 Instructions: Digital Signal-Processing Extensions of the Embedded RISCs E-19

E-20 Appendix E A Survey of RISC Architectures

 E.6
Instructions: Common Extensions
to MIPS Core

Figures E.6.1 through E.6.7 list instructions not found in Figures E.3.5 through
E.3.11 in the same four categories. Instructions are put in these lists if they appear in
more than one of the standard architectures. The instructions are defi ned using the
hardware description language defi ned in Figure E.6.8.

Although most of the categories are self-explanatory, a few bear comment:

The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see
Section 2.11 in Chapter 2).

The 64-bit data transfer and operation rows show how MIPS, PowerPC,
and SPARC defi ne 64-bit addressing and integer operations. SPARC simply
defi nes all register and addressing operations to be 64 bits, adding only special

■

■

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Atomic swap R/M
(for locks and
semaphores)

Temp<---Rd; Rd<–Mem[x];
Mem[x]<---Temp

LDL/Q_L;
STL/Q_C

LL; SC —(see D.8) LWARX;
STWCX

CASA, CASX

Load 64-bit integer Rd<–64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer
unsigned

Rd32..63<–32 Mem[x];
Rd0..31<–32 0

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer
signed

Rd32..63<–32 Mem[x]; 32
Rd0..31<–32 Mem[x]0

LDL LW LDW; EXTRD,S
63, 8

LWA LDSW

Prefetch Cache[x]<–hint FETCH,
FETCH_M*

PREF, PREFX LDD, r0
LDW, r0

DCBT,
DCBTST

PRE-FETCH

Load coprocessor Coprocessor<– Mem[x] — LWCi CLDWX, CLDWS — —

Store coprocessor Mem[x]<– Coprocessor — SWCi CSTWX, CSTWS — —

Endian (Big/little endian?) Either Either Either Either Either

Cache fl ush (Flush cache block at this
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared memory
synchronization

(All prior data transfers
complete before next data
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

FIGURE E.6.1 Data transfer instructions not found in MIPS core but found in two or more of the fi ve desktop
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for semaphores, allowing
data to be read from memory, modifi ed, and stored without fear of interrupts or other machines accessing the data in a multiprocessor (see
Chapter 2). Prefetching in the Alpha to external caches is accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31,
and LD_Y A. F31 is used in the Alpha 21164 (see Bhandarkar [1995], p. 190).

instructions for 64-bit shifts, data transfers, and branches. MIPS includes the
same extensions, plus it adds separate 64-bit signed arithmetic instructions.
PowerPC adds 64-bit right shift, load, store, divide, and compare and has a
separate mode determining whether instructions are interpreted as 32- or
64-bit operations; 64-bit operations will not work in a machine that only

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

64-bit integer
arithmetic ops

Rd<–64Rs1 op64 Rs2 ADD,
SUB, MUL

DADD, DSUB
DMULT, DDIV

ADD, SUB,
SHLADD, DS

ADD, SUBF,
MULLD, DIVD

ADD, SUB,
MULX,
S/UDIVX

64-bit integer
logical ops

Rd<–64Rs1 op64 Rs2 AND, OR,
XOR

AND, OR,
XOR

AND, OR, XOR AND, OR, XOR AND, OR,
XOR

64-bit shifts Rd<–64Rs1 op64 Rs2 SLL,
SRA, SRL

DSLL/V,
DSRA/V,
DSRL/V

DEPD,Z
EXTRD,S
EXTRD,U

SLD, SRAD,
SRLD

SLLX, SRAX,
SRLX

Conditional move if (cond) Rd<–Rs CMOV_ MOVN/Z SUBc, n; ADD — MOVcc, MOVr

Support for
multiword integer
add

CarryOut, Rd <– Rs1 +
Rs2 + OldCarryOut

— ADU; SLTU;
ADDU, DADU;
SLTU; DADDU

ADDC ADDC, ADDE ADDcc

Support for
multiword integer
sub

CarryOut, Rd <– Rs1
Rs2 + OldCarryOut

— SUBU; SLTU;
SUBU,
DSUBU;
SLTU; DSUBU

SUBB SUBFC, SUBFE SUBcc

And not Rd <– Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN

Or not Rd <– Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<–Rs10..15 +
(Const<<16);

— — ADDIL (R-I) ADDIS (R-I) —

Coprocessor
operations

(Defi ned by coprocessor) — COPi COPR,i — IMPDEPi

FIGURE E.6.2 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve desktop
architectures.

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Optimized delayed
branches

(Branch not always
delayed)

— BEQL, BNEL,
B_ZL (<, >,
<=, >=)

COMBT, n,
COMBF, n

— BPcc, A,
FPBcc, A

Conditional trap if (COND) {R31<---PC; PC
<–0..0#i}

— T_,,T_I (=,
not=, <, >,
<=, >=)

SUBc, n; BREAK TW, TD, TWI,
TDI

Tcc

No. control
registers

Misc. regs (virtual
memory, interrupts, . . .)

6 equiv. 12 32 33 29

FIGURE E.6.3 Control instructions not found in MIPS core but found in two or more of the fi ve desktop
architectures.

 E.6 Instructions: Common Extensions to MIPS Core E-21

E-22 Appendix E A Survey of RISC Architectures

supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and
operations in version 2.0.

The “prefetch” instruction supplies an address and hint to the implementation
about the data. Hints include whether the data is likely to be read or written
soon, likely to be read or written only once, or likely to be read or written
many times. Prefetch does not cause exceptions. MIPS has a version that
adds two registers to get the address for fl oating-point programs, unlike
nonfl oating-point MIPS programs.

In the “Endian” row, “Big/little” means there is a bit in the program status
regis ter that allows the processor to act either as big endian or little endian
(see Appen dix B). This can be accomplished by simply comple menting some
of the least signifi cant bits of the address in data transfer instructions.

■

■

Name Defi nition Alpha MIPS-64 PA-RISC 2.0 PowerPC SPARC v.9

Multiply and add Fd <– (Fs1 × Fs2)
+ Fs3

— MADD.S/D FMPYFADD sgl/dbl FMADD/S

Multiply and sub Fd <– (Fs1 × Fs2)
– Fs3

— MSUB.S/D FMSUB/S

Neg mult and add Fd <– -((Fs1 × Fs2)
+ Fs3)

— NMADD.S/D FMPYFNEG sgl/dbl FNMADD/S

Neg mult and sub Fd <– -((Fs1 × Fs2)
– Fs3)

— NMSUB.S/D FNMSUB/S

Square root Fd <– SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<–Fs FCMOV_ MOVF/T,
MOVF/T.S/D

FTESTFCPY — FMOVcc

Negate Fd <– Fs ^
x80000000

CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q

Absolute value Fd <– Fs &
x7FFFFFFF

— ABS.S/D FABS/dbl FABS FABSS/D/Q

FIGURE E.6.4 Floating-point instructions not found in MIPS core but found in two or more of the fi ve desktop
architectures.

