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 D.1 Introduction

Control typically has two parts: a combinational part that lacks state and a sequen-
tial control unit that handles sequencing and the main control in a multicycle 
design. Combinational control units are often used to handle part of the decode 
and control process. The ALU control in Chapter 4 is such an example. A single-
cycle implementation like that in Chapter 4 can also use a combinational controller, 
since it does not require multiple states. Section D.2 examines the implementation 
of these two combinational units from the truth tables of Chapter 4. 

Since sequential control units are larger and often more complex, there are a 
wider variety of techniques for implementing a sequential control unit. The use-
fulness of these techniques depends on the complexity of the control, characteris tics 
such as the average number of next states for any given state, and the implementa-
tion technology. 

The most straightforward way to implement a sequential control function is 
with a block of logic that takes as inputs the current state and the opcode fi eld of the 
Instruction register and produces as outputs the datapath control signals and the 
value of the next state. The initial representation may be either a fi nite-state diagram 
or a microprogram. In the latter case, each microinstruction represents a state. 
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In an implementation using a fi nite-state controller, the next-state function will 
be computed with logic. Section D.3 constructs such an implementation both for 
a ROM and a PLA.

An alternative method of implementation computes the next-state function by 
using a counter that increments the current state to determine the next state. When 
the next state doesn’t follow sequentially, other logic is used to determine the state. 
Section D.4 explores this type of implementation and shows how it can be used to 
implement fi nite-state control.

In Section D.5, we show how a microprogram representation of sequential con-
trol is translated to control logic. 

 D.2 
 Implementing Combinational 
Control Units

In this section, we show how the ALU control unit and main control unit for the 
single clock design are mapped down to the gate level. With modern computer-
aided design (CAD) systems, this process is completely mechanical. The examples 
illustrate how a CAD system takes advantage of the structure of the control func-
tion, including the presence of don’t-care terms.

Mapping the ALU Control Function to Gates
Figure D.2.1 shows the truth table for the ALU control function that was devel oped 
in Section 4.3. A logic block that implements this ALU control function will have 
four distinct outputs (called Operation3, Operation2, Operation1, and Operation0), 
each corresponding to one of the four bits of the ALU control in the last column 
of Figure D.2.1. The logic function for each output is constructed by combining all 
the truth table entries that set that particular output. For example, the low-order bit 
of the ALU control (Operation0) is set by the last two entries of the truth table in 
Figure D.2.1. Thus, the truth table for Operation0 will have these two entries. 

Figure D.2.2 shows the truth tables for each of the four ALU control bits. We have 
taken advantage of the common structure in each truth table to incorporate addi-
tional don’t cares. For example, the fi ve lines in the truth table of Figure D.2.1 that 
set Operation1 are reduced to just two entries in Figure D.2.2. A logic minimization 
program will use the don’t-care terms to reduce the number of gates and the num-
ber of inputs to each gate in a logic gate realization of these truth  tables. 

A confusing aspect of Figure D.2.2 is that there is no logic function for Opera-
tion3. That is because this control line is only used for the NOR operation, which 
is not needed for the MIPS subset in Figure 4.12. 

From the simplifi ed truth table in Figure D.2.2, we can generate the logic shown 
in Figure D.2.3, which we call the ALU control block. This process is straightforward 



ALUOp Funct fi eld
Operation

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

0 1 X X X X X X 0110 

1 0 X X 0 0 0 0 0010 

1 X X X 0 0 1 0 0110 

1 0 X X 0 1 0 0 0000

1 0 X X 0 1 0 1 0001 

1 X X X 1 0 1 0 0111 

FIGURE D.2.1 The truth table for the 4 ALU control bits (called Operation) as a function 
of the ALUOp and function code fi eld. This table is the same as that shown in Figure 4.13.
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ALUOp Function code fi elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 1 X X X X X X

1 X X X X X 1 X

a. The truth table for Operation2 = 1 (this table corresponds to the second to left bit of the Operation 
fi eld in Figure D.2.1)

ALUOp Function code fi elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 X X X X X X X

X X X X X 0 X X

b. The truth table for Operation1 = 1

ALUOp Function code fi elds

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

1 X X X X X X 1

1 X X X 1 X X X

c. The truth table for Operation0 = 1

FIGURE D.2.2 The truth tables for three ALU control lines. Only the entries for which the out-
put is 1 are shown. The bits in each fi eld are numbered from right to left starting with 0; thus F5 is the most 
signifi cant bit of the function fi eld, and F0 is the least signifi cant bit. Similarly, the names of the signals 
cor responding to the 4-bit operation code supplied to the ALU are Operation3, Operation2, Operation1, 
and Operation0 (with the last being the least signifi cant bit). Thus the truth table above shows the input 
combi nations for which the ALU control should be 0010, 0001, 0110, or 0111 (the other combinations are 
not used). The ALUOp bits are named ALUOp1 and ALUOp0. The three output values depend on the 2-bit 
ALUOp fi eld and, when that fi eld is equal to 10, the 6-bit function code in the instruction. Accordingly, when 
the ALUOp fi eld is not equal to 10, we don’t care about the function code value (it is represented by an X). 
There is no truth table for when Operation3=1 because it is always set to 0 in Figure D.2.1. See  Appendix C 
for more background on don’t cares.



D-6 Appendix D Mapping Control to Hardware

FIGURE D.2.3 The ALU control block generates the four ALU control bits, based on the 
function code and ALUOp bits. This logic is generated directly from the truth table in Figure D.2.2. 
Only four of the six bits in the function code are actually needed as inputs, since the upper two bits are always 
don’t cares. Let’s examine how this logic relates to the truth table of Figure D.2.2. Consider the Operation2 
output, which is generated by two lines in the truth table for Operation2. The second line is the AND of 
two terms (F1 = 1 and ALUOp1 = 1); the top two-input AND gate corresponds to this term. The other term 
that causes Operation2 to be asserted is simply ALUOp0. These two terms are combined with an OR gate 
whose output is Operation2. The outputs Operation0 and Operation1 are derived in similar fashion from 
the truth table. Since Operation3 is always 0, we connect a signal and its complement as inputs to an AND 
gate to generate 0.

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

Operation3

and can be done with a CAD program. An example of how the logic gates can be 
derived from the truth tables is given in the legend to Figure D.2.3. 

This ALU control logic is simple because there are only three outputs, and only 
a few of the possible input combinations need to be recognized. If a large number 
of possible ALU function codes had to be transformed into ALU control signals, 
this simple method would not be effi cient. Instead, you could use a decoder, a 
memory, or a structured array of logic gates. These techniques are described in 

 Appendix C, and we will see examples when we examine the implementation of 
the multicycle controller in Section D.3. 

