Bottom Up Parsing

PITT CS 2210
Bottom Up Parsing

- More powerful than top down
 - Don’t need left factored grammars
 - Can handle left recursion
 - Can express a larger set of languages
- Begins at leaves and works to the top
 - In reverse order of rightmost derivation
 (In effect, builds tree from left to right)
- Also known as Shift-Reduce parsing
 - Involves two types of operations: shift and reduce
Parser Implementation

Parser Stack – holds consumed portion of derivation string
Table – “actions” to perform based on (stack top, current token)
Parser Driver – table-driven code to perform actions in table given stack top and current token
Parser Implementation

Actions
1. Shift – consume input symbol and add symbol onto the stack
2. Reduce – replace an RHS at top of stack to LHS of a production rule, reducing stack contents
3. Accept – success (when reduced to start symbol and input at $)
4. Error
Z → b M b
M → (L | a
L → M a) |)

Considering string: w = b (a a) b

The rightmost derivation of this parse tree:
Z ⇒ b M b ⇒ b (L b ⇒ b (M a) b ⇒ b (a a) b

Bottom up parsing involves finding “handles” (RHSs) to reduce
b (a a) b ⇒ b (M a) b ⇒ b (L b ⇒ b M b ⇒ Z
Handle

- Informally: RHS of a production rule that, when replaced with LHS, will lead to the start symbol

- Definition:
 - **Sentential form**: Any string derivable from the start symbol, comprised of terminals and non-terminals
 - Let $\alpha\beta w$ be a sentential form where
 - α is an arbitrary string of symbols
 - $X \rightarrow \beta$ is a production
 - w is a string of terminals (already derived portion)
 - Then β is a **handle** of $\alpha\beta w$ if
 - $S \Rightarrow^* \alpha X w \Rightarrow \alpha\beta w$ by a rightmost derivation

- Handles formalize the intuition “β should be reduced to X for a successful parse”, but does not really say how to find them
Handle Always Occurs at Top of Stack

\[
\begin{align*}
\text{Z} & \rightarrow \text{b M b} \\
\text{M} & \rightarrow (\text{L} | \text{a} \\
\text{L} & \rightarrow \text{M a}) |) \\
\end{align*}
\]

String
\[
\text{b (a a) } $
\]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$ b (a a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b</td>
<td>(a a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (</td>
<td>a a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (a</td>
<td>a) b $</td>
<td>reduce</td>
</tr>
<tr>
<td>$ b (M</td>
<td>a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (M</td>
<td>a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (M</td>
<td>a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (M</td>
<td>a) b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b (</td>
<td>b $</td>
<td>reduce</td>
</tr>
<tr>
<td>$ b (L</td>
<td>b $</td>
<td>reduce</td>
</tr>
<tr>
<td>$ b M</td>
<td>b $</td>
<td>shift</td>
</tr>
<tr>
<td>$ b M b</td>
<td>$</td>
<td>reduce</td>
</tr>
<tr>
<td>$ Z</td>
<td>$</td>
<td>accept</td>
</tr>
</tbody>
</table>
Handle Always Occurs at Top of Stack

Grammar

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E \rightarrow E + E$</td>
<td>$id_1 + id_2 \ast id_3$</td>
<td>id_1</td>
<td>$E \rightarrow id$</td>
</tr>
<tr>
<td>$E \rightarrow E \ast E$</td>
<td>$E + id_2 \ast id_3$</td>
<td>id_2</td>
<td>$E \rightarrow id$</td>
</tr>
<tr>
<td>$E \rightarrow (E)$</td>
<td>$E + E \ast id_3$</td>
<td>id_3</td>
<td>$E \rightarrow id$</td>
</tr>
<tr>
<td>$E \rightarrow id$</td>
<td>$E + E \ast E$</td>
<td>$E \ast E$</td>
<td>$E \rightarrow E \ast E$</td>
</tr>
<tr>
<td></td>
<td>$E + E$</td>
<td>$E + E$</td>
<td>$E \rightarrow E + E$</td>
</tr>
</tbody>
</table>

#: location of handle

- Left of #: completely reduced (except for handle), Right of #: unreduced
- $id_1 \ # + id_2 \ast id_3 \Rightarrow E \ # + id_2 \ast id_3 \Rightarrow E + \ # id_2 \ast id_3 \Rightarrow E + id_2 \ # \ast id_3 \Rightarrow E + E \ # \ast id_3 \Rightarrow E + E \ast id_3 \ # \Rightarrow E + E \ast E \ # \Rightarrow E + E \ # \Rightarrow E$

moves monotonically from left to right (reverse of rightmost derivation)

- If we shift judiciously to always maintain string left of # on the stack, handle always occurs at top of stack (never in the middle)
Locating Handles

- If reverse of rightmost derivation is followed, the handle can always be found at the top of the parse stack
- In below parse tree, numbers indicate production order in rightmost derivation

Rightmost derivation in reverse: 7 6 5 4 3 2 1

Note for each reduction of handle:
- Right side: contains unconsumed terminals
- Left side: already digested parse tree
Handle Always Occurs at Top of Stack

- Consider our usual grammar
 \[E \rightarrow T + E \mid T \]
 \[T \rightarrow \text{int} \times T \mid \text{int} \mid (\ E\) \]

Consider the string: \(\text{int} \times \text{int} + \text{int} \)

<table>
<thead>
<tr>
<th>sentential form</th>
<th>production</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{int} \times \text{int} # + \text{int})</td>
<td>(T \rightarrow \text{int})</td>
</tr>
<tr>
<td>(\text{int} \times T # + \text{int})</td>
<td>(T \rightarrow \text{int} \times T)</td>
</tr>
<tr>
<td>(T + \text{int} #)</td>
<td>(T \rightarrow \text{int})</td>
</tr>
<tr>
<td>(T + T #)</td>
<td>(E \rightarrow T)</td>
</tr>
<tr>
<td>(T + E #)</td>
<td>(E \rightarrow T + E)</td>
</tr>
<tr>
<td>(E #)</td>
<td></td>
</tr>
</tbody>
</table>

- Essentially, a depth-first left-to-right traversal of parse tree
- Makes life easier for parser (no need to access middle of stack)
Ambiguous Grammars

- Conflicts arise with ambiguous grammars
 - Just like LL parsing, bottom up parsing tries to predict the correct action, but if there are multiple correct actions, conflicts arise

- Example:
 - Consider the ambiguous grammar

\[E \rightarrow E \ast E \mid E + E \mid (E) \mid \text{int} \]