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16

Atomic swap R/M (for
semaphores)

Temp<–Rd; Rd<–Mem[x];
Mem[x]<–Temp

SWP, SWPB —1 (see TAS) LOCK; UNLOCK —1

Memory management unit Paged address translation Via coprocessor
instructions

—1 LDTLB —1

Endian (Big/little endian?) Either Either Either Big Either

FIGURE E.6.5 Data transfer instructions not found in MIPS core but found in two or more of the fi ve embedded
architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS-16.

The “shared memory synchronization” helps with cache-coherent multi pro-
cessors: all loads and stores executed before the instruction must complete
before loads and stores after it can start. (See Chapter 2.)

The “coprocessor operations” row lists several categories that allow for the
pro cessor to be extended with special-purpose hardware.

■

■

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI

Support for multiword integer add CarryOut, Rd <--- Rd + Rs1 +
OldCarryOut

ADCS ADC ADDC ADDX —1

Support for multiword integer sub CarryOut, Rd <--- Rd – Rs1 +
OldCarryOut

SBCS SBC SUBC SUBX —1

Negate Rd <--- 0 – Rs1 NEG2 NEG NEG NEG

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT

Move Rd <--- Rs1 MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >> Rd0. . . i–1 <---
Rs31–i. . . 31

ROR ROR ROTC

And not Rd <--- Rs1 & ~(Rs2) BIC BIC

Name Defi nition ARM v.4 Thumb SuperH M32R MIPS-16

No. control registers Misc. registers 21 29 9 5 36

FIGURE E.6.6 Arithmetic/logical instructions not found in MIPS core but found in two or more of the fi ve embed-
ded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb or MIPS-16. The
superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS-16, such as NEG2 .

FIGURE E.6.7 Control information in the fi ve embedded architectures.

One difference that needs a longer explanation is the optimized branches. Figure
E.6.9 shows the options. The Alpha and PowerPC offer branches that take effect
immediately, like branches on earlier architectures. To accelerate branches, these
machines use branch prediction (see Chapter 4). All the rest of the desktop RISCs
offer delayed branches (see Appendix B). The embedded RISCs generally do not
support delayed branch, with the exception of SuperH, which has it as an option.

The other three desktop RISCs provide a version of delayed branch that makes it
easier to fi ll the delay slot. The SPARC “annulling” branch executes the instruction
in the delay slot only if the branch is taken; otherwise the instruction is annulled.
This means the instruction at the target of the branch can safely be copied into the
delay slot, since it will only be executed if the branch is taken. The restrictions are
that the target is not another branch and that the target is known at compile time.
(SPARC also offers a nondelayed jump because an unconditional branch with the
annul bit set does not execute the following instruction.) Later versions of the MIPS

 E.6 Instructions: Common Extensions to MIPS Core E-23

E-24 Appendix E A Survey of RISC Architectures

Notation Meaning Example Meaning

<- - Data transfer. Length of transfer is given by
the destination’s length; the length is specifi ed
when not clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1.
Registers have a fi xed length, so
transfers shorter than the register
size must indicate which bits are
used.

M Array of memory accessed in bytes. The
starting address for a transfer is indicated as
the index to the memory array.

Regs[R1]<--M[x]; Place contents of memory location x
into R1. If a transfer starts at M[i]
and requires 4 bytes, the transferred
bytes are M[i], M[i+1], M[i+2],
and M[i+3].

<- -n Transfer an n-bit fi eld, used whenever length
of transfer is not clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory
location x to memory location y. The
length of the two sides should match.

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are
numbered from MSB starting at 0.)

Xm..n Subscript selects a fi eld. Regs[R3]24..31<--M[x]; Moves contents of memory location x
into low-order byte of R3.

Xn Superscript replicates a bit fi eld. Regs[R3]0..23<--024; Sets high-order three bytes of R3 to 0.

Concatenates two fi elds. Regs[R3]<--240## M[x];
F2##F3<--64M[x];

Moves contents of location x into low
byte of R3; clears upper three bytes.
Moves 64 bits from memory starting
at location x; 1st 32 bits go into F2,
2nd 32 into F3.

*, & Dereference a pointer; get the address of a
variable.

p*<--&x; Assign to object pointed to by p the
address of the variable x.

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, >, <,
>=, <=

C relational operators; equal, not equal,
greater, less, greater or equal, less or equal.

(Regs[R1]== Regs[R2]) &
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the
contents of R2 and contents of R3 do
not equal the contents of R4.

&, |, ^, ! C bitwise logical operations: AND, OR,
exclusive OR, and complement.

(Regs[R1] & (Regs[R2]|
Regs[R3]))

Bitwise AND of R1 and bitwise OR of
R2 and R3.

FIGURE E.6.8 Hardware description notation (and some standard C operators).

(Plain) branch Delayed branch Annulling delayed branch

Found in architectures Alpha, PowerPC, ARM, Thumb,
SuperH, M32R, MIPS-16

MIPS-64, PA-RISC,
SPARC, SuperH

MIPS-64, SPARC PA-RISC

Execute following instruction Only if branch not taken Always Only if branch
taken

If forward branch not
taken or backward
branch taken

FIGURE E.6.9 When the instruction following the branch is executed for three types of branches.

architecture have added a branch likely instruction that also annuls the following
instruction if the branch is not taken. PA-RISC allows almost any instruction to
annul the next instruction, including branches. Its “nul lifying” branch option will
execute the next instruction depending on the direc tion of the branch and whether
it is taken (i.e., if a forward branch is not taken or a backward branch is taken).
 Presumably this choice was made to optimize loops, allowing the instructions
following the exit branch and the looping branch to exe cute in the common case.

Now that we have covered the similarities, we will focus on the unique fea tures
of each architecture. We fi rst cover the desktop/server RISCs, ordering them by
length of description of the unique features from shortest to longest, and then the
embedded RISCs.

 E.7 Instructions Unique to MIPS-64

MIPS has gone through fi ve generations of instruction sets, and this evolution
has generally added features found in other architectures. Here are the salient
unique features of MIPS, the fi rst several of which were found in the original
instruction set.

