Compiler Optimization
Overview of Optimizations

- Goal of optimization is to generate **better** code
 - Impossible to generate **optimal** code
 - Factors beyond control of compiler (user input, OS design, HW design) all affect what is optimal
 - Even discounting above, it’s still an NP-complete problem

- Better one or more of the following (in the average case)
 - Execution time
 - Memory usage
 - Energy consumption
 - To reduce energy bill in a data center
 - To improve the lifetime of battery powered devices
 - Binary Executable Size
 - If binary needs to be sent over the network
 - If binary must fit inside small device with limited storage

- Other criteria

- Should **never** change program semantics
Compiler optimization is essentially a transformation
- Delete / Add / Move / Modify something

Code-related transformations
- Optimizes what code is generated
- Goal: execute least number of least costly instructions

Layout-related transformations
- Optimizes where in memory code and data is placed
- Goal: maximize spatial locality
 - Spatial locality: on an access, likelihood that nearby locations will also be accessed soon
 - Increases likelihood latter accesses will be faster
 E.g. If access fetches cache line, latter accesses can reuse
 E.g. If access results in page fault, latter can reuse page
Layout-Related Optimizations
Two ways to lay out code

```c
f() {
    ... call h();
}
g() {
    ...
}
h() {
    ...
}
```

or

```c
f() {
}

code of h()

g() {
}

code of h()
```

OR

```c
f() {
}

code of h()
```

code of g()
Which Code Layout is Better?

Assume

- data cache has one N-word line
- the size of each function is N/2-word long
- access sequence is “g, f, h, f, h, f, h”

<table>
<thead>
<tr>
<th>Cache</th>
<th>code of f()</th>
<th>code of g()</th>
<th>code of h()</th>
<th>code of f()</th>
<th>code of h()</th>
<th>code of g()</th>
</tr>
</thead>
</table>

- 6 cache misses: g, f, h, f, h, f, h
- 2 cache misses: ▲ ▲
Change the variable declaration order

```c
struct S {
    int x1;
    int x2[200];
    int x3;
} obj[100];
for(...) {
    ... = obj[i].x1 + obj[i].x3;
}
```

```c
struct S {
    int x1;
    int x3;
    int x2[200];
} obj[100];
for(...) {
    ... = obj[i].x1 + obj[i].x3;
}
```

Improved spatial locality

- Now x1 and x3 likely reside in same cache line
- Access to x3 will always hit in the cache
Data Layout Optimization

- Change AOS (array of structs) to SOA (struct of arrays)

```
struct Point {
    int x;
    int y;
} points[100];
for(...) {
    ... = points[i].x * 2;
}
for(...) {
    ... = pointsj[i].y * 2;
}
```

```
struct Point {
    int x[100];
    int y[100];
} points;
for(...) {
    ... = points.x[i] * 2;
}
for(...) {
    ... = points.y[i] * 2;
}
```

- Improved spatial locality for accesses to ‘x’s and ‘y’s
- More efficient vectorization (no need to gather/scatter)
 - Gather: Load data from dispersed locations into vector unit
 - Scatter: Store data from dispersed locations into vector unit
Code-Related Optimizations
Code-Related Optimizations

- Modifying code
 e.g. strength reduction
 \[A = 2a; \quad \equiv \quad A = a \ll 1; \]

- Deleting code
 e.g. dead code elimination
 \[A = 2; A = y; \quad \equiv \quad A = y; \]

- Moving code
 e.g. code scheduling
 \[A = x \times y; B = A + 1; C = y; \quad \equiv \quad A = x \times y; C = y; B = A + 1; \]
 (Now \(C = y \); can execute while waiting for \(A = x \times y; \))

- Inserting code
 e.g. data prefetching
 \[
 \text{while (p!=NULL)} \\
 \{ \text{process(p); p=p->next; } \} \\
 \equiv \\
 \text{while (p!=NULL)} \\
 \{ \text{prefetch(p->next); process(p); p=p->next; } \}
 \]
 (Now access to \(p->next \) is likely to hit in cache)
Optimization Categories