<table>
<thead>
<tr>
<th>Sentential form</th>
<th>Actions</th>
<th></th>
<th>Sentential form</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>int * int + int</td>
<td>shift</td>
<td></td>
<td>int * int + int</td>
<td>shift</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E * E # + int</td>
<td></td>
<td></td>
<td>E * E # + int</td>
<td>shift</td>
</tr>
<tr>
<td>E # + int</td>
<td>shift</td>
<td></td>
<td>E * E # + int</td>
<td>shift</td>
</tr>
<tr>
<td>E + # int</td>
<td>shift</td>
<td></td>
<td>E * E # + int</td>
<td>shift</td>
</tr>
<tr>
<td>E + int #</td>
<td>reduce E \rightarrow int</td>
<td></td>
<td>E * E + E #</td>
<td>reduce E \rightarrow int</td>
</tr>
<tr>
<td>E + E #</td>
<td>reduce E \rightarrow E + E</td>
<td></td>
<td>E * E #</td>
<td>reduce E \rightarrow E * E</td>
</tr>
<tr>
<td>E #</td>
<td></td>
<td></td>
<td>E #</td>
<td></td>
</tr>
</tbody>
</table>
Ambiguity

- In the first step shown, we can either shift or reduce by
 \[E \to E \ast E \]
 Choice because of precedence of + and *
 Same problem with association of * and +

- Can always rewrite to encode precedence and associativity
 - Can sometimes result in convoluted grammars
 - Tools have other means to encode precedence and association

- But must get rid of remaining ambiguity (e.g. if-then-else)
 - Ambiguity show up as “conflicts” in the parsing table
 (Just like in tables for LL parsers)
Properties of Bottom Up Parsing

- Handles always appear at the top of the stack
 - Never in middle of stack
 - Justifies use of stack in shift – reduce parsing (just like for Top-Down!)

- Results in an easily generalized shift – reduce strategy
 - If there is no handle at the top of the stack, shift
 - If there is a handle, reduce to the non-terminal
 - Easy to automate the synthesis of the parser using a table

- Can have conflicts
 - If it is legal to either shift or reduce then there is a shift-reduce conflict.
 - If there are two legal reductions, then there is a reduce-reduce conflict.
 - Most often occur because of ambiguous grammars
 - In rare cases, because of non-ambiguous grammars not amenable to parser
Types of Bottom Up Parsers

- Types of bottom up parsers
 - Simple precedence parsers
 - Operator precedence parsers
 - LR family parsers
 - ...

- In this course, we will only discuss LR family parsers
 - Most automated tools generate either LL or LR parsers
LR Parsers

- LR family of parsers
 - LR(k)
 - L – left to right
 - R – rightmost derivation in reverse
 - k elements of look ahead

- Attractive
 1. More powerful than LL(k)
 - Handles more grammars: no left recursion removal, left factoring needed
 - Handles more (and most practical) languages: LL(k) ⊂ LR(k)
 2. Efficient as LL(k)
 - Linear in time and space to length of input (same as LL(k))
 3. Convenient as LL(k)
 - Can generate automatically from grammar – YACC, Bison

- Less attractive – more complex than LL(k) parser
Implementation

-- LR Parsing

Pitt, CS 2210
Viable Prefix

- Definition: \(\alpha \) is a viable prefix if
 - \(\alpha \) is a prefix of a rightmost sentential form
 (there exists a \(w \) where \(\alpha w \) is a rightmost sentential form)
 - \(\alpha \) only includes symbols up to the “handle”
 - In other words, if there exists a \(w \) where \(\alpha \# w \) is a configuration of a shift-reduce parser

\[
\begin{align*}
 b (a \# a) b & \Rightarrow b (M \# a) b \\
 & \Rightarrow b (L \# b \Rightarrow b M \# b \Rightarrow Z \#)
\end{align*}
\]

- If stack contains a viable prefix, parser is on the right track
 - Has a chance of accepting depending on remaining input
- Shift-reduce parsing is the process of massaging the contents of the parse stack from viable prefix to viable prefix
 - Reject if neither shifting or reducing results in a viable prefix
Massaging into a Viable Prefix

- How do you know what results in a viable prefix?
 - Example grammar

 $S \rightarrow a \ B \ S \mid b$

 $B \rightarrow b$

 - Example shift and reduce on: $a \ # \ b \ b$

 Shift: $a \ # \ b \ b \Rightarrow a \ b \ # \ b$
 Does shifting result in a viable prefix?

 Reduce: $a \ b \ # \ b \Rightarrow a \ B \ # \ b$
 Should I apply $B \rightarrow b$ (and not $S \rightarrow b$)?

- Keep track of where you are in the current production
Massaging into a Viable Prefix

- Example grammar
 \[S \rightarrow a \; B \; S \mid b \]
 \[B \rightarrow b \]

- Let a dot (.) indicate extent of production already seen
 - **Shift ‘b’:** \(a \; # \; b \; b \) \(\Rightarrow \) \(a \; b \; # \; b \) (Why?)

 Because we need a ‘B’ and we are just about to start with ‘B’
 \[S \rightarrow a. \; B \; S, \; B \rightarrow . \; b \] \(\Rightarrow \)
 \[S \rightarrow a. \; B \; S, \; B \rightarrow . \; b. \]
 - **Reduce ‘B → b’:** \(a \; b \; # \; b \) \(\Rightarrow \) \(a \; B \; # \; b \) (Why?)

 Because we need a ‘B’ and we’ve just finished completing ‘B’
 \[S \rightarrow a. \; B \; S, \; B \rightarrow b. \] \(\Rightarrow \)
 \[S \rightarrow a . \; B \; S, \; S \rightarrow . \; a \; B \; S, \; S \rightarrow . \; b \]
LR(0) Item Notation

- LR(0) Item: a production + a dot on the RHS
 - Dot indicates extent of production already seen
 - In example grammar
 Items for production $S \to a B S$
 - $S \to . a B S$
 - $S \to a . B S$
 - $S \to a B . S$
 - $S \to a B S .$

- Items denote the idea of the viable prefix. E.g.
 - $S \to . a B S$: to be a viable prefix, terminal ‘a’ needs to be shifted
 - $S \to a . B S$: to be a viable prefix, a set of terminals need to be shifted and reduced to non-terminal ‘B’
States in the LR Parser

- Action of LL parser is governed by: (stack top symbol, input)
- For LR parser, more complex: (stack top state, input)
 - State: where we are in the current production at that point
 - State is denoted by a set of LR(0) items
- Why a set of LR(0) items?
 - There may be multiple candidate productions for the prefix. E.g.
 For grammar $S \rightarrow a \ b \mid a \ c$,
 $S \rightarrow a. b$ and $S \rightarrow a. c$ would be items in the same set
 - Even for one production, you may need multiple items expressing the same position, if the following symbol is a non-terminal. E.g.
 For grammar $S \rightarrow a \ B$, $B \rightarrow b$
 $S \rightarrow a. B$ and $B \rightarrow . b$ would be items in the same set
- LR parsers keep track of states alongside symbols in stack
Parser Implementation in More Detail