Nonaligned Data Transfers
MIPS has special instructions to handle misaligned words in memory. A rare event
in most programs, it is included for supporting 16-bit minicomputer applications
and for doing memcpy and strcpy faster. Although most RISCs trap if you try to
load a word or store a word to a misaligned address, on all architectures misaligned
words can be accessed without traps by using four load byte instructions and then
assembling the result using shifts and logical ORs. The MIPS load and store word
left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in just two
instructions: LWL loads the left portion of the register and LWR loads the right por-
tion of the register. SWL and SWR do the corresponding stores. Figure E.7.1 shows
how they work. There are also 64-bit versions of these instructions.

Remaining Instructions
Below is a list of the remaining unique details of the MIPS-64 architecture:

NOR—This logical instruction calculates ~(Rs1 | Rs2).

Constant shift amount—Nonvariable shifts use the 5-bit constant fi eld shown
in the register-register format in Figure E.2.3.

SYSCALL—This special trap instruction is used to invoke the operating
system.

■

■

■

 E.7 Instructions Unique to MIPS-64 E-25

E-26 Appendix E A Survey of RISC Architectures

Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers.

Jump/call not PC-relative—The 26-bit address of jumps and calls is not added
to the PC. It is shifted left two bits and replaces the lower 28 bits of the PC.
This would only make a difference if the program were located near a 256 MB
boundary.

TLB instructions—Translation-lookaside buffer (TLB) misses were handled
in software in MIPS I, so the instruction set also had instructions for
manipulating the registers of the TLB (see Chapter 7 for more on TLBs).
These registers are considered part of the “system coprocessor.” Since MIPS I

■

■

■

Case 1
 Before

M[100]

100 101 102 103

D A V

M[104]

R2

R2

After

After

104 105 106 107

E

E

OJ H N

N

LWL R2, 101:

D A V

R2

LWR R2, 104:

D A V

Case 2
 Before

M[200]

200 201 202 203

D

M[204]

R4

R4

After

After

204 205 206 207

EVA

E

OJ H N

N

LWL R4, 203:

D O H

R4

LWR R4, 206:

D A V

FIGURE E.7.1 MIPS instructions for unaligned word reads. This fi gure assumes operation in
big-endian mode. Case 1 fi rst loads the three bytes 101, 102, and 103 into the left of R2, leaving the least
signifi cant byte undisturbed. The following LWR simply loads byte 104 into the least signifi cant byte of
R2, leaving the other bytes of the register unchanged using LWL. Case 2 fi rst loads byte 203 into the most
signifi cant byte of R4, and the following LWR loads the other three bytes of R4 from memory bytes 204,
205, and 206. LWL reads the word with the fi rst byte from memory, shifts to the left to discard the unneeded
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the fi rst byte to the lowest-order
byte of the word. The following LWR addresses the last byte, right-shifts to discard the unneeded byte(s),
and fi nally changes only those bytes of Rd. The byte(s) transferred are from the last byte up to the highest-
order byte of the word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is
the inverse of LWR. Changing to little-endian mode fl ips which bytes are selected and discarded. (If big-little,
left-right, load-store seem confusing, don’t worry; they work!)

the instructions differ among versions of the architecture; they are more part
of the implementations than part of the instruction set architecture.

Reciprocal and reciprocal square root—These instructions, which do not
follow IEEE 754 guidelines of proper rounding, are included apparently for
applications that value speed of divide and square root more than they value
accuracy.

Conditional procedure call instructions—BGEZAL saves the return address
and branches if the content of Rs1 is greater than or equal to zero, and
BLTZAL does the same for less than zero. The purpose of these instructions
is to get a PC-relative call. (There are “likely” versions of these instructions
as well.)

Parallel single precision fl oating-point operations—As well as extending
the architecture with parallel integer operations in MDMX, MIPS-64 also
supports two parallel 32-bit fl oating-point operations on 64-bit registers
in a single instruction. “Paired single” operations include add (ADD.PS),
subtract (SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL,
CVT.S.PU), negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS,
MOVF.PS, MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and
multiply-subtract (MSUB.PS).

There is no specifi c provision in the MIPS architecture for fl oating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementations
of fl oating point allow this to happen by checking to see if arithmetic interrupts are
possible early in the cycle. Normally, exception detection would force serialization
of execution of integer and fl oating-point operations.

 E.8 Instructions Unique to Alpha

The Alpha was intended to be an architecture that made it easy to build high-
 performance implementations. Toward that goal, the architects originally made
two controversial decisions: impre cise fl oating-point exceptions and no byte or
halfword data transfers.

To simplify pipelined execution, Alpha does not require that an exception act
as if no instructions past a certain point are exe cuted and that all before that point
have been executed. It sup plies the TRAPB instruction, which stalls until all prior
arithmetic instructions are guaranteed to complete without incurring arith metic
exceptions. In the most conservative mode, placing one TRAPB per exception-
causing instruction slows execution by roughly fi ve times but provides precise
exceptions (see Darcy and Gay [1996]).

■

■

■

 E.8 Instructions Unique to Alpha E-27

E-28 Appendix E A Survey of RISC Architectures

Code that does not include TRAPB does not obey the IEEE 754 fl oating-point
standard. The reason is that parts of the standard (NaNs, infi nities, and denormals)
are implemented in software on Alpha, as they are on many other microprocessors.
To implement these operations in software, however, programs must fi nd the
offending instruction and operand values, which cannot be done with imprecise
interrupts!

When the architecture was developed, it was believed by the architects that byte
loads and stores would slow down data transfers. Byte loads require an extra shifter
in the data trans fer path, and byte stores require that the memory system per form a
read-modify-write for memory systems with error correction codes, since the new
ECC value must be recalculated. This omission meant that byte stores required the
sequence load word, replaced the desired byte, and then stored the word. (Inconsis-
tently, fl oating-point loads go through considerable byte swap ping to convert the
obtuse VAX fl oating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes
an elaborate set of byte manipulation instructions: extract fi eld and zero rest of a
register (EXTxx), insert fi eld (INSxx), mask rest of a register (MSKxx), zero fi elds
of a regis ter (ZAP), and compare multiple bytes (CMPGE).

Apparently, the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of the
Alpha chip (21164A), the architecture does include loads and stores for bytes and
half words.

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture:

PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all priv ileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged archi tecture library) code is used for TLB management, atomic memory
operations, and some operating system primitives. PAL code is called via the
CALL_PAL instruction.

No divide—Integer divide is not supported in hardware.

“Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least signifi cant three bits. Extract instructions then
select the desired unaligned word using the lower address bits. These instruc -
tions are similar to LWL/R, SWL/R in MIPS.

Floating-point single precision represented as double preci sion—Single
precision data is kept as conventional 32-bit formats in memory but is con-
verted to 64-bit double preci sion format in registers.

Floating-point register F31 is fi xed at zero—To simplify comparisons to zero.

■

■

■

■

■

VAX fl oating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single and double precision formats
called S and T, Alpha supports the VAX single and double precision formats
called F and G, but not VAX format D. (D had too narrow an exponent fi eld
to be useful for double precision and was replaced by G in VAX code.)

Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing
zeros (CTTZ), and count the number of ones in a word (CTPOP). Originally
found on Cray computers, these instructions help with decryption.

 E.9 Instructions Unique to SPARC v.9

Several features are unique to SPARC.

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffi c on procedure calls. Several banks of registers are used, with
a new one allocated on each procedure call. Although this could limit the depth of
proce dure calls, the limitation is avoided by operating the banks as a cir cular buffer,
providing unlimited depth. The knee of the cost/performance curve seems to be six
to eight banks.

SPARC can have between 2 and 32 windows, typically using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters. (Given that
each window has 16 unique reg isters, an implementation of SPARC can have as
few as 40 phys ical registers and as many as 520, although most have 128 to 136, so
far.) Rather than tie window changes with call and return instruc tions, SPARC has
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window
of the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer
to allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruc tion, with the
source registers from the callee’s window and the destination regis ter in the caller’s
window. This auto matically deallocates the stack frame. Compilers can also make
use of it for generating the callee’s fi nal return value.

The danger of register windows is that the larger number of registers could slow
down the clock rate. This was not the case for early implementations. The SPARC
architecture (with regis ter windows) and the MIPS R2000 architecture (without)

■

■

 E.9 Instructions Unique to SPARC v.9 E-29

have been built in several technologies since 1987. For several genera tions, the
SPARC clock rate has not been slower than the MIPS clock rate for implementa-
tions in similar technologies, probably because cache access times dominate
register access times in these implementations. The current-generation machines
took different implementation strategies—in order versus out of order—and it’s
unlikely that the number of registers by them selves determined the clock rate
in either machine. Recently, other architectures have included register win dows:
Tensilica and IA-64.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to iden tify memory accesses to input/
output devices, or to control reg isters for devices such as the cache and memory
management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level
of traps to at least four levels, allowing the win dow overfl ow and underfl ow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby
making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction.
The designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this infl uenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor, et al. [1986] and Ungar, et al.
[1984]). A small amount of support is offered for tagged data types with opera tions
for addition, subtraction, and, hence, comparison. The two least signifi cant bits
indicate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc
set the overfl ow bit if either operand is not tagged as an integer or if the result is
too large. A subsequent conditional branch or trap instruction can decide what to
do. (If the operands are not integers, software recovers the operands, checks the
types of the operands, and invokes the correct operation based on those types.) It
turns out that the misaligned memory access trap can also be put to use for tagged
data, since loading from a pointer with the wrong tag can be an invalid access.
Figure E.9.1 shows both types of tag support.

E-30 Appendix E A Survey of RISC Architectures

Overlapped Integer and Floating-Point Operations
SPARC allows fl oating-point instructions to overlap execution with integer instruc-
tions. To recover from an interrupt during such a situation, SPARC has a queue of
pending fl oating-point instructions and their addresses. RDPR allows the processor
to empty the queue. The second fl oating-point feature is the inclu sion of fl oating-
point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

The remaining unique features of SPARC are as follows:

JMPL uses Rd to specify the return address register, so specifying r31 makes
it similar to JALR in MIPS and specify ing r0 makes it like JR.

LDSTUB loads the value of the byte into Rd and then stores FF16 into
the addressed byte. This version 8 instruction can be used to implement
synchronization (see Chapter 2).

CASA (CASXA) atomically compares a value in a processor register to a
32-bit (64-bit) value in memory; if and only if they are equal, it swaps the
value in memory with the value in a second processor register. This version 9

■

■

■

FIGURE E.9.1 SPARC uses the two least signifi cant bits to encode dif ferent data types for
the tagged arithmetic instructions. a. Integer arith metic takes a single cycle as long as the operands and
the result are integers. b. The misaligned trap can be used to catch invalid memory accesses, such as trying to use
an integer as a pointer. For languages with paired data like LISP, an offset of –3 can be used to access the even
word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

a. Add, sub, or
compare integers
(coded as 00)

TADDcc r7, r5, r6

00

00

00

(R5)

(R7)

(R6)

b. Loading via
valid pointer
(coded as 11)

LD rD, r4, –3
–

11

00

3

(R4)

(Word
address)

 E.9 Instructions Unique to SPARC v.9 E-31

E-32 Appendix E A Survey of RISC Architectures

instruction can be used to construct wait-free synchronization algorithms that
do not require the use of locks.

XNOR calculates the exclusive OR with the complement of the second operand.

BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler
can give hints to the machine about whether a branch is likely to be taken
or not.

ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how
this is used for proper execution of aggregate returning procedures in C.

POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture.

Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will
be executed speculatively.

Quadruple precision fl oating-point arithmetic and data trans fer allow the
fl oating-point registers to act as eight 128-bit registers for fl oating-point
oper ations and data transfers.

Multiple precision fl oating-point results for multiply mean that two single
precision operands can result in a double precision product and two double
precision operands can result in a quadruple precision product. These instruc-
tions can be useful in complex arithmetic and some models of fl oating-
point calculations.

 E.10 Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola 8800.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, the link doesn’t always have to be saved. Making the return address a special
register makes the return jump faster, since the hardware need not go through the
register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where the
program iterates a fi xed number of times. By using a special register, the branch

■

■

■

■

■

■

■

hardware can determine quickly whether a branch based on the count reg ister is
likely to branch, since the value of the register is known early in the exe cution cycle.
Tests of the value of the count register in a branch instruction will automatically
decrement the count reg ister.

Given that the count register and link register are already located with the hard-
ware that controls branches, and that one of the problems in branch predic tion
is getting the target address early in the pipeline (see Appendix B), the PowerPC
architects decided to make a second use of these registers. Either regis ter can hold a
target address of a conditional branch. Thus, PowerPC supplements its basic con-
ditional branch with two instructions that get the target address from these regis-
ters (BCLR, BCCTR).

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it gen erates a 0 in this case—but in base
+ index addressing it can be used as the index. The other unique features of the
PowerPC are as follows:

Load multiple and store multiple save or restore up to 32 registers in a single
instruction.