- Optimize at what representation level?
 - Source level — represented using AST
 - IR level — represented using low-level IR (3-address code)
 - Machine level — represented using machine-code IR

- Optimize across control flow?
 - Local optimization — scope within straight line code
 - Cannot be interrupted by any incoming or outgoing jumps
 - All instructions in scope executed exactly once — simple
 - Global optimization — scope across control structures
 - Scope can contain if / while / for statements
 - Some insts may not execute, or even execute multiple times

- Optimize across procedures?
 - Intra-procedural — scope within individual procedure
 - Inter-procedural — scope across different procedures
 - Analyzes other procedures called within scope to do better
Local Optimizations
Local Optimizations

- Optimizations where the scope includes no control flow
 - Limited in scope but can still do useful things

- **Strength Reduction**
 - The idea is to replace expensive operations (multiplication, division) by less expensive operations (add, sub, shift, mov)
 - Some are redundant and thus can be deleted
 - e.g. $x=x+0; y=y*1$
 - Some can be simplified
 - e.g. $x=x*0; y=y*8$
 - can be replaced by $x=0; y=y\ll3$
 - Typically performed at machine code level since knowledge of machine is required (e.g. multiplication is expensive)
More Local Optimizations

Constant folding
- Operations on constants can be computed at compile time
- In general, if \(x = y \text{ op } z \) and \(y \) and \(z \) are constants then compute at compile time and replace

Example:
```c
#define LEN 100
x = 2 * LEN;
if (LEN < 0) print("error");
```

Can be transformed to ...

```c
x = 200;
if (false) print("error");
```

- Performed at IR level since beneficial regardless of machine
Global Optimizations and Control Flow Analysis
Global optimization can work across control flow

- In effect, scope of optimization is entire function
- (Not global as in entire program as the name implies)
- E.g. Constant Propagation:
 - Replace variables with constants if value is known
 - X = 7;
 - ... // Contains jumps
 - Y = X + 3; // Can be replaced by Y = 10;
 - Local Constant Propagation works only on straightline code
 - Global Constant Propagation works even with jumps
 but needs to know the control flow between statements
 E.g. whether X = 7; is guaranteed to happen before Y = X+3;

Global optimization requires control flow analysis

- **Control flow analysis**: Compiler analysis that determines
 flow of execution between statements in function
- Constructs a control flow graph that describes the flow
A **basic block** is a maximal sequence of instructions that
- Except the first instruction, there are no other labels;
- Except the last instruction, there are no jumps;

Therefore,
- Can only jump into the beginning of a block
- Can only jump out at the end of a block

Are units of control flow that cannot be divided further
- All instructions in basic block execute or none at all
A control flow graph is a directed graph in which
- Nodes are basic blocks
- Edges represent flow of execution
 - Control statements such as if-then-else, while-loop, for-loop introduce control flow edges

CFG is widely used to represent a program

CFG is widely used for program analysis, especially for global analysis/optimization
Example

L1; t := 2 * x;
 w := t + y;
 if (w < 0) goto L3
L2: ...
...
L3: w := -w
...

L2: ...
...

L3: w := -w
...

L1; t := 2 * x;
 w := t + y;
 if (w < 0) goto L3
Construction of CFG

- **Step 1:** partition code into basic blocks
 - Identify **leader** instructions that are
 - the first instruction of a program, or
 - target instructions of jump instructions, or
 - instructions immediately following jump instructions
 - A basic block consists of a leader instruction and subsequent instructions before the next leader

- **Step 2:** add an edge between basic blocks B1 and B2 if
 - B2 follows B1, and B1 may "fall through" to B2
 - B1 ends with a conditional jump to another basic block
 - B1 ends with a non-jump instruction (B2 is a target of a jump)
 - Note: if B1 ends in an unconditional jump, cannot fall through
 - B2 doesn’t follow B1, but B1 ends with a jump to B2
Example

01. A=4
02. T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt
Example

1. A=4
2. T1=A*B
3. L1: T2=T1/C
4. if (T2<W) goto L2
5. M=T1*K
6. T3=M+1
7. L2: H=I
8. M=T3-H
9. if (T3>0) goto L3
10. goto L1
11. L3: halt
Global Optimizations