- Each grammar symbol X_i is associated with a state S_i.
- Contents of stack ($X_1X_2...X_m$) is a viable prefix.
- Contents of stack + input ($X_1X_2...X_ma_ia_i...a_n$) is a right sentential form.
 - If the input string is a member of the language.
- Uses **state** at the top of stack and current input to index into parsing table to determine whether to shift or reduce.
Parser Actions

<table>
<thead>
<tr>
<th>S₀</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

S₀:

S₁:

Sₘ:

Sₘ₋₁:

Sₘ:

Sₘ₋₁:

Shift

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

Reduce(1)

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

GOTO

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sₘ+₁</th>
<th>Xₘ+₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sₘ</td>
<td>Xₘ</td>
</tr>
<tr>
<td>Sₘ₋₁</td>
<td>Xₘ₋₁</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S₁</td>
<td>X₁</td>
</tr>
<tr>
<td>S₀</td>
<td>---</td>
</tr>
</tbody>
</table>
Parser Actions

- Assume configuration = $S_0X_1S_1X_2S_2...X_mS_m#a_ia_{i+1}...a_n$
- Actions can be one of:
 1. Shift input a_i and push new state S
 - New configuration = $S_0X_1S_1X_2S_2...X_mS_ma_iS#a_{i+1}...$
 - Where Action $[S_m, a_i] = s[S]$
 2. Reduce using Rule R ($A \rightarrow \beta$) and push new state S
 - Let $k = |\beta|$, pop 2^k symbols and push A
 - New configuration = $S_0X_1S_1...X_mS_mA S#a_i a_{i+1}...$
 - Where Action $[S_m, a_i] = r[R]$ and GoTo $[S_{m-k}, A] = [S]$
 3. Accept – parsing is complete ($Action [S_m, a_i] = accept$)
 4. Error – report and stop ($Action [S_m, a_i] = error$)
Parse Table: Action and Goto

- Action \([S_m, a_i]\) can be one of:
 - \(s[S]\): shift input symbol \(a_i\) and push state \(S\)
 (One item in \(S_m\) must be of the form \(A \rightarrow \alpha \cdot a_i \beta\))
 - \(r[R]\): reduce using rule \(R\) on seeing input symbol \(a_i\)
 (One item in \(S_m\) must be \(R: A \rightarrow \alpha \cdot \), where \(a_i \in \text{Follow}(A)\))
 - Use GoTo \([S_{m-|\alpha|}, A]\) to figure out state to push with \(A\)
 - Accept
 (One item in \(S_m\) must be \(S' \rightarrow S \cdot \) where \(S\) is the original start symbol, and \(a_i\) must be \($\))
 - Error (Cannot shift, reduce, accept on symbol \(a_i\) in state \(S_m\))

- GoTo \([S_m, X_i]\) is \([S]\):
 - Next state to push when pushing nonterminal \(X_i\) from a reduction
 (At least one item in \(S_m\) must be of the form \(A \rightarrow \alpha \cdot X_i \beta\))
 - Similar to shifting input except now we are matching a nonterminal
Grammar

1. \(S \rightarrow E \)
2. \(E \rightarrow E + T \)
3. \(E \rightarrow T \)
4. \(T \rightarrow id \)
5. \(T \rightarrow (E) \)

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>$</td>
</tr>
<tr>
<td>(E)</td>
<td>+) $</td>
</tr>
<tr>
<td>(T)</td>
<td>+) $</td>
</tr>
</tbody>
</table>

ACTION

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>id</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td></td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>accept</td>
</tr>
<tr>
<td>S2</td>
<td>r3</td>
<td></td>
<td></td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td></td>
<td></td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>s7</td>
<td></td>
<td></td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>r5</td>
<td></td>
<td></td>
<td>r5</td>
<td>r5</td>
</tr>
<tr>
<td>S7</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>r2</td>
<td></td>
<td></td>
<td>r2</td>
<td>r2</td>
</tr>
</tbody>
</table>

GOTO

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>S8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grammar

1. $S \rightarrow E$
2. $E \rightarrow E + T$
3. $E \rightarrow T$
4. $T \rightarrow id$
5. $T \rightarrow (E)$

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$$</td>
</tr>
<tr>
<td>E</td>
<td>$+) $</td>
</tr>
<tr>
<td>T</td>
<td>$+) $</td>
</tr>
</tbody>
</table>

ACTION

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>id</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S0$</td>
<td></td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S1$</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>accept</td>
</tr>
<tr>
<td>$S2$</td>
<td>r3</td>
<td></td>
<td></td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>$S3$</td>
<td>r4</td>
<td></td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>$S4$</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S5$</td>
<td>s7</td>
<td></td>
<td></td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>$S6$</td>
<td>r5</td>
<td></td>
<td>r5</td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>$S7$</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S8$</td>
<td>r2</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
</tbody>
</table>

GOTO

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S0$</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$S1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S4$</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>$S5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S7$</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>$S8$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parse Table in Action

- Example input string

 \[id \quad + \quad id \quad + \quad id \]

- Parser actions

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>id + id + id $</td>
<td>Action[S0, id] (s3): Shift “id”, Push S3</td>
</tr>
<tr>
<td>S0 id S3</td>
<td>+ id + id $</td>
<td>Action[S3, +] (r4): Reduce rule 4 (T→id)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GoTo[S0, T] (2): Push S2</td>
</tr>
<tr>
<td>S0 T S2</td>
<td>+ id + id $</td>
<td>Action[S2, +] (r3): Reduce rule 3 (E→T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GoTo[S0, E] (1): Push S1</td>
</tr>
<tr>
<td>S0 E S1</td>
<td>+ id + id $</td>
<td>Action[S1, +] (s7): Shift “+”, Push S7</td>
</tr>
<tr>
<td>S0 E S1 + S7</td>
<td>id + id $</td>
<td>Action[S7, id] (s7): Shift “id”, Push S3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>S0 E S1 + S7 T S8</td>
<td>+ id $</td>
<td>Action[S8, +] (r2): Reduce rule 2 (E→E+T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GoTo[S0, E] (1): Push S1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Power Added to DFA by Stack

- LR parser is basically DFA+Stack (Pushdown Automaton)
- DFA: can only remember one state ("dot" in current rule)
- DFA + Stack: remembers current state and all past states ("dots" in rules higher up in the tree waiting for non-terminals)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>id + id $</td>
<td>s3</td>
</tr>
<tr>
<td>S0 id S3</td>
<td>+ id $</td>
<td>r4, goto[S0, T]</td>
</tr>
<tr>
<td>S0 T S2</td>
<td>+ id $</td>
<td>r3, goto[S0, E]</td>
</tr>
<tr>
<td>S0 E S1</td>
<td>+ id $</td>
<td>s7</td>
</tr>
<tr>
<td>S0 E S1 + S7</td>
<td>id $</td>
<td>s3</td>
</tr>
<tr>
<td>S0 E S1 + S7 id S3</td>
<td>$</td>
<td>r4, goto[S7, T]</td>
</tr>
<tr>
<td>S0 E S1 + S7 T S8</td>
<td>$</td>
<td>r2, goto[S0, E]</td>
</tr>
<tr>
<td>S0 E S1</td>
<td>$</td>
<td>Accept</td>
</tr>
</tbody>
</table>
Power Added to DFA by Stack

- Remember the following CFG for the language \(\{ [i]^{i} \mid i \geq 1 \} \)?
 \[S \to [S] | [] \]

- Regular grammars (or DFAs) could not recognize language because the state machine had to “count”

- LR parsers can use stack to count by pushing as many states as there are [symbols in the input string.