LSW and STSW permit fetching and storing of fi xed- and vari able-length
strings that have arbitrary alignment.

Rotate with mask instructions support bit fi eld extraction and insertion. One
version rotates the data and then per forms logical AND with a mask of ones,
thereby extracting a fi eld. The other version rotates the data but only places
the bits into the destination register where there is a corre sponding 1 bit in
the mask, thereby inserting a fi eld.

Algebraic right shift sets the carry bit (CA) if the operand is negative and any
1 bits are shifted out. Thus, a signed divide by any constant power of two that
rounds toward 0 can be accomplished with an SRAWI followed by ADDZE,
which adds CA to the register.

CBTLZ will count leading zeros.

SUBFIC computes (immediate – RA), which can be used to develop a one’s
or two’s complement.

Logical shifted immediate instructions shift the 16-bit immediate to the left
16 bits before performing AND, OR, or XOR.

■

■

■

■

■

■

■

 E.10 Instructions Unique to PowerPC E-33

E-34 Appendix E A Survey of RISC Architectures

 E.11 Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi cantly
in 2.0 with 64-bit extensions in 1996. PA-RISC perhaps has the most unusual
features of any desktop RISC machine. For example, it has the most addressing
modes and instruction formats, and, as we shall see, several instructions that are
really the combination of two simpler instructions.

Nullifi cation

As shown in Figure E.6.9, several RISC machines can choose not to execute the
instruction following a delayed branch to improve utilization of the branch slot.
This is called nullifi cation in PA-RISC, and it has been generalized to apply to any
arith metic/logical instruction as well as to all branches. Thus, an add instruction
can add two operands, store the sum, and cause the following instruc tion to be
skipped if the sum is zero. Like condi tional move instructions, nullifi cation allows
PA-RISC to avoid branches in cases where there is just one instruction in the then
part of an if statement.

A Cornucopia of Conditional Branches

Given nullifi cation, PA-RISC did not need to have separate condi tional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure E.11.1 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instruc tions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthe sized
in software. Instructions that shift one oper and 1, 2, or 3 bits and then add, trapping
or not on overfl ow, are useful in multiplies. (Alpha also includes instruc tions that
multi ply the second operand of adds and subtracts by 4 or by 8: S4ADD, S8ADD,
S4SUB, and S8SUB.) The divide step performs the critical step of nonrestoring
divide, adding or subtracting depending on the sign of the prior result. Magen-
heimer, et al. [1988] measured the size of operands in multiplies and divides to
show how well the multiply step would work. Using this data for C programs,
Muchnick [1988] found that by making special cases, the average multiply by a
constant takes 6 clock cycles and the mul tiply of variables takes 24 clock cycles.
PA- RISC has ten instructions for these operations.

The original SPARC architecture used similar optimizations, but with increasing
numbers of transistors the instruction set was expanded to include full multiply
and divide operations. PA-RISC gives some support along these lines by putting
a full 32-bit integer multiply in the fl oating-point unit; however, the inte ger data
must fi rst be moved to fl oating-point registers.

Decimal Operations
COBOL programs will compute on decimal values, stored as four bits per digit,
rather than converting back and forth between binary and decimal. PA-RISC has
instruc tions that will convert the sum from a normal 32-bit add into proper decimal
digits. It also pro vides logical and arithmetic operations that set the condition codes
to test for carries of digits, bytes, or halfwords. These opera tions also test whether
bytes or halfwords are zero. These opera tions would be useful in arithmetic on 8-bit
ASCII characters. Five PA-RISC instructions provide decimal support.

Remaining Instructions

Here are some remaining PA-RISC instructions:

Branch vectored shifts an index register left three bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements.

Extract and deposit instructions allow arbitrary bit fi elds to be selected from
or inserted into registers. Variations include whether the extracted fi eld is
sign-extended, whether the bit fi eld is specifi ed directly in the instruction or
indirectly in another register, and whether the rest of the register is set to zero
or left unchanged. PA-RISC has 12 such instructions.

■

■

Name Instruction Notation

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <-- PC + offset12}
COMIB Compare immediate

and branch
if (cond(imm5,Rs2)) {PC <-- PC + offset12}

MOVB Move and branch Rs2 <-- Rs1, if (cond(Rs1,0)) {PC <-- PC + offset12}
MOVIB Move immediate

and branch
Rs2 <-- imm5, if (cond(imm5,0)) {PC <-- PC + offset12}

ADDB Add and branch Rs2 <-- Rs1 + Rs2, if (cond(Rs1 + Rs2,0)) {PC <-- PC + offset12}
ADDIB Add immediate

and branch
Rs2 <-- imm5 + Rs2, if (cond(imm5 + Rs2,0)) {PC <-- PC + offset12}

BB Branch on bit if (cond(Rsp,0)) {PC <-- PC + offset12}
BVB Branch on variable bit if (cond(Rssar,0)) {PC <-- PC + offset12}

FIGURE E.11.1 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the 5-bit
immediate is called imm5. The 16 conditions are =, <, <=, odd, signed overfl ow, unsigned no overfl ow, zero or no overfl ow unsigned, never, and
their respective complements. The BB instruction selects one of the 32 bits of the reg ister and branches depending if its value is 0 or 1. The BVB
selects the bit to branch using the shift amount register, a special-purpose register. The subscript notation specifi es a bit fi eld.

 E.11 Instructions Unique to PA-RISC 2.0 E-35

E-36 Appendix E A Survey of RISC Architectures

To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in
register 1. The following data transfer instruction uses offset addressing to
add the lower 11 bits of the address to register 1. This pair of instructions
allows PA-RISC to add a 32-bit constant to a base register, at the cost of
changing regis ter 1.

PA-RISC has nine debug instructions that can set breakpoints on instruction
or data addresses and return the trapped addresses.

Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero.

Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits.

Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, a load with a desti nation of register 0 is defi ned to be a software-
controlled cache prefetch.

PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in
the cache. It also can suggest that on loads and stores, there is spatial locality
to prepare the cache for subsequent sequential accesses.

PA-RISC 2.0 also provides an optional branch target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch target stack, but hardware controls
whether or not these are valid.

Multiply/add and multiply/subtract are fl oating-point oper ations that can
launch two independent fl oating-point opera tions in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add introduced
in version 2.0 of PA-RISC.