- Extend optimizations to flow of control, i.e. CFG

- How do we know it is OK to globally propagate constants?
Correctness

- Optimization must be stopped if incorrect in even one path

- To replace \(x \) by a constant \(C \) **correctly**, we must know:
 - Along **all paths**, the last assignment to \(X \) is “\(X := C \)”
 - **All paths** often include branches and even loops
 - Potentially, there can be an infinite number of paths
 - Hard for compiler to always know which paths are possible
 (E.g. It may be \(B > 0 \) is always true at runtime)
Global Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property X at a particular point in program execution.

- Need to prove at that point property X holds along all paths.
Global Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property X at a particular point in program execution:

- Need to prove at that point property X holds along all paths
- Need to be **conservative** to ensure correctness
 - An optimization is enabled only when X is definitely true
 - If not sure if it is true or not, it is safe to say don’t know
 - If analysis result is don’t know, no optimization done
 - May lose opt. opportunities but guarantees correctness

E.g. Global Constant Propagation (GCP):

```plaintext
X = 7;
...
Y = X + 3; // Replace by Y = 10, if X didn’t change
```

Needs knowledge of data flow, as well as control flow (Whether data flow is interrupted between points A and B)
Global Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property X at a particular point in program execution

- Need to prove at that point property X holds along all paths
- Need to be conservative to ensure correctness
 - An optimization is enabled only when X is definitely true
 - If not sure if it is true or not, it is safe to say don’t know
 - If analysis result is don’t know, no optimization done
 - May lose opt. opportunities but guarantees correctness

Property X often involves data flow of program

- E.g. Global Constant Propagation (GCP):
 - X = 7;
 - ...
 - Y = X + 3; // Replace by Y = 10, if X didn’t change
 - Needs knowledge of data flow, as well as control flow (Whether data flow is interrupted between points A and B)
Global Optimizations and Data Flow Analysis
Most optimizations rely on a property at given point

- For Global Constant Propagation (GCP):
 \[A = B + C; \quad \text{// Property: \{A=?, B=10, C=?\}} \]
 After optimization:
 \[A = 10 + C; \quad \text{// Property: \{A=?, B=10, C=?\}} \]

For this discussion, let’s call these properties \textit{values}

\textbf{Dataflow analysis}: Compiler analysis that calculates values for each point in a program

- Values get propagated from one statement to the next
- Statements can modify values (for GCP, assigning to vars)
- Requires CFG since values flow through control flow edges

\textbf{Dataflow analysis framework}: A framework for dataflow analysis that guarantees correctness for all paths

- Does \textit{not} traverse all possible paths (could be infinite)
- To be feasible, makes \textit{conservative} approximations
Overview of algorithm

- Initialize each point with the most optimistic values
 - For GCP: most optimistic ⇒ all vars are uninitialized
 (That means compiler can replace var with any constant)
- Propagate each value one step through one statement
 - For GCP: \{A=?, B=?\} through A=1; results in \{A=1, B=?\}
 - Each step refines values to be progressively pessimistic
- Iteratively propagate until a fixed point is reached

Two questions, which will be answered later:

- Does a fixed point exist (is it guaranteed to stop)?
- Does fixed point give a correct and precise set of values?

Rather than bore you with math, let’s first learn by example: global constant propagation (GCP)
Global Constant Propagation (GCP)

- Let’s apply framework to compute values for GCP
- Let’s use following notation to express the state of a var:
 - $x=*$ // not initialized (most optimistic)
 - $x=1, x=2, \ldots$ // a constant value (in between)
 - $x=#$ // not provably constant (most pessimistic)
- All values start as $x=*$ and are iteratively refined
 - Until they stabilize and reach a fixed point
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first):

- $X:=3$;
- if ($B>0$)
- $Y:=Z+W$;
- $X:=4$;
- $Y:=0$;
- $X:=X+1$;
- $A:=2*X$;
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first):

1. $A:=2*X$;
2. $X:=X+1$;
3. $Y:=0$;
4. $X:=4$;
5. $Y:=Z+W$;
6. $X:=3$;
7. \(\text{if } (B>0) \)

Diagram:

- Node 1: $X:=3$;
- Node 2: \(\text{if } (B>0) \)
- Node 3: $Y:=Z+W$;
- Node 4: $X:=4$;
- Node 5: $Y:=0$;
- Node 6: $X:=X+1$;
- Node 7: $A:=2*X$;
In this example, constants can be propagated to \(X+1 \), \(2X \).