- Q: Is this language LL(1)?
 - Yes. After left-factoring.
 \[S \to [S', S' \to S] |] \]
 - Now stack counts] symbols.
 - Same pushdown automaton but different usage

\[S \]
\[S0 \]
\[S1 \]
\[\ldots \]
LR Parse Table Construction

- Must be able to decide on action from:
 - State at the top of stack
 - Next k input symbols (In practice, k = 1 is often sufficient)

- To construct LR parse table from grammar
 - Two phases
 - Build deterministic finite state automaton to go from state to state
 - Express DFA using Action and GoTo tables

- State: Where we are currently in the structure of the grammar
 - Expressed as a set of LR(0) items
 - Each item expresses position in terms of the RHS of a rule
Construction of LR States

1. Create augmented grammar G’ for G
 - Given G: \(S \rightarrow \alpha | \beta \), create G’: \(S' \rightarrow S \quad S \rightarrow \alpha | \beta \)
 - Creates a single rule \(S' \rightarrow S \) that when reduced, signals acceptance

2. Create first state by performing a closure on initial item \(S' \rightarrow . S \)
 - Closure(I): computes set of items expressing the same position as I
 - \(\text{Closure}(\{S' \rightarrow . S\}) = \{S' \rightarrow . S, S \rightarrow . \alpha, S \rightarrow . \beta\} \)

3. Create additional states by performing a goto on each symbol
 - Goto(I, X): creates state that can be reached by advancing X
 - If \(\alpha \) was single symbol, the following new state would be created:
 - \(\text{Goto}(\{S' \rightarrow . S, S \rightarrow . \alpha, S \rightarrow . \beta\}, \alpha) = \text{Closure}(\{S \rightarrow \alpha .\}) = \{S \rightarrow \alpha .\} \)

4. Repeatedly perform gotos until there are no more states to add
Closure Function

- Closure(I) where I is a set of items
 - Returns the state (set of items) that express the same position as I
 - Items in I are called kernel items
 - Rest of items in closure(I) are called non-kernel items

- Let N be a non-terminal
 - If dot is in front of N, then add each production for that N and put dot at the beginning of the RHS
 - A → α · B β is in I ; we expect to see a string derived from B
 - B → . γ is added to the closure, where B → γ is a production
 - Apply rule until nothing is added

- Given

 \[
 S \rightarrow E \\
 E \rightarrow E + T \\
 E \rightarrow T \\
 T \rightarrow id | (E) \\
 \]

 Closure(\{ S \rightarrow . E \}) = \{ S \rightarrow . E, E \rightarrow . E + T, E \rightarrow . T, T \rightarrow . id, T \rightarrow . (E) \}
Kernel and Non-kernel Items

- Two kinds of items
 - Kernel items
 - Items that act as “seed” items when creating a state
 - What items act as seed items when states are created?
 - Initial state: $S' \rightarrow . S$
 - Additional states: from $\text{goto}(I, X)$ so has X at left of dot
 - Besides $S' \rightarrow . S$, all kernel items have dot in middle of RHS
 - Non-kernel items
 - Items added during the closure of kernel items
 - All non-kernel items have dot at the beginning of RHS
Goto Function

- Goto (I, X) where I is a set of items and X is a symbol
 - Returns state (set of items) that can be reached by advancing X
 - For each $A \rightarrow \alpha \cdot X \beta$ in I,
 - $\text{Closure}(A \rightarrow \alpha X \cdot \beta)$ is added to goto(I, X)
 - X can be a terminal or non-terminal
 - Terminal if obtained from input string by shifting
 - Non-terminal if obtained from reduction
- Example
 - Goto($\{T \rightarrow . (E)\}$, α) = closure($\{T \rightarrow (. E)\}$)
- Generates next state after matching a terminal or non-terminal
Construction of DFA

- Algorithm to compute set C (set of all states in DFA)
  ```java
  void items (G') {
      C = {closure({S→ . S})}  // Add initial state to C
      repeat
          for (each state I in C)
              for (each grammar symbol X)
                  if (goto(I, X) is not empty and not in C)
                      add goto(I, X) to C
          until no new states are added to C
  }
  ```

- All new states are added through goto(I, X)
 - States transitions are done on symbol X
Example:
\[S \rightarrow E \]
\[E \rightarrow E + T \mid T \]
\[T \rightarrow \text{id} \mid (E) \]

- \[S_0 = \text{closure} (\{S \rightarrow . \ E\}) = \{S \rightarrow . \ E, E \rightarrow . \ E + T, E \rightarrow . \ T, T \rightarrow . \ \text{id}, T \rightarrow . \ (E)\} \]
- \[\text{goto}(S_0, E) = \text{closure} (\{S \rightarrow E ., S \rightarrow E . + T\}) \]
 \[S_1 = \{S \rightarrow E ., S \rightarrow E . + T\} \]
- \[\text{goto}(S_0, T) = \text{closure} (\{E \rightarrow T .\}) \]
 \[S_2 = \{E \rightarrow T .\} \]
- \[\text{goto}(S_0, \text{id}) = \text{closure} (\{T \rightarrow \text{id} .\}) \]
 \[S_3 = \{T \rightarrow \text{id} .\} \]
- \[\ldots \]
- \[S_8 = \ldots \]
DFA for the previous grammar
(* are closures applied to kernel items)

\[S_0 \]
- $S \rightarrow .E$
- $E \rightarrow .E+T$
- $E \rightarrow .T$
- $T \rightarrow .Id$
- $T \rightarrow .(E)$

\[S_1 \]
- $S \rightarrow E$
- $E \rightarrow E+T$

\[S_2 \]
- $E \rightarrow E+T$
- $T \rightarrow .Id$
- $T \rightarrow .(E)$

\[S_3 \]
- $T \rightarrow .Id$

\[S_4 \]
- $T \rightarrow (E)$
- $E \rightarrow .E+T$
- $E \rightarrow .T$
- $T \rightarrow .Id$
- $T \rightarrow .(E)$

\[S_5 \]
- $T \rightarrow (E)$
- $E \rightarrow E+T$

\[S_6 \]
- $T \rightarrow (E)$
- $E \rightarrow E+T$

\[S_7 \]
- $E \rightarrow E+T$
- $T \rightarrow .Id$
- $T \rightarrow .(E)$

\[S_8 \]
- $E \rightarrow E+T$
Building Parse Table from DFA

- ACTION [state, terminal symbol]
- GOTO [state, non-terminal symbol]