 E.12 Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is the conditional
execution of instructions. Every instruction starts with a 4-bit fi eld that deter-
mines whether it will act as a nop or as a real instruction, depending on the condi-
tion codes. Hence, conditional branches are properly considered as conditionally
executing the unconditional branch instruction. Conditional exe cution allows

■

■

■

■

■

■

■

■

avoiding a branch to jump over a single instruction. It takes less code space and
time to simply conditionally execute one instruction.

The 12-bit immediate fi eld has a novel interpretation. The eight least signifi cant
bits are zero-extended to a 32-bit value, then rotated right the number of bits specifi ed
in the fi rst four bits of the fi eld multiplied by two. Whether this split actually catches
more immediates than a simple 12-bit fi eld would be an inter esting study. One
advantage is that this scheme can represent all powers of two in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted before
being operated on. The shift options are shift left logical, shift right logi cal, shift right
arithmetic, and rotate right. Once again, it would be interesting to see how often opera-
tions like rotate-and-add, shift-right-and-test, and so on occur in ARM programs.

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture:

Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single
instruction. These instructions can save and restore registers on procedure
entry and return. These instructions can also be used for block memory
copy—offering up to four times the bandwidth of a single register load-
store—and today, block copies are the most important use.

Reverse subtract—RSB allows the fi rst register to be sub tracted from the
immediate or shifted register. RSC does the same thing, but includes the
carry when calculating the difference.

Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned prod uct (UMULL).

No divide—Like the Alpha, integer divide is not supported in hardware.

Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures E.6.1 through E.6.4), it comes for free in the conditional exe-
cution of all ARM instructions, including SWI.

Coprocessor interface—Like many of the desktop RISCs, ARM defi nes a full
set of coprocessor instructions: data transfer, moves between general- purpose
and coprocessor registers, and coprocessor operations.

Floating-point architecture—Using the coprocessor inter face, a fl oating-point
architecture has been defi ned for ARM. It was implemented as the FPA10
coprocessor.

Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the PC
and the most signifi cant bit to determine if the mode is ARM (1) or Thumb (0).

■

■

■

■

■

■

■

■

 E.12 Instructions Unique to ARM E-37

 E.13 Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only a
few procedures dominate execution time, the hope is that this hybrid gets the best
of both worlds.

Although Thumb instructions are translated by the hardware into conven tional
ARM instructions for execution, there are sev eral restrictions. First, condi tional
execution is dropped from almost all instructions. Second, only the fi rst eight
registers are easily available in all instructions, with the stack pointer, link register,
and program counter used implicitly in some instructions. Third, Thumb uses a two-
operand format to save space. Fourth, the unique shifted immediates and shifted
second oper ands have disappeared and are replaced by separate shift instructions.
Fifth, the addressing modes are simplifi ed. Finally, putting all instructions into
16 bits forces many more instruction formats.

In many ways, the simplifi ed Thumb architecture is more con ventional than
ARM. Here are additional changes made from ARM in going to Thumb:

Drop of immediate logical instructions—Logical immediates are gone.

Condition codes implicit—Rather than have condition codes set optionally,
they are defi ned by the opcode. All ALU instructions and none of the data
transfers set the condition codes.

Hi/Lo register access—The 16 ARM registers are halved into Lo registers and Hi
registers, with the eight Hi registers including the stack pointer (SP), link reg-
ister, and PC. The Lo registers are available in all ALU operations. Variations
of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi regis-
ters. SP and PC registers are also available in variations of data transfers and
add immediates. Any other operations on the Hi registers require one MOV
to put the value into a Lo register, perform the operation there, and then
transfer the data back to the Hi register.

Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is spec-
ifi ed in two instructions, concatenating 11 bits from each instruction and
shifting them left to form a 23-bit address to load into PC.

Distance for data transfer offsets—The offset is now fi ve bits for the general-
 purpose registers and eight bits for SP and PC.

■

■

■

■

■

E-38 Appendix E A Survey of RISC Architectures

 E.14 Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to
another register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load con stants to give a larger addressing range than can
easily be fi t into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR.

Below is a list of the remaining unique details of the SuperH architecture:

Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0.

Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appen dix B), SuperH offers
optional delayed branch execution for BT and BF.

Many multiplies—Depending if the operation is signed or unsigned, if the
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the proper
multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The product is
found in the MACL and MACH registers.

Zero and sign extension—Byte or halfwords are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register.

One-bit shift amounts—Perhaps in an attempt to make them fi t within the
16-bit instructions, shift instructions only shift a single bit at a time.

Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (negative).
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These
instructions help offset the 1-bit constant shift amounts of standard shifts.

Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which
set the T bit with the value rotated, and also have variations that include the
T bit in the rotations (ROTCL and ROTCR).

SWAP—This instruction either swaps the high and low bytes of a 32-bit word
or the two bytes of the rightmost 16 bits.

Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register.

Negate with carry—Like SUBC (Figure E.6.6), except the fi rst operand is 0.

Cache prefetch—Like many of the desktop RISCs (Figures E.6.1 through
E.6.4), SuperH has an instruction (PREF) to prefetch data into the cache.

■

■

■

■

■

■

■

■

■

■

■

 E.14 Instructions Unique to SuperH E-39

Test-and-set—SuperH uses the older test-and-set (TAS) instruction to
perform atomic locks or semaphores (see Chapter 2). TAS fi rst loads a byte
from memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is
not 0. Finally, it sets the most signifi cant bit of the byte to 1 and writes the
result back to memory.

 E.15 Instructions Unique to M32R

The most unusual feature of the M32R is a slight VLIW approach to the pairs of
16-bit instructions. A bit is reserved in the fi rst instruction of the pair to say whether
this instruction can be executed in parallel with the next instruction— that is, the
two instructions are independent—or if these two must be executed sequentially.
(An earlier machine that offered a similar option was the Intel i860.) This feature is
included for future implemen tations of the architecture.

One surprise is that all branch displacements are shifted left 2 bits before being
added to the PC, and the lower 2 bits of the PC are set to 0. Since some instructions
are only 16 bits long, this shift means that a branch cannot go to any instruction
in the pro gram: it can only branch to instructions on word boundaries. A similar
restriction is placed on the return address for the branch-and-link and jump-and-
link instructions: they can only return to a word boundary. Thus, for a slightly
larger branch dis tance, software must ensure that all branch addresses and all
return addresses are aligned to a word boundary. The M32R code space is probably
slightly larger, and it probably executes more nop instructions than it would if the
branch address was only shifted left 1 bit.

However, the VLIW feature above means that a nop can exe cute in parallel with
another 16-bit instruction so that the pad ding doesn’t take more clock cycles. The
code size expansion depends on the ability of the compiler to sched ule code and to
pair successive 16-bit instructions; Mitsubishi claims that code size overall is only
7% larger than that for the Motorola 6800 archi tecture.