Elaboration: In general, a logic equation and truth table representation of a logic func-
tion are equivalent. (We discuss this in further detail in Appendix C.) However, when a 
truth table only specifi es the entries that result in nonzero outputs, it may not completely 
describe the logic function. A full truth table completely indicates all don’t-care entries. 
For example, the encoding 11 for ALUOp always generates a don’t care in the output. 
Thus a complete truth table would have XXX in the output portion for all entries with 11 
in the ALUOp fi eld. These don’t-care entries allow us to replace the ALUOp fi eld 10 and 



01 with 1X and X1, respectively. Incorporating the don’t-care terms and  minimizing the 
logic is both complex and error-prone and, thus, is better left to a program. 

Mapping the Main Control Function to Gates

Implementing the main control function with an unstructured collection of gates, 
as we did for the ALU control, is reasonable because the control function is nei-
ther complex nor large, as we can see from the truth table shown in Figure D.2.4. 
However, if most of the 64 possible opcodes were used and there were many more 
control lines, the number of gates would be much larger and each gate could have 
many more inputs. 

Since any function can be computed in two levels of logic, another way to imple-
ment a logic function is with a structured two-level logic array. Figure D.2.5 shows 
such an implementation. It uses an array of AND gates followed by an array of OR 
gates. This structure is called a programmable logic  array (PLA). A PLA is one of the 
most common ways to implement a control function. We will return to the topic 
of using structured logic elements to  implement control when we imple ment the 
fi nite-state controller in the next section.
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Control Signal name R-format lw sw beq

Inputs

Op5 0 1 1 0

Op4 0 0 0 0

Op3 0 0 1 0

Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 1 1 0

Outputs

RegDst 1 0 X X

ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

FIGURE D.2.4 The control function for the simple one-clock implementation is com pletely 
specifi ed by this truth table. This table is the same as that shown in Figure 4.22.
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FIGURE D.2.5 The structured implementation of the control function as described by the 
truth table in Figure D.2.4. The structure, called a programmable logic array (PLA), uses an array of 
AND gates followed by an array of OR gates. The inputs to the AND gates are the function inputs and their 
inverses (bubbles indicate inversion of a signal). The inputs to the OR gates are the outputs of the AND 
gates (or, as a degenerate case, the function inputs and inverses). The output of the OR gates is the function 
outputs.

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

 D.3  
Implementing Finite-State Machine 
Control

To implement the control as a fi nite-state machine, we must fi rst assign a number 
to each of the 10 states; any state could use any number, but we will use the sequen-
tial numbering for simplicity. Figure D.3.1 shows the fi nite-state diagram. With 
10 states, we will need 4 bits to encode the state number, and we call these state bits 
S3, S2, S1, and S0. The current-state number will be stored in a state reg ister, as 
shown in Figure D.3.2. If the states are assigned sequentially, state i is encoded using 
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FIGURE D.3.1 The fi nite-state diagram for multicycle control.
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the state bits as the binary number i. For example, state 6 is encoded as 0110two or 
S3 = 0, S2 = 1, S1 = 1, S0 = 0, which can also be written as 

 
__

 S3  × S2 × S1 ×  
__

 S0 

 The control unit has outputs that specify the next state. These are written into 
the state register on the clock edge and become the new state at the beginning of 
the next clock cycle following the active clock edge. We name these outputs NS3, 
NS2, NS1, and NS0. Once we have determined the number of inputs, states, and 
out puts, we know what the basic outline of the control unit will look like, as we 
show in Figure D.3.2.

FIGURE D.3.2 The control unit for MIPS will consist of some control logic and a register 
to hold the state. The state register is written at the active clock edge and is stable during the clock 
cycle.
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The block labeled “control logic” in Figure D.3.2 is combinational logic. We can 
think of it as a big table giving the value of the outputs in terms of the inputs. The 
logic in this block implements the two different parts of the fi nite-state machine. 
One part is the logic that determines the setting of the datapath control outputs, 
which depend only on the state bits. The other part of the control logic imple ments 
the next-state function; these equations determine the values of the next-state bits 
based on the current-state bits and the other inputs (the 6-bit opcode). 

Figure D.3.3 shows the logic equations: the top portion shows the outputs, and 
the bottom portion shows the next-state function. The values in this table were 
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Output Current states Op

PCWrite state0 + state9

PCWriteCond state8

IorD state3 + state5

MemRead state0 + state3

MemWrite state5

IRWrite state0

MemtoReg state4

PCSource1 state9

PCSource0 state8

ALUOp1 state6

ALUOp0 state8

ALUSrcB1 state1 +state2 

ALUSrcB0 state0 + state1

ALUSrcA state2 + state6 + state8

RegWrite state4 + state7

RegDst state7

NextState0 state4 + state5 + state7 + state8 + state9

NextState1 state0

NextState2 state1 (Op = 'lw') + (Op = 'sw') 

NextState3 state2 (Op = 'lw')

NextState4 state3

NextState5 state2 (Op = 'sw') 

NextState6 state1 (Op = 'R-type')

NextState7 state6

NextState8 state1 (Op = 'beq')

NextState9 state1 (Op = 'jmp')

FIGURE D.3.3 The logic equations for the control unit shown in a shorthand form. Remember 
that “+” stands for OR in logic equations. The state inputs and NextState outputs must be expanded by using 
the state encoding. Any blank entry is a don’t care.
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determined from the state diagram in Figure D.3.1. Whenever a control line is 
active in a state, that state is entered in the second column of the table. Likewise, 
the next-state entries are made whenever one state is a successor to another. 

In Figure D.3.3, we use the abbreviation stateN to stand for current state N. 
Thus, stateN is replaced by the term that encodes the state number N. We use 
NextStateN to stand for the setting of the next-state outputs to N. This output is 
implemented using the next-state outputs (NS). When NextStateN is active, the 
bits NS[3–0] are set corresponding to the binary version of the value N. Of course, 
since a given next-state bit is activated in multiple next states, the equation for 
each state bit will be the OR of the terms that activate that signal. Likewise, when 
we use a term such as (Op = ‘lw’), this corresponds to an AND of the opcode 
inputs that specifi es the encoding of the opcode lw in 6 bits, just as we did for the 
simple control unit in the previous section of this chapter. Translating the entries 
in Figure D.3.3 into logic equations for the outputs is straightforward.