ACTION:

1. If \([A \rightarrow \alpha \cdot a \beta] \text{ is in } S_i \text{ and } \text{goto}(S_i, a) = S_j\), where “a” is a terminal then ACTION\([S_i, a] = \text{shift } j (s_j)\)
2. If \([A \rightarrow \alpha \cdot] \text{ is in } S_i \text{ and } A \rightarrow \alpha \text{ is rule number } j\) then ACTION\([S_i, a] = \text{reduce } j (r_j)\), for all \(a \in \text{Follow}(A)\)
3. If \([S' \rightarrow S_0 \cdot] \text{ is in } S_i\) then ACTION\([S_i, $] = \text{accept}\)

- If no conflicts among 1 and 2 then it is said that this parser is able to parse the given grammar

GOTO

1. if goto\((S_i, A) = S_j\) then GOTO\([S_i, A] = j\)

- All entries not filled are rejects
Grammar
1. S → E
2. E → E + T
3. E → T
4. T → id
5. T → (E)

Non-terminal	Follow
S | $
E | +) $
T | +) $

ACTION

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>id</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td></td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>r3</td>
<td></td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>r4</td>
<td></td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>s7</td>
<td></td>
<td></td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td>r5</td>
<td></td>
<td>r5</td>
<td>r5</td>
</tr>
<tr>
<td>S7</td>
<td>s3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>r2</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
</tbody>
</table>

GOTO

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>S8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parsers in the LR Family

Pitt, CS 2210
Types of LR Parsers

- **SLR** – simple LR (what we saw so far was SLR(1))
 - Easiest to implement
 - Not as powerful
- **Canonical LR**
 - Most powerful
 - Expensive to implement
- **LALR**
 - Look ahead LR
 - In between the 2 previous ones in power and overhead

Overall parsing algorithm is the same – table is different
Consider the grammar G

$$S \rightarrow A \ b \ c \ | \ B \ b \ d$$

$A \rightarrow a$

$b \in \text{Follow}(A)$ and also $b \in \text{Follow}(B)$

$B \rightarrow a$

What is reduced when “a b” is seen? Reduce to A or B?
- Reduce-reduce conflict

G is not SLR(1) but SLR(2)
- We need 2 symbols of look ahead to look past b:

 $b \ c$ – reduce to A

 $b \ d$ – reduce to B

- Possible to extend SLR(1) to k symbols of look ahead – allows larger class of CFGs to be parsed
SLR(k)

- Extend SLR(1) definition to SLR(k) as follows

 let $\alpha, \beta \in V^*$

 - $\text{First}_k(\alpha) = \{ x \in V_T^* | (\alpha \rightarrow^* x\beta \text{ and } |x| \leq k) \}$ gives
 - All prefixes of strings derivable from α, where size $\leq k$
 - Given $A \rightarrow \gamma \cdot \alpha$, if k lookahead symbols match $\text{First}_k(\alpha)$, good idea to continue down that path and go on shifting α

 - $\text{Follow}_k(A) = \{ w \in V_T^* | S \rightarrow^* \alpha A \gamma \text{ and } w \in \text{First}_k(\gamma) \}$ gives
 - All strings that can follow A in some derivation, where size $\leq k$
 - Given $A \rightarrow \alpha \cdot$, if k lookahead symbols match $\text{Follow}_k(\alpha)$, good idea to reduce α to A
Parse Table

Let S be a state and lookahead $b \in V_T^*$ such that $|b| \leq k$

1. If $A \rightarrow \alpha. \in S$ and $b \in \text{Follow}_k(A)$ then
 - $\text{Action}(S,b)$ – reduce using production $A \rightarrow \alpha$,

2. If $D \rightarrow \alpha.a \gamma \in S$ and $a \in V_T$ and $b \in \text{First}_k(a \gamma \text{Follow}_k(D))$
 - $\text{Action}(S,b) = \text{shift } \text{“}a\text{” and push state goto}(S,a)$

For $k = 1$, this definition reduces to SLR(1)
Reduce: Trivially true
Shift: $\text{First}_1(a \gamma \text{Follow}_1(D)) = \{a\}$
SLR(k)

Consider

\[S \rightarrow A \, b^{k-1} \, c \mid B \, b^{k-1} \, d \]
\[A \rightarrow a \]
\[B \rightarrow a \]

SLR(k) not SLR(k-1)

- cannot decide what to reduce,
- reduce a to A or B depends on the next k symbols
 \[b^{k-1} \, c \text{ or } b^{k-1} \, d \]
Consider another Grammar G

- $S \rightarrow j\ A\ j \mid A\ m \mid a\ j$
- $A \rightarrow a$

Follow(A) = \{j, m\}

State S1: [A→a.] – reduce using this production (on j or m)
[S→a.j] – shift j → shift-reduce conflict → not SLR(1)

? SLR(k)?

For reducing $A \rightarrow a$: $\text{Follow}_k(A) = \{j$, m$\}$,
For shifting $S \rightarrow a.j$: $\text{First}_k(j\ \text{Follow}_k(S)) = \{j\}$ so not SLR(k) for any k !!!
Why?

- Look ahead is too crude
 - In S1, if $A \rightarrow a$ is reduced then $\{m\}$ is the only possible symbol that can be seen – the only valid look ahead
 - Fact that $\{j\}$ can follow A in another context is irrelevant

- Want to compare look ahead in a state to those symbols that might actually occur in the context represented by the state.

- Done in Canonical LR !!!
 - Determine look ahead appropriate to the context of the state
 - States contains a look ahead – will be used only for reductions
SLR(1)

- A → B
- X
- Y
- Z

Follow(A) = \{a, b, c\}

LALR(1)

- A → B, a/b
- X
- Y
- Z

state merging

LR(1)

- A → B, a
- A → B, b
- X
- Y
- Z

state splitting
Constructing Canonical LR

- Problem: Follow set in SLR is not precise enough
 - Follow set ignores context where reduction for item occurs
- Solution: Define a more precise follow set
 - For each item, encode a more precise follow set according to context
 - Use more precise follow set when deciding whether to reduce item
- LR(1) item: LR item with one lookahead
 - \([A \rightarrow \alpha.\beta, a]\) where \(A \rightarrow \alpha\beta\) is a production and \(a\) is a terminal or $\$
 - Meaning: Only terminal \(a\) can follow \(A\) in this context
 - Interpretation: After \(\beta\) is shifted and eventually we reach \([A \rightarrow \alpha\beta., a]\), only reduce \(A\) if lookahead matches terminal \(a\)
 - Second lookahead component will always be a subset of \(\text{Follow}(A)\)
Constructing Canonical LR

- Essentially the same as LR(0) items only adding lookahead
 - Modify closure and goto function