The last remaining novel feature is that the result of the divide operation is the
remainder instead of the quotient.

 E.16 Instructions Unique to MIPS-16

MIPS-16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The ISA
mode bit determines the width of instructions: 0 means 32-bit-wide instructions

■

E-40 Appendix E A Survey of RISC Architectures

and 1 means 16-bit-wide instructions. The new JALX instruction toggles the ISA
mode bit to switch to the other ISA. JR and JALR have been redefi ned to set the ISA
mode bit from the most signifi cant bit of the register containing the branch address,
and this bit is not considered part of the address. All jump-and-link instructions
save the current mode bit as the most signifi cant bit of the return address.

Hence, MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: these two instructions need
32 bits even in the 16-bit mode, presumably to get a large enough address to branch
to far procedures.

In picking this subset, MIPS decided to include opcodes for some three- operand
instructions and to keep 16 opcodes for 64-bit operations. The combina tion of
this many opcodes and oper ands in 16 bits led the architects to provide only eight
easy-to-use registers—just like Thumb—whereas the other embedded RISCs offer
about 16 registers. Since the hardware must include the full 32 regis ters of the 32-bit
ISA mode, MIPS-16 includes move instructions to copy values between the eight
MIPS-16 registers and the remaining 24 registers of the full MIPS architecture.
To reduce pressure on the eight visible registers, the stack pointer is considered
a separate register. MIPS-16 includes a variety of separate opcodes to do data
transfers using SP as a base register and to increment SP: LWSP, LDSP, SWSP, SDSP,
ADJSP, DADJSP, ADDIUSPD, and DADDIUSP.

To fi t within the 16-bit limit, immediate fi elds have generally been shortened
to fi ve to eight bits. MIPS-16 provides a way to extend its shorter immediates into
the full width of immediates in the 32-bit mode. Borrowing a trick from the Intel
8086, the EXTEND instruction is really a 16-bit prefi x that can be prepended to
any MIPS-16 instruction with an address or immediate fi eld. The prefi x supplies
enough bits to turn the 5-bit fi eld of data trans fers and 5- to 8-bit fi elds of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU and
DADDIU start with 4-bit immediate fi elds, but since EXTEND can only sup ply 11
more bits, the wider immediate is limited to 15 bits. EXTEND also extends the 3-bit
shift fi elds into 5-bit fi elds for shifts. (In case you were wondering, the EXTEND
prefi x does not need to start on a 32-bit boundary.)

To further address the supply of constants, MIPS-16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate fi eld by two or three bits, respectively, adding it to the PC with
the lower two or three bits cleared. The constant word or doubleword is then loaded
into a register. Thus 32-bit or 64-bit constants can be included with MIPS-16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address and
place it in a register.

MIPS-16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit

 E.16 Instructions Unique to MIPS-16 E-41

E-42 Appendix E A Survey of RISC Architectures

data operations: data trans fer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the addi tional
changes made from the MIPS core instructions in going to MIPS-16:

Drop of signed arithmetic instructions—Arithmetic instruc tions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

Drop of immediate logical instructions—Logical immediates are gone too:
ANDI, ORI, XORI.

Branch instructions pared down—Comparing two registers and then branch-
ing did not fi t, nor did all the other compari sons of a register to zero. Hence
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and
BLTZ. As men tioned in Section E.3, to help compensate MIPS-16 includes
compare instructions to test if two registers are equal. Since compare and
set on less than set the new T register, branches were added to test the
T register.

Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two.

Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay.

Extension and distance for data transfer offsets—The 5-bit and 8-bit fi elds
are zero-extended instead of sign-extended in 32-bit mode. To get greater
range, the immediate fi elds are shifted left one, two, or three bits depending
on whether the data is halfword, word, or doubleword. If the EXTEND prefi x
is prepended to these instructions, they use the conventional signed 16-bit
immediate of the 32-bit mode.

Extension of arithmetic immediates—The 5-bit and 8-bit fi elds are zero-
extended for set on less than and compare instructions, for forming a PC-
relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefi x is prepended to
these instructions, they use the conventional signed 16-bit immediate of the
32-bit mode. They are still sign-extended for general adds and for adding to
SP and placing the result back in SP (ADJSP, DADJSP). Alas, code density and
orthog onality are strange bedfellows in MIPS-16!

Redefi ning shift amount of 0—MIPS-16 defi nes the value 0 in the 3-bit shift
 fi eld to mean a shift of 8 bits.

New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be synthe-
sized from other instructions using r0 as a source.

■

■

■

■

■

■

■

■

■

 E.17 Concluding Remarks

This appendix covers the addressing modes, instruction formats, and all instruc-
tions found in ten RISC architectures. Although the later sections of the appendix
concen trate on the differences, it would not be possible to cover ten architectures in
these few pages if there were not so many similarities. In fact, we would guess that
more than 90% of the instructions executed for any of these architec tures would be
found in Figures E.3.5 through E.3.11. To contrast this homogeneity, Figure E.17.1
gives a summary for four archi tectures from the 1970s in a format similar to that
shown in Fig ure E.1.1. (Imagine trying to write a single chapter in this style for
those architectures!) In the history of computing, there has never been such wide-
spread agreement on computer architec ture.

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, . . . , 432

Addressing (size, model) 24 bits, fl at/31 bits,
fl at

4 + 16 bits,
segmented

24 bits, fl at 32 bits, fl at

Data aligned? Yes 360/No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 = 14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size,
model, number)

16 GPR × 32 bits 8 dedicated data ×
16 bits

8 data and 8 address ×
32 bits

15 GPR × 32 bits

Separate fl oating-point registers 4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (fl oating
hexadecimal)

IEEE 754 single,
double, extended

IEEE 754 single,
double, extended

DEC

FIGURE E.17.1 Summary of four 1970s architectures. Unlike the architectures in Figure E.1.1, there is lit tle agreement between
these architectures in any category.

This style of architecture cannot remain static, however. Like people, instruc tion
sets tend to get bigger as they get older. Fig ure E.17.2 shows the genealogy of these
instruction sets, and Figure E.17.3 shows which features were added to or deleted
from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address
architectures, and they have done so fairly pain lessly.