Logic Equations for Next-State Outputs

Give the logic equation for the low-order next-state bit, NS0.

The next-state bit NS0 should be active whenever the next state has NS0 = 1 
in the state encoding. This is true for NextState1, NextState3, NextState5, 
NextState7, and NextState9. The entries for these states in Figure D.3.3 supply 
the conditions when these next-state values should be active. The equation for 
each of these next states is given below. The fi rst equation states that the next 
state is 1 if the current state is 0; the current state is 0 if each of the state input 
bits is 0, which is what the rightmost product term indicates.

NextState1 = State0 =  
__

 S3  ×  
__

 S2  ×  
__

 S1  ×  
__

 S0 

NextState3 = State2 × (Op[5-0]=1w)

 =  
__

 S3  ×  
__

 S2  × S1 ×  
__

 S0  × Op5 ×  
___

 Op4  ×  
___

 Op3  ×  
___

 Op2  × Op1 × Op0

EXAMPLEEXAMPLE

ANSWERANSWER



NextState5 = State2 × (Op[5-0]=sw)

 =  
__

 S3  ×  
__

 S2  ×  
__

 S1  ×  
__

 S0  × Op5 ×  
___

 Op4  × Op3 ×  
___

 Op2  × Op1 × Op0

NextState7 = State6 =  
__

 S3  × S2 × S1 ×  
__

 S0 

NextState9 = State1 × (Op[5-0]=jmp)

 =  
__

 S3  ×  
__

 S2  ×  
__

 S1  × S0 ×  
___

 Op5  ×  
___

 Op4  ×  
___

 Op3  ×  
___

 Op2  × Op1 ×  
___

 Op0 

NS0 is the logical sum of all these terms.

As we have seen, the control function can be expressed as a logic equation for 
each output. This set of logic equations can be implemented in two ways: corre-
sponding to a complete truth table, or corresponding to a two-level logic structure 
that allows a sparse encoding of the truth table. Before we look at these implemen-
tations, let’s look at the truth table for the complete control function. 

It is simplest if we break the control function defi ned in Figure D.3.3 into 
two parts: the next-state outputs, which may depend on all the inputs, and the 
 control signal outputs, which depend only on the current-state bits. Figure D.3.4 
shows the truth tables for all the datapath control signals. Because these sig nals 
actually depend only on the state bits (and not the opcode), each of the entries in 
a table in Figure D.3.4 actually represents 64 (= 26) entries, with the 6 bits named 
Op having all possible values; that is, the Op bits are don’t-care bits in determining 
the data  path control outputs. Figure D.3.5 shows the truth table for the next-state 
bits NS[3–0], which depend on the state input bits and the instruction bits, which 
supply the opcode.

Elaboration: There are many opportunities to simplify the control function by observ-
ing similarities among two or more control signals and by using the semantics of the 
implementation. For example, the signals PCWriteCond, PCSource0, and ALUOp0 are all 
asserted in exactly one state, state 8. These three control signals can be replaced by 
a single signal. 
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s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 1 0 0 0 0 0 1 1

1 0 0 1 0 1 0 1

a. Truth table for PCWrite b. Truth table for PCWriteCond c. Truth table for IorD

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 1

d. Truth table for MemRead e. Truth table for MemWrite f. Truth table for IRWrite

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 0 0 1 0 0 1 1 0 0 0

g. Truth table for MemtoReg h. Truth table for PCSource1 i. Truth table for PCSource0

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 1 1 0 1 0 0 0 0 0 0 1

0 0 1 0

j. Truth table for ALUOp1 k. Truth table for ALUOp0 l. Truth table for ALUSrcB1

s3 s2 s1 s0 s3 s2 s1 s0 s3 s2 s1 s0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 0 0 1 1 1

1 0 0 0

m. Truth table for ALUSrcB0 n. Truth table for ALUSrcA o. Truth table for RegWrite

s3 s2 s1 s0

0 1 1 1

p. Truth table for RegDst

FIGURE D.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state 
input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the six 
Op bits. Notice that some of the outputs are active under nearly the same circumstances. For example, in the case of PCWriteCond, PCSource0, 
and ALUOp0, these signals are active only in state 8 (see b, i, and k). These three signals could be replaced by one signal. There are other 
opportunities for reducing the logic needed to implement the control function by taking advantage of further similarities in the truth tables.
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Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when 
the current state is 1.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 0 1 1

X X X X X X 0 1 1 0

b. The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation 
occurs when the current state is one of 1, 2, 3, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1

1 0 1 0 1 1 0 0 0 1

1 0 0 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

c. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state 
is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6.

Op5 Op4 Op3 Op2 Op1 Op0 S3 S2 S1 S0

X X X X X X 0 0 0 0

1 0 0 0 1 1 0 0 1 0

1 0 1 0 1 1 0 0 1 0

X X X X X X 0 1 1 0

0 0 0 0 1 0 0 0 0 1

d. The truth table for the NS0 output, which is active when the next state is 1, 3, 5, 7, or 9. This happens 
only if the current state is one of 0, 1, 2, or 6.

FIGURE D.3.5 The four truth tables for the four next-state output bits (NS[3–0]). The 
next-state outputs depend on the value of Op[5–0], which is the opcode fi eld, and the current state, given 
by S[3–0]. The entries with X are don’t-care terms. Each entry with a don’t-care term corresponds to two 
entries, one with that input at 0 and one with that input at 1. Thus an entry with n don’t-care terms actually 
corresponds to 2n truth table entries.

A ROM Implementation 

Probably the simplest way to implement the control function is to encode the truth 
tables in a read-only memory (ROM). The number of entries in the mem ory for the 
truth tables of Figures D.3.4 and D.3.5 is equal to all possible  values of the inputs 



D-16 Appendix D Mapping Control to Hardware

(the 6 opcode bits plus the 4 state bits), which is 2# inputs = 210 = 1024. The inputs 
to the control unit become the address lines for the ROM, which implements the 
control logic block that was shown in Figure D.3.2. The width of each entry (or 
word in the memory) is 20 bits, since there are 16 datapath control outputs and 
4 next-state bits. This means the total size of the ROM is 210 × 20 = 20 Kbits. 

The setting of the bits in a word in the ROM depends on which outputs are active 
in that word. Before we look at the control words, we need to order the bits within 
the control input (the address) and output words (the contents), respectively. We 
will number the bits using the order in Figure D.3.2, with the next-state bits being 
the low-order bits of the control word and the  current-state input bits being the 
low-order bits of the address. This means that the PCWrite output will be the high-
order bit (bit 19) of each memory word, and NS0 will be the low-order bit. The 
high-order address bit will be given by Op5, which is the high-order bit of the 
instruction, and the low-order address bit will be given by S0.