- Changes for closure
 - \([A \rightarrow \alpha.B\beta, a]\) and \(B \rightarrow \delta\) then
 \([B \rightarrow . \delta, c]\) where \(c \in \text{First}(\beta a)\)

- Changes for goto function
 - Carry over lookahead
 \([A \rightarrow \alpha . X\beta, a] \in I\) then goto \((I, X) = [A \rightarrow \alpha X. \beta, a]\)
Example

- Grammar
 \[S' \rightarrow S \]
 \[S \rightarrow CC \]
 \[C \rightarrow eC \mid d \]

- S0: closure(S' \rightarrow S, $)
 \[
 \begin{align*}
 \text{closure}(S' \rightarrow S, $) & = \text{closure}(S' \rightarrow S, $) \\
 \text{first}(\varepsilon$) & = \{\}$ \\
 \text{first}(C$) & = \{e, d\}
 \end{align*}
 \]

- S1: goto(S0, S) = closure(S' \rightarrow S, $)
 \[
 \begin{align*}
 \text{goto}(S0, S) & = \text{closure}(S' \rightarrow S, $) \\
 \text{first}(\varepsilon$) & = \{\}$ \\
 \text{first}(C$) & = \{e, d\}
 \end{align*}
 \]

- S2: goto(S0, C) = closure(S \rightarrow CC, $)
 \[
 \begin{align*}
 \text{goto}(S0, C) & = \text{closure}(S \rightarrow CC, $) \\
 \text{first}(\varepsilon$) & = \{\}$ \\
 \text{first}(C$) & = \{\}$
 \end{align*}
 \]
S3: goto(S0,e) = closure(C→e.C, e/d)
 [C →e.C, e/d]
 [C →.eC, e/d] \quad first(εe/d) = \{e,d\}
 [C →d, e/d] \quad first(εe/d) = \{e,d\}

S4: goto(S0, d) = closure(C→d., e/d)
 [C→d., e/d]

S5: goto(S2, C) = closure(S→CC., $)
 [S→CC., $]

S6: goto(S2,e) = closure(C→e.C, $)
 [C →e.C, $]
 [C →.eC, $] \quad first(ε$) = \{$\}
 [C →d, $] \quad first(ε$) = \{$\}

S7: goto(S2, d) = closure(C→d., $)
 [C→d., $]

S8: goto(S3, C) = closure(C→eC., e/d)
 [C→eC., e/d]

S9: goto(S6,C) = closure(C→eC., $)
 [C→eC., $]
Note S3, S6 are same except for lookahead (also true for S4, S7 and S8, S9)
In SLR(1) – one state represents both
Constructing Canonical LR Parse Table

- Shifting: same as before
- Reducing:
 - Don’t use follow set (too coarse grain)
 - Reduce only if input matches lookahead for item
- Action and GOTO

 1. if \([A \rightarrow \alpha \cdot a\beta, b] \in S_i\) and \(\text{goto}(S_i, a) = S_j\),
 \(\text{Action}[I,a] = s[S_j]\) – shift and goto state \(j\) if input matches a
 \(\text{Note: same as SLR}\)

 2. if \([A \rightarrow \alpha \cdot, a] \in S_i\)
 \(\text{Action}[I,a] = r[R]\) – reduce \(R: A \rightarrow \alpha\) if input matches a
 \(\text{Note: for SLR, reduced if input matches } \text{Follow}(A)\)
Revisit SLR and LR

- $S \rightarrow aEa \mid bEb \mid aFb \mid bFa$
 - $E \rightarrow e$
 - $F \rightarrow e$

SLR(1): reduce/reduce conflict

- Since $\text{Follow}(E) = \text{Follow}(F) = \{a, b\}$

LR(1): no conflict

- $\text{Follow}(E) = \{a\}$ in the context of $S \rightarrow a.Ea$
- $\text{Follow}(F) = \{b\}$ in the context of $S \rightarrow a.Fb$
SLR: Follow(E) = Follow(F) = \{a,b\}

LR: Follow sets more precise
SLR(1) and LR(1)

- LR(1) more powerful than SLR(1) – can parse more grammars
- But LR(1) may end up with many more states than SLR(1)
 - One LR(0) item may split up to many LR(1) items
 (As many as all combinations of lookahead possible – potentially powerset of entire alphabet)

- LALR(1) – compromise between LR(1) and SLR(1)
 - Constructed by merging LR(1) states with the same *core*
 - Ends up with same number of states as SLR(1)
 - But items still retain some lookahead info – still better than SLR(1)
 - Popular since most prog. languages are LALR (but not SLR)
A → B.

Follow(A)={a,b,c}

state merging

state splitting
Example

Grammar

\[S' \rightarrow S \]
\[S \rightarrow CC \]
\[C \rightarrow eC \mid d \]

S3: goto(S0, e) = closure(C \rightarrow e.C, e/d)
\hspace{1cm} \text{[C \rightarrow e.C, e/d]}
\hspace{1cm} \text{[C \rightarrow e.C, e/d]}
\hspace{1cm} \text{[C \rightarrow d, e/d]}

S4: goto(S0, d) = closure(C \rightarrow d., e/d)
\hspace{1cm} \text{[C \rightarrow d., e/d]}

S8: goto(S3, C) = closure(C \rightarrow eC., e/d)
\hspace{1cm} \text{[C \rightarrow eC., e/d]}

S6: goto(S2, e) = closure(C \rightarrow e.C, $)
\hspace{1cm} \text{[C \rightarrow e.C, $]}
\hspace{1cm} \text{[C \rightarrow e.C, $]}
\hspace{1cm} \text{[C \rightarrow d, $]}

S7: goto(S2, d) = closure(C \rightarrow d., $)
\hspace{1cm} \text{[C \rightarrow d., $]}

S9: goto(S6, C) = closure(C \rightarrow eC., $)
\hspace{1cm} \text{[C \rightarrow eC., $]}

States S3, S4, S8 have the same core as S6, S7, S9, respectively

- All items are identical except for look ahead

Set of states that have been split when going from SLR(1) to LR(1)

- Merged back such that LALR(1) and SLR(1) have the same number of states
Merging states

- Merging S3 and S6

<table>
<thead>
<tr>
<th>S3: goto(S0,e)=closure(C→e.C, e/d)</th>
<th>S6: goto(S2,e)=closure(C→e.C, $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C →e.C, e/d]</td>
<td>[C →e.C, $]</td>
</tr>
<tr>
<td>[C →.eC, e/d]</td>
<td>[C →.eC, $]</td>
</tr>
<tr>
<td>[C →.d, e/d]</td>
<td>[C →.d, $]</td>
</tr>
</tbody>
</table>

- [C →e.C, e/d/$]
 [C →.eC, e/d/$]
 [C →.d, e/d/$]