 E.17 Concluding Remarks E-43

FIGURE E.17.2 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research machines in bold.
The CDC 6600 and Cray-1 were load-store machines with register 0 fi xed at 0, and sepa rate integer and fl oating-point registers. Instructions
could not cross word boundaries. An early IBM research machine led to the 801 and America research projects, with the 801 leading to the
unsuccessful RT/PC and America leading to the suc cessful Power architecture. Some people who worked on the 801 later joined Hewlett-
Packard to work on the PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996], the
Berke ley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of both architectures and
chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM chips. (There are no ARM v.4 and ARM5 chips,
but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC built a RISC microprocessor in 1988 but did not introduce it. Instead,
DEC shipped workstations using MIPS microprocessors for three years before they brought out their own RISC instruction set, Alpha 21064,
which is very similar to MIPS III and PRISM. The Alpha architecture has had small extensions, but they have not been formalized with version
numbers; we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added byte and halfword loads and
stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions. Internally, Dig ital names chips after the fabrication
technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56 (21164A), and EV6 (21264).“EV” stands for “extended VAX.”

1960

CDC 6600
1963

Cray-1
1976

M32R
1997

Thumb
1995

ARM v.4
1995

ARM3
1990

ARM2
1987

ARM1
1985

SPARC v.8
1987

SPARC v.9
1994

MIPS-16
1996

MIPS I
1986

MIPS II
1989

MIPS III
1992

Alpha
1992

PA-RISC
1986

PA-RISC 1.1
1990

PA-RISC 2.0
1996

RT/PC
1986

Power1
1990

PowerPC
1993

Power2
1993

Alpha v.3
1996

MIPS IV
1994

MIPS V
1996

MIPS-64
2002

MIPS-32
2002

Berkeley RISC-1
1981 Stanford MIPS

1982

Digital PRISM
1988

IBM ASC 1968

IBM 801
1975

America
1985

SuperH
1992

1965

1970

1975

1980

1985

1990

1995

2000

2002

E-44 Appendix E A Survey of RISC Architectures

We would like to thank the following people for comments on drafts of this
appendix: Professor Steven B. Furber, University of Manchester; Dr. Dileep
Bhandarkar, Intel Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and
Dr. Hiokazu Takata, Mitsub ishi Electric Corporation.

Further Reading

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, New ton, MA: Digital Press.

Darcy, J. D., and D. Gay [1996]. “FLECKmarks: Measuring fl oating point performance using a full IEEE
compliant arithmetic benchmark,” CS 252 class project, U.C. Berke ley (see HTTP.CS.Berkeley.EDU/~darcy/
Projects/cs252/).

Digital Semiconductor [1996]. Alpha Architecture Handbook, Version 3, Maynard, MA: Digital Press, Order
number EC-QD2KB-TE (October).

PA-RISC SPARC MIPS Power

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC

Interlocked loads X ” ” X ” + ” ” X ” ”

Load-store FP double X ” ” X ” + ” ” X ” ”

Semaphore X ” ” X ” + ” ” X ” ”

Square root X ” ” X ” + ” ” + ”

Single precision FP ops X ” ” X ” X ” ” ” +

Memory synchronize X ” ” X ” + ” ” X ” ”

Coprocessor X ” ” X — X ” ” ”

Base + index addressing X ” ” X ” + X ” ”

Equiv. 32 64-bit FP registers ” ” + + ” X ” ”

Annulling delayed branch X ” ” X ” + ” ”

Branch register contents X ” ” + X ” ” ”

Big/little endian + ” + X ” ” ” +

Branch prediction bit + + ” ” X ” ”

Conditional move + + X ” —

Prefetch data into cache + + + X ” ”

64-bit addressing/int. ops + + + ” +

32-bit multiply, divide + ” + X ” ” ” X ” ”

Load-store FP quad + + —

Fused FP mul/add + + X ” ”

String instructions X ” ” X ” —

Multimedia support X ” X X

FIGURE E.17.3 Features added to desktop RISC machines. X means in the original machine, + means added later, ” means
continued from prior machine, and—means removed from architecture. Alpha is not included, but it added byte and word loads and stores,
and bit count and multimedia extensions, in version 3. MIPS V added the MDMX instructions and paired single fl oating-point operations.

 E.17 Concluding Remarks E-45

Furber, S. B. [1996]. ARM System Architecture, Harlow, England: Addison-Wesley. (See www.cs.man.ac.uk/
amulet/publications/books/ARMsysArch.)

Hewlett-Packard [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.

Hitachi [1997]. SuperH RISC Engine SH7700 Series Programming Manual. (See www.halsp.hitachi.com/tech_
prod/ and search for title.)

IBM [1994]. The PowerPC Architecture, San Francisco: Morgan Kaufmann.

Kane, G. [1996]. PA-RISC 2.0 Architecture, Upper Saddle River, NJ: Prentice Hall PTR.

Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Englewood Cliffs, NJ: Prentice Hall.

Kissell, K. D. [1997]. MIPS16: High-Density for the Embedded Market. (See www.sgi.com/MIPS/arch/MIPS16/
MIPS16.whitepaper.pdf.)

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multipli cation and division on
the HP precision architecture,” IEEE Trans. on Computers 37:8, 980–90.

MIPS [1997]. MIPS16 Application Specifi c Extension Product Description. (See www.sgi.com/MIPS/arch/
MIPS16/mips16.pdf.)

Mitsubishi [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Soft ware Manual (September).

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology 1:3 (Sum mer), 64–77.

Seal, D. Arm Architecture Reference Manual, 2nd ed, Morgan Kaufmann, 2000.

Silicon Graphics [1996]. MIPS V Instruction Set. (See www.sgi.com/MIPS/arch /ISA5/#MIPSV_indx.)

Sites, R. L., and R. Witek (eds.) [1995]. Alpha Architecture Reference Manual, 2nd ed. Newton, MA: Digital
Press.

Sloss, A. N., D. Symes, and C. Wright, ARM System Developer’s Guide, San Francisco: Elsevier Morgan
Kaufmann, 2004.

Sun Microsystems [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-09, August 25.

Sweetman, D. See MIPS Run, 2nd ed, Morgan Kaufmann, 2006.

Taylor, G., P. Hilfi nger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the SPUR LISP architecture,”
Proc. 13th Symposium on Computer Architecture (June), Tokyo.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of SOAR: Smalltalk on a
RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, MI, 188–97.

Weaver, D. L., and T. Germond [1994]. The SPARC Architectural Manual, Version 9, Englewood Cliffs, NJ:
Prentice Hall.

Weiss, S., and J. E. Smith [1994]. Power and PowerPC, San Francisco: Morgan Kauf mann.

E-46 Appendix E A Survey of RISC Architectures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothicBT-Bold
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /Marigold
 /MathExt
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [504.000 720.000]
>> setpagedevice