We can construct the ROM contents by building the entire truth table in a form 
where each row corresponds to one of the 2n unique input combinations, and a 
set of columns indicates which outputs are active for that input combination. We 
don’t have the space here to show all 1024 entries in the truth table. However, by 
separating the datapath control and next-state outputs, we do, since the datapath 
control outputs depend only on the current state. The truth table for the datapath 
control outputs is shown in Figure D.3.6. We include only the encodings of the state 
inputs that are in use (that is, values 0 through 9 corresponding to the 10 states of 
the state machine).

The truth table in Figure D.3.6 directly gives the contents of the upper 16 bits of 
each word in the ROM. The 4-bit input fi eld gives the low-order 4 address bits of 
each word, and the column gives the contents of the word at that address. 

If we did show a full truth table for the datapath control bits with both the state 
number and the opcode bits as inputs, the opcode inputs would all be don’t cares. 
When we construct the ROM, we cannot have any don’t cares, since the addresses 
into the ROM must be complete. Thus, the same datapath control outputs will 
occur many times in the ROM, since this part of the ROM is the same whenever the 
state bits are identical, independent of the value of the opcode inputs. 

Control ROM Entries

For what ROM addresses will the bit corresponding to PCWrite, the high bit 
of the control word, be 1?EXAMPLEEXAMPLE
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Outputs Input values (S[3–0])

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

PCWrite 1 0 0 0 0 0 0 0 0 1

PCWriteCond 0 0 0 0 0 0 0 0 1 0

IorD 0 0 0 1 0 1 0 0 0 0

MemRead 1 0 0 1 0 0 0 0 0 0

MemWrite 0 0 0 0 0 1 0 0 0 0

IRWrite 1 0 0 0 0 0 0 0 0 0

MemtoReg 0 0 0 0 1 0 0 0 0 0

PCSource1 0 0 0 0 0 0 0 0 0 1

PCSource0 0 0 0 0 0 0 0 0 1 0

ALUOp1 0 0 0 0 0 0 1 0 0 0

ALUOp0 0 0 0 0 0 0 0 0 1 0

ALUSrcB1 0 1 1 0 0 0 0 0 0 0

ALUSrcB0 1 1 0 0 0 0 0 0 0 0

ALUSrcA 0 0 1 0 0 0 1 0 1 0

RegWrite 0 0 0 0 1 0 0 1 0 0

RegDst 0 0 0 0 0 0 0 1 0 0

FIGURE D.3.6 The truth table for the 16 datapath control outputs, which depend only on 
the state inputs. The values are determined from Figure D.3.4. Although there are 16 possible values for 
the 4-bit state fi eld, only ten of these are used and are shown here. The ten possible values are shown at the 
top; each column shows the setting of the datapath control outputs for the state input value that appears 
at the top of the column. For example, when the state inputs are 0011 (state 3), the active datapath control 
outputs are IorD or MemRead.

PCWrite is high in states 0 and 9; this corresponds to addresses with the 4 low-
order bits being either 0000 or 1001. The bit will be high in the  memory word 
independent of the inputs Op[5–0], so the addresses with the bit high are 
000000000, 0000001001, 0000010000, 0000011001, . . . , 1111110000, 
1111111001. The general form of this is XXXXXX0000 or XXXXXX1001, where 
XXXXXX is any combination of bits, and corresponds to the 6-bit opcode on 
which this output does not depend.

ANSWERANSWER
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We will show the entire contents of the ROM in two parts to make it easier to 
show. Figure D.3.7 shows the upper 16 bits of the control word; this comes directly 
from Figure D.3.6. These datapath control outputs depend only on the state inputs, 
and this set of words would be duplicated 64 times in the full ROM, as we discussed 
above. The entries corresponding to input values 1010 through 1111 are not used, 
so we do not care what they contain. 

Figure D.3.8 shows the lower four bits of the control word corresponding to 
the next-state outputs. The last column of the table in Figure D.3.8 corresponds 
to all the possible values of the opcode that do not match the specifi ed opcodes. 
In state 0, the next state is always state 1, since the instruction was still being 
fetched. After state 1, the opcode fi eld must be valid. The table indicates this by 
the entries marked illegal; we discuss how to deal with these illegal opcodes in 
Section 4.9. 

Not only is this representation as two separate tables a more compact way to 
show the ROM contents, it is also a more effi cient way to implement the ROM. 
The majority of the outputs (16 of 20 bits) depends only on 4 of the 10 inputs. 
The num ber of bits in total when the control is implemented as two separate 
ROMs is 24 × 16 + 210 × 4 = 256 + 4096 = 4.3 Kbits, which is about one-fi fth of the 
size of a single ROM, which requires 210 × 20 = 20 Kbits. There is some overhead 
associated with any structured-logic block, but in this case the additional over-
head of an extra ROM would be much smaller than the savings from splitting the 
single ROM.

Lower 4 bits of the address Bits 19–4 of the word

0000 1001010000001000

0001 0000000000011000

0010 0000000000010100

0011 0011000000000000

0100 0000001000000010

0101 0010100000000000

0110 0000000001000100

0111 0000000000000011

1000 0100000010100100

1001 1000000100000000

FIGURE D.3.7 The contents of the upper 16 bits of the ROM depend only on the state 
inputs. These values are the same as those in Figure D.3.6, simply rotated 90°. This set of control words 
would be duplicated 64 times for every possible value of the upper six bits of the address.