- Similarly
 - S47: [C→d., e/d/$]
 - S89: [C→eC., e/d/$]
Effects of Merging

1. Detection of errors may be delayed
 - On error, LALR parsers will not perform shifts beyond an LR parser but may perform more reductions before finding error
 - Example:

 $$S' \rightarrow S \quad S \rightarrow CC$$
 $$C \rightarrow eC \mid d$$
 and input string eed$

 - Canonical LR: Parse Stack S0 e S3 e S3 d S4
 State S4 on $ input = error S4: \{C \rightarrow d., e/d\}

 - LALR:

 stack: S0 e S36 e S36 d S47 \rightarrow state S47 input $, reduce C \rightarrow d
 stack: S0 e S36 e S36 C S89 \rightarrow reduce C \rightarrow eC
 stack: S0 e S36 C S89 \rightarrow reduce C \rightarrow eC
 stack: S0 C S2 \rightarrow state S2 on input $, error
Effects of Merging

2. Merging of states can introduce conflicts
 - cannot introduce shift-reduce conflicts
 - can introduce reduce-reduce conflicts

Shift-reduce conflicts

Suppose S_{ij}:

$[A \rightarrow \alpha., a]$ reduce on input a

$[B \rightarrow \beta.a\delta, b]$ shift on input a

formed by merging S_i and S_j

Cores are the same for S_i, S_j and one of them must contain

$[A \rightarrow \alpha., a]$ and $[B \rightarrow \beta.a\delta, b]$

\Rightarrow shift-reduce conflicts were already present in either S_i and S_j (or both) and not newly introduced by merging
Reduce-reduce Conflicts

S → aEa | bEb | aFb | bFa
E → e
F → e

S3: [E→e., a] viable prefix ae
 [F→e., b]
S4: [E→e., b] viable prefix be
 [F→e., a]

Merging S34: [E→e., a/b]
 [F→e., a/b]

• Both reductions are possible on inputs a and b, i.e. reduce-reduce conflict
Let’s consider the Non SLR(k) Grammar G again

- $S \rightarrow j\ A\ j\ |\ A\ m\ |\ a\ j$
 - $A \rightarrow a$

Follow(A) = \{j, m\}

State S1: [A→a.] – reduce using this production (on j or m)

[S→a.j] – shift j  not SLR(1)

But LALR(1)

For reducing A→a.: lookahead must be \{m\}
For shifting S→a.j: First$_k$(jFollow$_k$(S)) = \{j\}  so LALR(1)
Construction on LALR Parser

- One solution:
 - Construct LR(1) states
 - Merge states with same core
 - if no conflicts, you have a LALR parser

- Inefficient because of building LR(1) items are expensive in time and space (then what is the point of using LALR?)

- Efficient construction of LALR parsers
 - Avoids initial construction of LR(1) states
 - Merges states on-the-fly (step-by-step merging)
 - States are created as in LR(1)
 - On state creation, immediately merge if there is an opportunity
Compaction of LALR Parse Table

- A typical language grammar with 50-100 terminals and 100 productions may have an LALR parser with several hundred states and thousands of action entries

- Often multiple rows of table are identical so share the rows
 - Make states point to an array of unique rows

- Often most entries in a row are empty
 - Instead of an actual row array, use row lists of (input, action) pairs

- Slows access to the table but can reduce memory footprint
Error Recovery

- Error recovery: How does the parser uncover multiple errors?
- Error detected when parser consults parsing table and hits an empty entry
 - Compared to LR, SLR and LALR parser may go through several reductions before detecting an error
 - Due to more coarse-grained use of lookahead
 - But never shifts beyond an erroneous symbol
- Simple error recovery (by discarding offending code sequence)
 1. Decide on non-terminal A: candidate for discarding
 - Typically an expression, statement, or block
 2. Continue to scan down the stack until a state S with a goto on a particular non-terminal A is found
 3. Discard input symbols until a symbol ‘a’ is found that can follow A
 - E.g. if A is a statement then ‘a’ would be ‘;’
 4. Push state Goto[a,A] on stack and continue parsing
Using Automatic Tools
-- YACC

Pitt, CS 2210
Using a Parser Generator

- YACC is an LALR(1) parser generator
 - YACC: Yet Another Compiler-Compiler

- YACC constructs an LALR(1) table and reports an error when a table entry is multiply defined
 - A shift and a reduce – reports shift/reduce conflict
 - Multiple reduces – reports reduce/reduce conflict
 - Most conflicts are due to ambiguous grammars

- Must resolve conflicts
 - By specifying associativity or precedence rules
 - By modifying the grammar
 - YACC outputs detail about where the conflict occurred (by default, in the file “y.output”)
Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else
 \[S \to \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER} \]
 will have DFA state containing
 \[
 [S \to \text{if } E \text{ then } S, \ \text{else}]
 [S \to \text{if } E \text{ then } S, \ \text{else}]
 [S \to \text{if } E \text{ then } S, \text{ else}]
 \]
 Shift-reduce conflict on ‘else’

- Default (YACC, bison, etc.) behavior is to shift
 - Default behavior is the correct one in this case
 - Better not to rely on this and remove ambiguity
More Shift/Reduce Conflicts

Consider the ambiguous grammar

E → E+E | E*E | int

we will have the states containing

[E→E* . E, +/*] [E→E*E . , +/*]

[E→ . E+E, +/*] \[E→ E . +E, +/*\]

Again we have a shift/reduce conflict on input +

- In this case, we need to reduce (* is higher than +)
- Easy (better) solution: declare precedence rules for * and +
- Hard solution: rewrite grammar to be unambiguous
More Shift/Reduce Conflicts

Declaring precedence and associativity in YACC

%left `+` `-'
%left `*` `/`

Interpretation:

- `+`, `-`, `*`, `/` are left associative
- `+`, `-` have lower precedence compared to `*`, `/`
 (associativity declarations are in the order of increasing precedence)
- Precedence of a candidate rule for reduction is the precedence of the last terminal in that rule (e.g. For `E → E+E .` , level is same as `+`)

Resolve shift/reduce conflict with a shift if:

- No precedence declared for either rule or terminal
- Input terminal has higher precedence than the rule
- The precedence levels are the same and right associative
Use Precedence to Solve S/R Conflict

\[E \rightarrow E^* \cdot E, +/* \] \quad \Rightarrow \quad [E \rightarrow E^*E \cdot , +/*] \\
\[E \rightarrow . E+E, +/* \] \quad \Rightarrow \quad [E \rightarrow E. +E, +/*] \\
\ldots \quad \ldots \]

- we will choose reduce because precedence of terminal * in rule \(E \rightarrow E^*E \) is higher than that of terminal +

\[E \rightarrow E^*E \cdot , +/* \] \quad \Rightarrow \quad [E \rightarrow E+E . , +/*] \\
\[E \rightarrow . E+E, +/* \] \quad \Rightarrow \quad [E \rightarrow E. +E, +/*] \\
\ldots \quad \ldots \]