Although this ROM encoding of the control function is simple, it is wasteful, 
even when divided into two pieces. For example, the values of the Instruction reg-
ister inputs are often not needed to determine the next state. Thus, the next-state 
ROM has many entries that are either duplicated or are don’t care. Consider the 
case when the machine is in state 0: there are 26 entries in the ROM (since the 
opcode fi eld can have any value), and these entries will all have the same contents 
(namely, the control word 0001). The reason that so much of the ROM is wasted 
is that the ROM implements the complete truth table, providing the opportunity 
to have a different output for every combination of the inputs. But most combina-
tions of the inputs either never happen or are redundant! 
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Op [5–0]

Current state
S[3–0]

000000
(R-format)

000010
(jmp)

000100
(beq)

100011
(lw)

101011
(sw)

Any other
value

0000 0001 0001 0001 0001 0001 0001

0001 0110 1001 1000 0010 0010 Illegal

0010 XXXX XXXX XXXX 0011 0101 Illegal

0011 0100 0100 0100 0100 0100 Illegal

0100 0000 0000 0000 0000 0000 Illegal

0101 0000 0000 0000 0000 0000 Illegal

0110 0111 0111 0111 0111 0111 Illegal

0111 0000 0000 0000 0000 0000 Illegal

1000 0000 0000 0000 0000 0000 Illegal

1001 0000 0000 0000 0000 0000 Illegal

FIGURE D.3.8 This table contains the lower 4 bits of the control word (the NS outputs), 
which depend on both the state inputs, S[3–0], and the opcode, Op[5–0], which corre spond 
to the instruction opcode. These values can be determined from Figure D.3.5. The opcode name is 
shown under the encoding in the heading. The four bits of the control word whose address is given by the 
current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the 
output is always 0001, independent of the other inputs; when the state is 2, the next state is don’t care for 
three of the inputs, 3 for lw, and 5 for sw. Together with the entries in Figure D.3.7, this table specifi es the 
contents of the control unit ROM. For example, the word at address 1000110001 is obtained by fi nding the 
upper 16 bits in the table in Figure D.3.7 using only the state input bits (0001) and concatenating the lower 
four bits found by using the entire address (0001 to fi nd the row and 100011 to fi nd the column). The entry 
from Figure D.3.7 yields 0000000000011000, while the appropriate entry in the table immediately above is 
0010. Thus the control word at address 1000110001 is 00000000000110000010. The column labeled “Any 
other value” applies only when the Op bits do not match one of the specifi ed opcodes.
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A PLA Implementation

We can reduce the amount of control storage required at the cost of using more 
complex address decoding for the control inputs, which will encode only the input 
combinations that are needed. The logic structure most often used to do this is 
a programmed logic array (PLA), which we mentioned earlier and illus trated in 
 Figure D.2.5. In a PLA, each output is the logical OR of one or more minterms. 
A minterm, also called a product term, is simply a logical AND of one or more 
inputs. The inputs can be thought of as the address for indexing the PLA, while the 
 minterms select which of all possible address combinations are interesting. A min-
term corresponds to a single entry in a truth table, such as those in Figure D.3.4, 
including possible don’t-care terms. Each output con sists of an OR of these min-
terms, which exactly corresponds to a complete truth table. However, unlike a 
ROM, only those truth table entries that produce an active output are needed, and 
only one copy of each minterm is required, even if the minterm contains don’t 
cares. Figure D.3.9 shows the PLA that implements this control function. 

As we can see from the PLA in Figure D.3.9, there are 17 unique minterms—10 
that depend only on the current state and 7 others that depend on a combination of 
the Op fi eld and the current-state bits. The total size of the PLA is proportional to 
(#inputs × #product terms) + (#outputs × #product terms), as we can see symboli-
cally from the fi gure. This means the total size of the PLA in Figure D.3.9 is propor-
tional to (10 × 17) + (20 × 17) = 510. By comparison, the size of a single ROM is 
proportional to 20 Kb, and even the two-part ROM has a total of 4.3 Kb. Because 
the size of a PLA cell will be only slightly larger than the size of a bit in a ROM, a 
PLA will be a much more effi cient implementation for this control unit. 

Of course, just as we split the ROM in two, we could split the PLA into two 
PLAs: one with 4 inputs and 10 minterms that generates the 16 control outputs, 
and one with 10 inputs and 7 minterms that generates the 4 next-state  outputs. 
The fi rst PLA would have a size proportional to (4 × 10) + (10 × 16) = 200, and the 
second PLA would have a size proportional to (10 × 7) + (4 × 7) = 98. This would 
yield a total size proportional to 298 PLA cells, about 55% of the size of a single 
PLA. These two PLAs will be considerably smaller than an implementation using 
two ROMs. For more details on PLAs and their implementation, as well as the 
refer ences for books on logic design, see  Appendix C. 
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FIGURE D.3.9 This PLA implements the control function logic for the multicycle imple-
mentation. The inputs to the control appear on the left and the outputs on the right. The top half of 
the fi gure is the AND plane that computes all the minterms. The minterms are carried to the OR plane on 
the vertical lines. Each colored dot corresponds to a signal that makes up the minterm carried on that line. 
The sum terms are computed from these minterms, with each gray dot representing the presence of the inter-
secting minterm in that sum term. Each output consists of a single sum term.
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 D.4  
Implementing the Next-State Function 
with a Sequencer

Let’s look carefully at the control unit we built in the last section. If you examine 
the ROMs that implement the control in Figures D.3.7 and D.3.8, you can see that 
much of the logic is used to specify the next-state function. In fact, for the imple-
mentation using two separate ROMs, 4096 out of the 4368 bits (94%) correspond 
to the next-state function! Furthermore, imagine what the control logic would 
look like if the instruction set had many more different instruction types, some of 
which required many clocks to implement. There would be many more states in 
the fi nite-state machine. In some states, we might be branching to a large number 
of different states depending on the instruction type (as we did in state 1 of the 
fi nite-state machine in Figure D.3.1). However, many of the states would proceed 
in a sequential fashion, just as states 3 and 4 do in Figure D.3.1. 

For example, if we included fl oating point, we would see a sequence of many 
states in a row that implement a multicycle fl oating-point instruction. Alterna-
tively, consider how the control might look for a machine that can have multiple 
memory operands per instruction. It would require many more states to fetch 
multiple memory operands. The result of this would be that the control logic will 
be dominated by the encoding of the next-state function. Furthermore, much of 
the logic will be devoted to sequences of states with only one path through them 
that look like states 2 through 4 in Figure D.3.1. With more instructions, these 
sequences will consist of many more sequentially numbered states than for our 
simple subset. 

To encode these more complex control functions effi ciently, we can use a con-
trol unit that has a counter to supply the sequential next state. This counter often 
eliminates the need to encode the next-state function explicitly in the control 
unit. As shown in Figure D.4.1, an adder is used to increment the state, essentially 
turning it into a counter. The incremented state is always the state that follows 
in numerical order. However, the fi nite-state machine sometimes “branches.” For 
example, in state 1 of the fi nite-state machine (see Figure D.3.1), there are four 
possible next states, only one of which is the sequential next state. Thus, we need 
to be able to choose between the incremented state and a new state based on the 
inputs from the Instruction register and the current state. Each con trol word will 
include control lines that will determine how the next state is  chosen. 

It is easy to implement the control output signal portion of the control word, 
since, if we use the same state numbers, this portion of the control word will 
look exactly like the ROM contents shown in Figure D.3.7. However, the method 



for selecting the next state differs from the next-state function in the fi nite-state 
machine. 

With an explicit counter providing the sequential next state, the control unit 
logic need only specify how to choose the state when it is not the sequentially fol-
lowing state. There are two methods for doing this. The fi rst is a method we have 
already seen: namely, the control unit explicitly encodes the next-state function. 
The difference is that the control unit need only set the next-state lines when the 
designated next state is not the state that the counter indicates. If the number of 
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FIGURE D.4.1 The control unit using an explicit counter to compute the next state. In this 
control unit, the next state is computed using a counter (at least in some states). By comparison, Figure D.3.2 
encodes the next state in the control logic for every state. In this control unit, the signals labeled AddrCtl 
control how the next state is determined.
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states is large and the next-state function that we need to encode is mostly empty, 
this may not be a good choice, since the resulting control unit will have lots of 
empty or redundant space. An alternative approach is to use separate external logic 
to specify the next state when the counter does not specify the state. Many control 
units, especially those that implement large instruction sets, use this approach, and 
we will focus on specifying the control externally.

Although the nonsequential next state will come from an external table, the 
control unit needs to specify when this should occur and how to fi nd that next 
state. There are two kinds of “branching” that we must implement in the address 
select logic. First, we must be able to jump to one of a number of states based on 
the opcode portion of the Instruction register. This operation, called a dispatch, 
is usually implemented by using a set of special ROMs or PLAs included as part 
of the address selection logic. An additional set of control outputs, which we call 
AddrCtl, indicates when a dispatch should be done. Looking at the fi nite-state 
diagram (Figure D.3.1), we see that there are two states in which we do a branch 
based on a portion of the opcode. Thus we will need two small dis patch tables. 
(Alternatively, we could also use a single dispatch table and use the control bits that 
select the table as address bits that choose from which portion of the dispatch table 
to select the address.) 

The second type of branching that we must implement consists of branching 
back to state 0, which initiates the execution of the next MIPS instruction. Thus 
there are four possible ways to choose the next state (three types of branches, plus 
incrementing the current-state number), which can be encoded in 2 bits. Let’s 
assume that the encoding is as follows:

AddrCtl value Action

0 Set state to 0

1 Dispatch with ROM 1

2 Dispatch with ROM 2

3 Use the incremented state

If we use this encoding, the address select logic for this control unit can be imple-
mented as shown in Figure D.4.2.

To complete the control unit, we need only specify the contents of the dispatch 
ROMs and the values of the address-control lines for each state. We have already 
specifi ed the datapath control portion of the control word using the ROM con tents 
of Figure D.3.7 (or the corresponding portions of the PLA in Figure D.3.9). The 
next-state counter and dispatch ROMs take the place of the portion of the control 
unit that was computing the next state, which was shown in Figure D.3.8. We are 
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FIGURE D.4.2 This is the address select logic for the control unit of Figure D.4.1.
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Now we can determine the setting of the address selection lines (AddrCtl) in 
each control word. The table in Figure D.4.4 shows how the address control must 

Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value

000000 R-format 0110 100011 lw 0011

000010 jmp 1001 101011 sw 0101

000100 beq 1000

100011 lw 0010

101011 sw 0010

FIGURE D.4.3 The dispatch ROMs each have 26 = 64 entries that are 4 bits wide, since 
that is the number of bits in the state encoding. This fi gure only shows the entries in the ROM that 
are of interest for this subset. The fi rst column in each table indicates the value of Op, which is the address 
used to access the dispatch ROM. The second column shows the symbolic name of the opcode. The third 
column indicates the value at that address in the ROM. 

only implementing a portion of the instruction set, so the dispatch ROMs will be 
largely empty. Figure D.4.3 shows the entries that must be assigned for this subset. 
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State number Address-control action Value of AddrCtl

0 Use incremented state 3

1 Use dispatch ROM 1 1

2 Use dispatch ROM 2 2

3 Use incremented state 3

4 Replace state number by 0 0

5 Replace state number by 0 0

6 Use incremented state 3

7 Replace state number by 0 0

8 Replace state number by 0 0

9 Replace state number by 0 0

FIGURE D.4.4 The values of the address-control lines are set in the control word that 
corresponds to each state.

be set for every state. This information will be used to specify the setting of the 
AddrCtl fi eld in the control word associated with that state.

The contents of the entire control ROM are shown in Figure D.4.5. The total 
storage required for the control is quite small. There are 10 control words, each 
18 bits wide, for a total of 180 bits. In addition, the two dispatch tables are 4 bits 
wide and each has 64 entries, for a total of 512 additional bits. This total of 692 bits 
beats the implementation that uses two ROMs with the next-state function encoded 
in the ROMs (which requires 4.3 Kbits). 

Of course, the dispatch tables are sparse and could be more effi ciently imple-
mented with two small PLAs. The control ROM could also be replaced with a PLA.

State number Control word bits 17–2 Control word bits 1–0

0 1001010000001000 11

1 0000000000011000 01

2 0000000000010100 10

3 0011000000000000 11

4 0000001000000010 00

5 0010100000000000 00

6 0000000001000100 11

7 0000000000000011 00

8 0100000010100100 00

9 1000000100000000 00

FIGURE D.4.5 The contents of the control memory for an implementation using an explicit 
counter. The fi rst column shows the state, while the second shows the datapath control bits, and the last col-
umn shows the address-control bits in each control word. Bits 17–2 are identical to those in Figure D.3.7.



Optimizing the Control Implementation
We can further reduce the amount of logic in the control unit by two different 
techniques. The fi rst is logic minimization, which uses the structure of the logic 
equations, including the don’t-care terms, to reduce the amount of hardware 
required. The success of this process depends on how many entries exist in the 
truth table, and how those entries are related. For example, in this subset, only 
the lw and sw opcodes have an active value for the signal Op5, so we can replace 
the two truth table entries that test whether the input is lw or sw by a single test 
on this bit; similarly, we can eliminate several bits used to index the dispatch ROM 
because this single bit can be used to fi nd lw and sw in the fi rst dispatch ROM. Of 
course, if the opcode space were less sparse, opportunities for this optimization 
would be more diffi cult to locate. However, in choosing the opcodes, the architect 
can provide additional opportunities by choosing related opcodes for instructions 
that are likely to share states in the control.