- we will choose reduce because \(E \rightarrow E+E \) and + have the same precedence and + is left-associative
Back to our dangling else example

\[S \rightarrow \text{if } E \text{ then } S. , \text{ else} \]
\[S \rightarrow \text{if } E \text{ then } S. \text{ else } S, \text{ else} \]

- Can eliminate conflict by declaring ‘else’ with higher precedence than ‘then’

- But this looks much less intuitive compared to arithmetic operator precedence

- Best to avoid overuse of precedence declarations that do not enhance the readability of your code
Reduce/Reduce Conflicts

- Usually due to ambiguity in the grammar

- Example: a sequence of identifiers

 \[S \rightarrow \epsilon \mid \text{id} \mid \text{id} \ S \]

 There are two parse trees for the string ‘id’

 \[S \rightarrow \text{id} \]
 \[S \rightarrow \text{id} \ S \rightarrow \text{id} \]

 How does this confuse the parser?
Reduce/Reduce Conflicts

Consider the states

\[
\begin{align*}
[S' \rightarrow .S, \$] & \quad [S \rightarrow \text{id}. , \$] \\
[S \rightarrow . , \$] & \quad [S \rightarrow \text{id}.S, \$] \\
[S \rightarrow . \text{id}, \$] & \quad [S \rightarrow . , \$] \\
[S \rightarrow . \text{id} S, \$] & \quad [S \rightarrow . \text{id}, \$] \\
\end{align*}
\]

Reduce/reduce conflict on input “id$”

\[
\begin{align*}
S' & \rightarrow S \rightarrow \text{id} \\
S' & \rightarrow S \rightarrow \text{id} S \rightarrow \text{id}
\end{align*}
\]

Better rewrite the grammar: \(S \rightarrow \varepsilon \mid \text{id} S \)
Semantic Actions

- Semantic actions are implemented for LR parsing
 - keep attributes on the semantic stack – parallel to the parse stack
 - on shift a, push attribute for a on semantic stack
 - on reduce X → α
 - pop attributes for α
 - compute attribute for X
 - push it on the semantic stack

- Creating an AST
 - Bottom up
 - Create leaf node from attribute values of token(s) in RHS
 - Create internal node from subtree(s) passed on from RHS
Performing Semantic Actions

- Compute the value
 \[E \rightarrow T + E1 \]
 {E.val = T.val + E1.val}
 \[T \rightarrow int \]
 {E.val = T.val}
 \[T \rightarrow int * T1 \]
 {T.val = int.val * T1.val}
 \[int \rightarrow int \]
 {T.val = int.val}

Consider the parsing of the string 3 * 5 + 8

- Recall: creating the AST
 \[E \rightarrow int \]
 E.ast = mkleaf(int.lexval)
 \[E \rightarrow E1+E2 \]
 E.ast = mktree(plus, E1.ast, E2.ast)
 \[E \rightarrow (E1) \]
 E.ast = E1.ast

 a bottom-up evaluation of the ast attribute:

 \[
 E.ast = mktree(plus, mkleaf(5),

 \hspace{1cm} mktree(plus, mkleaf(2), mkleaf(3)))
 \]
Hierarchy of Grammar Classes

Pitt, CS 2210
A Hierarchy of Grammars (and Languages)
LALR vs. LR Parsing (LALR < LR)

- LALR(k) is strictly less powerful compared to LR(k)
 - LALR merges and reduces number of states.
- LALR(k) can be slightly more unintuitive compared to LR(k)
 - If there is a reduce-reduce conflict, is it because of merging?
- However, LALR is popular due to its efficiency
 - YACC, Bison, etc.
 - Most PLs have an LALR(1) grammar
 - Reduce-reduce conflicts due to merging are rare
 (mostly due to ambiguity)
LL vs. LR Parsing (LL < LR)

- **LL(k)** parser, each expansion $A \rightarrow \alpha$ is decided on the basis of
 - Current non-terminal at the top of the stack
 - Which LHS to produce
 - k terminals of lookahead at *beginning* of RHS
 - Must guess which RHS by peeking at first few terminals of RHS

- **LR(k)** parser, each reduction $A \rightarrow \alpha \ast$ is decided on the basis of
 - RHS at the top of the stack
 - Can postpone choice of RHS until entire RHS is seen
 - Common left factor is okay – waits until entire RHS is seen anyway
 - Left recursion is okay – does not impede forming RHS for reduction
 - k terminals of lookahead *beyond* RHS
 - Can decide on RHS after looking at entire RHS plus lookahead
LL vs. SLR Parsing (LL != SLR)

- Neither is strictly more powerful than the other
- Advantage of SLR: can delay decision until entire RHS seen
 - LL must decide RHS with a few symbols of lookahead
- Disadvantage of SLR: lookahead applied out of context
 - Consider grammar: $S \rightarrow Bb \mid Cc \mid aBc$, $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$
 - Initial state $S_0 = \{S \rightarrow . Bb \mid . Cc \mid . aBc, B \rightarrow ., C \rightarrow .\}$
 - For SLR(1), reduce-reduce conflict on $B \rightarrow .$ and $C \rightarrow .$
 - Follow(B) = $\{b, c\}$ and Follow(C) = $\{c\}$
 - For LL(1), no conflict
 - First(Bb) = $\{b\}$, First(Cc) = $\{c\}$, First(aBc) = $\{a\}$
- For the same reason, LL != LALR
LR(0) == LALR(0) == SLR(0) > LL(0)

- LR(0) == LALR(0) == SLR(0)
 - No lookahead for reducing
 - Lookahead components are meaningless (hence LR==LALR==SLR)
 - Must reduce regardless of Follow sets
 - If a state contains a reduce item, there can be no other reduce items or shift items for that state, or there will be a conflict
 - Makes grammars very restrictive. Not used very much.

- LL(0) < LR(0)
 - LL(0) can only have one RHS per non-terminal to avoid conflict
 - LR(0) can still have multiple RHSs per non-terminal
 - E.g. S → a | b is not LL(0) but is LR(0)
L(Rec. Descent) == L(GLR) == L(CFG)

- L(Recursive Descent) == L(CFG)
 - Can parse all CFGs by trial-and-error until input string match
 - Including ambiguous CFGs (accepts first encountered parse tree)
 - A general top-down parser for all CFGs can be constructed by using LL(k) parsing table, and falling back on recursive descent

- Does that make top-down parsers superior to bottom-up?
 - No. Same trial-and-error strategy can be employed for bottom-up
 - GLR (Generalized LR) parser: a parser for all CFGs that relies on an LR parsing table, but falls back on trial-and-error on conflict
 - L(GLR(k)) == L(CFG)
 - Any LR table (e.g. SLR, LALR, Canonical LR) can be used
 - GLR implementations: GNU Bison etc. (but not Yacc)
Notes on Parsing

- Parsing
 - A solid foundation: CFG
 - A simple parser: LL(1)
 - A more powerful parser: LR(1)
 - An efficient compromise: LALR(1)
 - LALR(1) parser generators