A different sort of optimization can be done by assigning the state numbers in a 
fi nite-state or microcode implementation to minimize the logic. This optimiza tion, 
called state assignment, tries to choose the state numbers such that the result ing 
logic equations contain more redundancy and can thus be simplifi ed. Let’s consider 
the case of a fi nite-state machine with an encoded next-state control fi rst, since it 
allows states to be assigned arbitrarily. For example, notice that in the fi nite-state 
machine, the signal RegWrite is active only in states 4 and 7. If we encoded those 
states as 8 and 9, rather than 4 and 7, we could rewrite the equation for RegWrite as 
simply a test on bit S3 (which is only on for states 8 and 9). This renumbering allows 
us to combine the two truth table entries in part (o) of Figure D.3.4 and replace 
them with a single entry, eliminating one term in the control unit. Of course, we 
would have to renumber the existing states 8 and 9, perhaps as 4 and 7. 

The same optimization can be applied in an implementation that uses an explicit 
program counter, though we are more restricted. Because the next-state number is 
often computed by incrementing the current-state number, we cannot arbitrarily 
assign the states. However, if we keep the states where the incremented state is used 
as the next state in the same order, we can reassign the consecutive states as a block. 
In an implementation with an explicit next-state counter, state assignment may 
allow us to simplify the contents of the dispatch ROMs.

If we look again at the control unit in Figure D.4.1, it looks remarkably like a 
computer in its own right. The ROM or PLA can be thought of as memory supplying 
instructions for the datapath. The state can be thought of as an instruction address. 
Hence the origin of the name microcode or micropro grammed control. The control 
words are thought of as microinstructions that con trol the datapath, and the State 
register is called the microprogram counter. Figure D.4.6 shows a view of the control 
unit as microcode. The next section describes how we map from a microprogram 
to microcode.
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FIGURE D.4.6 The control unit as a microcode. The use of the word “micro” serves to distinguish between the program counter in 
the datapath and the microprogram counter, and between the microcode memory and the instruction memory.
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 D.5 Translating a Microprogram to Hardware 

To translate a microprogram into actual hardware, we need to specify how each 
fi eld translates into control signals. We can implement a microprogram with either 
fi nite-state control or a microcode implementation with an explicit sequencer. If 
we choose a fi nite-state machine, we need to construct the next-state function from 



the microprogram. Once this function is known, we can map a set of truth table 
entries for the next-state outputs. In this section, we will show how to translate 
the microprogram, assuming that the next state is specifi ed by a sequencer. From 
the truth tables we will con struct, it would be straightforward to build the next-
state function for a fi nite-state machine.

Field name Value Signals active Comment

ALU control

Add ALUOp = 00 Cause the ALU to add.

Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for branches.

Func code ALUOp = 10 Use the instruction’s function code to determine ALU control.

SRC1
PC ALUSrcA = 0 Use the PC as the fi rst ALU input.

A ALUSrcA = 1 Register A is the fi rst ALU input.

SRC2

B ALUSrcB = 00 Register B is the second ALU input.

4 ALUSrcB = 01 Use 4 as the second ALU input.

Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.

Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.

Register 
control

Read Read two registers using the rs and rt fi elds of the IR as the register numbers 
and putting the data into registers A and B.

Write ALU RegWrite,
RegDst = 1, 
MemtoReg = 0

Write a register using the rd fi eld of the IR as the register number and the 
contents of ALUOut as the data. 

Write MDR RegWrite, 
RegDst = 0, 
MemtoReg = 1

Write a register using the rt fi eld of the IR as the register number and the 
contents of the MDR as the data.

Memory

Read PC MemRead, 
IorD = 0, IRWrite

Read memory using the PC as address; write result into IR (and the MDR).

Read ALU MemRead, 
IorD = 1

Read memory using ALUOut as address; write result into MDR.

Write ALU MemWrite, 
IorD = 1

Write memory using the ALUOut as address, contents of B as the data.

PC write control

ALU PCSource = 00, 
PCWrite

Write the output of the ALU into the PC.

ALUOut-cond PCSource = 01, 
PCWriteCond 

If the Zero output of the ALU is active, write the PC with the contents of the 
register ALUOut.

Jump address PCSource = 10, 
PCWrite

Write the PC with the jump address from the instruction.

Sequencing

Seq AddrCtl = 11 Choose the next microinstruction sequentially.

Fetch AddrCtl = 00 Go to the fi rst microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

FIGURE D.5.1 Each microcode fi eld translate to a set of control signals to be set. These 22 different values of the fi elds specify 
all the required combinations of the 18 con trol lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor 
control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don’t care and is not used.
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Assuming an explicit sequencer, we need to do two additional tasks to translate 
the microprogram: assign addresses to the microinstructions and fi ll in the con-
tents of the dispatch ROMs. This process is essentially the same as the process 
of translating an assembly language program into machine instructions: the fi elds 
of the assembly language or microprogram instruction are translated, and labels on 
the instructions must be resolved to addresses. 

Figure D.5.1 shows the various values for each microinstruction fi eld that con-
trols the datapath and how these fi elds are encoded as control signals. If the fi eld 
corresponding to a signal that affects a unit with state (i.e., Memory, Memory reg-
ister, ALU destination, or PCWriteControl) is blank, then no control signal should 
be active. If a fi eld corresponding to a multiplexor control signal or the ALU oper-
ation control (i.e., ALUOp, SRC1, or SRC2) is blank, the output is unused, so the 
associated signals may be set as don’t care.

The sequencing fi eld can have four values: Fetch (meaning go to the Fetch 
state), Dispatch 1, Dispatch 2, and Seq. These four values are encoded to set the 
2-bit address control just as they were in Figure D.4.4: Fetch = 0, Dispatch 1 = 1, 
Dispatch 2 = 2, Seq = 3. Finally, we need to specify the contents of the dispatch 
tables to relate the dispatch entries of the sequence fi eld to the symbolic labels 
in the microprogram. We use the same dispatch tables as we did earlier in 
Figure D.4.3.

A microcode assembler would use the encoding of the sequencing fi eld, the 
 contents of the symbolic dispatch tables in Figure D.5.2, the specifi cation in 
Figure D.5.1, and the actual microprogram to gen erate the microinstructions. 

Since the microprogram is an abstract representation of the control, there is a 
great deal of fl exibility in how the microprogram is translated. For example, the 
address assigned to many of the microinstructions can be chosen arbitrar ily; the 
only restrictions are those imposed by the fact that certain microinstruc tions must 

dispatch table 1 Microcode dispatch table 2

Opcode fi eld Opcode name Value Opcode fi eld Opcode name Value

000000 R-format Rformat1 100011 lw LW2

000010 jmp JUMP1 101011 sw SW2

000100 beq BEQ1

100011 lw Mem1

101011 sw Mem1

FIGURE D.5.2 The two microcode dispatch ROMs showing the contents in symbolic form 
and using the labels in the microprogram.



occur in sequential order (so that incrementing the State register generates the 
address of the next instruction). Thus the microcode assembler may reduce the 
complexity of the control by assigning the microinstructions cleverly. 

Organizing the Control to Reduce the Logic
For a machine with complex control, there may be a great deal of logic in the con-
trol unit. The control ROM or PLA may be very costly. Although our simple imple-
mentation had only an 18-bit microinstruction (assuming an explicit sequencer), 
there have been machines with microinstructions that are hundreds of bits wide. 
Clearly, a designer would like to reduce the number of microinstruc tions and the 
width. 

The ideal approach to reducing control store is to fi rst write the complete 
microprogram in a symbolic notation and then measure how control lines are set 
in each microinstruction. By taking measurements we are able to recognize con trol 
bits that can be encoded into a smaller fi eld. For example, if no more than one of 
eight lines is set simultaneously in the same microinstruction, then this subset of 
control lines can be encoded into a 3-bit fi eld (log2 8 = 3). This change saves fi ve 
bits in every microinstruction and does not hurt CPI, though it does mean the extra 
hardware cost of a 3-to-8 decoder needed to gen erate the eight control lines when 
they are required at the datapath. It may also have some small clock cycle impact, 
since the decoder is in the signal path. However, shaving fi ve bits off control store 
width will usually overcome the cost of the decoder, and the cycle time impact will 
probably be small or nonexistent. For example, this technique can be applied to 
bits 13–6 of the microinstructions in this machine, since only one of the seven bits 
of the control word is ever active (see Figure D.4.5). 

This technique of reducing fi eld width is called encoding. To fur ther save space, 
control lines may be encoded together if they are only occasionally set in the same 
microinstruction; two microinstructions instead of one are then required when 
both must be set. As long as this doesn’t happen in critical routines, the narrower 
microinstruction may justify a few extra words of control store. 

Microinstructions can be made narrower still if they are broken into different 
formats and given an opcode or format fi eld to distinguish them. The format fi eld 
gives all the unspecifi ed control lines their default values, so as not to change any-
thing else in the machine, and is similar to the opcode of an instruction in a more 
powerful instruction set. For example, we could use a different format for micro-
instructions that did memory accesses from those that did register-register ALU 
operations, taking advantage of the fact that the memory access control lines are 
not needed in microinstructions controlling ALU operations.

Reducing hardware costs by using format fi elds usually has an additional per-
formance cost beyond the requirement for more decoders. A microprogram using 
a single microin struction format can specify any combination of operations in a 
dat apath and can take fewer clock cycles than a microprogram made up of restricted 
microinstructions that cannot perform any combination of operations in a single 
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microinstruction. However, if the full capability of the  wider micropro gram word 
is not heavily used, then much of the control store will be wasted, and the machine 
could be made smaller and faster by restricting the microinstruction capability.

The narrow, but usually longer, approach is often called vertical microcode, while 
the wide but short approach is called horizontal microcode. It should be noted that 
the terms “vertical microcode” and “horizontal microcode” have no universal 
defi nition—the design ers of the 8086 considered its 21-bit microin struction to be 
more hori zontal than other single-chip computers of the time. The related terms 
maximally encoded and minimally encoded are probably better than vertical and 
horizontal.

 D.6 Concluding Remarks

We began this appendix by looking at how to translate a fi nite-state diagram to an 
implementation using a fi nite-state machine. We then looked at explicit sequenc-
ers that use a different technique for realizing the next-state function. Although 
large microprograms are often targeted at implementations using this explicit 
next-state approach, we can also implement a microprogram with a fi nite-state 
machine. As we saw, both ROM and PLA implementations of the logic functions 
are possible. The advantages of explicit versus encoded next state and ROM versus 
PLA implementation are summarized below.

Independent of whether the control is represented as a fi nite-state dia gram 
or as a microprogram, translation to a hardware control implemen tation 
is similar. Each state or microinstruction asserts a set of control outputs 
and specifi es how to choose the next state. 

The next-state function may be implemented by either encoding it in a 
fi nite-state machine or using an explicit sequencer. The explicit sequencer 
is more effi cient if the number of states is large and there are many 
sequences of consecutive states without branching. 

The control logic may be implemented with either ROMs or PLAs (or 
even a mix). PLAs are more effi cient unless the control function is very 
dense. ROMs may be appropriate if the control is stored in a separate 
memory, as opposed to within the same chip as the datapath.

The BIG
Picture

The BIG
Picture



 D.7 Exercises

D.1 [10] <§D.2> Instead of using four state bits to implement the fi nite-state 
machine in Figure D.3.1 on page C-9, use nine state bits, each of which is a 1 only 
if the fi nite-state machine is in that particular state (e.g., S1 is 1 in state 1, S2 is 1 in 
state 2, etc.). Redraw the PLA (Figure D.3.9).

D.2 [5] <§D.3> We wish to add the instruction jal (jump and link). Make any 
necessary changes to the datapath or to the control signals if needed. You can pho-
tocopy fi gures to make it faster to show the additions. How many product terms 
are required in a PLA that implements the control for the single-cycle datapath 
for jal? 

D.3 [5] <§D.3> Now we wish to add the instruction addi (add immediate). Add 
any necessary changes to the datapath and to the control signals. How many prod-
uct terms are required in a PLA that implements the control for the single-cycle 
datapath for addiu?

D.4 [10] <§D.3> Determine the number of product terms in a PLA that imple-
ments the fi nite-state machine for addi. The easiest way to do this is to construct 
the additions to the truth tables for addi.

D.5 [20] <§D.4> Implement the fi nite-state machine of using an explicit counter 
to determine the next state. Fill in the new entries for the additions to Figure D.4.5. 
Also, add any entries needed to the dispatch ROMs of Figure D.5.2.

D.6 [15] <§§D.3–D.6> Determine the size of the PLAs needed to implement the 
multicycle machine, assuming that the next-state function is implemented with 
a counter. Implement the dispatch tables of Figure D.5.2 using two PLAs and the 
contents of the main control unit in Figure D.4.5 using another PLA. How does 
the total size of this solution compare to the single PLA solution with the next 
state encoded? What if the main PLAs for both approaches are split into two 
separate PLAs by factoring out the next-state or address select signals?
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