Statements visited in reverse postorder (predecessor first):

1. \(X \) = 3
2. \(Y = Z + W \)
3. \(A = 2X \)
4. \(X = 4 \)
5. \(Y = 0 \)
6. \(X = X + 1 \)
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first):

- $X:=3$;
- if $(B>0)$
- $Y:=Z+W$;
- $X:=4$;
- $Y:=0$;
- $X:=X+1$;
- $A:=2*X$;
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first):

- $X:=A:=2*X$;
- $X:=X+1$;
- $X:=4$;
- $Y:=Z+W$;
- $X:=3$;
- $X:=3$;
- $X:=3$;
- $X:=3$;
- $X:=3$;
- $X:=*$;
- $X:=*$;
- $X:=*$;
In this example, constants can be propagated to $X+1$, $2X$.

Statements visited in reverse postorder (predecessor first):

- $X := 3$
- $if (B > 0)$
- $Y := Z + W$
- $X := 4$
- $X := X + 1$
- $Y := 0$
- $X := 2X$
- $X := *$
In this example, constants can be propagated to $X+1$, $2X$.

Statements visited in reverse postorder (predecessor first):

- $X := 3$
- If ($B > 0$)
- $Y := Z + W$
- $X := 4$
- $A := 2X$
- $X := 0$
- $X := X + 1$
- $X := 4$
- $X := 3$
- $X := 3$
- $X := *$

Fixed Point
In this example, constants can be propagated to $X+1$, $2X$.

Statements visited in reverse postorder (predecessor first):

1. $A := 2 \times 4$
2. $X := 3 + 1$
3. $Y := 0$
4. If $(B > 0)$
5. $X := 4$
6. $X := 3$
7. $X := 3$
8. $X := 3$
9. $Y := Z + W$
10. $X := 4$
11. $X := 3$
12. $X := 3$
13. $X := *$
14. $X := 3$
Example GCP with Loop (Iteration 1)

In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

- $X := 3$
- if ($B > 0$)
- $Y := Z + W$
- $X := 4$
- $Y := 0$
- $X := X + 1$
- $A := 2X$
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

\[X := 3; \]
\[\text{if } (B > 0) \]
\[Y := Z + W; \]
\[X := 4; \]
\[X := X + 1; \]
\[Y := 0; \]
\[X := X + 1; \]
\[A := 2 \times X; \]
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

- \(X := \ast \)
- \(X = 3 \)
- \(X := 3; \) If \((B > 0)\)
- \(Y := Z + W; \) \(X := 4; \)
- \(Y := 0; \) \(X := X + 1 \)
- \(A := 2 \ast X; \)
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

- $X := 3$
- If $(B > 0)$
- $Y := Z + W$
- $X := 4$
- $Y := 0$
- $X := X + 1$
- $A := 2X$
In this example, loop prevents any constant propagation

Statements visited in reverse postorder (predecessor first)
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first)

```
X:=3;
if (B>0)
Y:=Z+W;
X:=4;
Y:=0;
X:=X+1
A:=2*X;
```
In this example, loop prevents any constant propagation

Statements visited in reverse postorder (predecessor first)

```
X := 3;
if (B > 0) {
  Y := Z + W;
  X := 4;
  Y := 0;
  X := X + 1;
}
A := 2 * X;
```
In this example, loop prevents any constant propagation

Statements visited in reverse postorder (predecessor first)

\[X := 3; \]
\[\text{if } (B > 0) \]
\[Y := Z + W; \]
\[X := 4; \]
\[X := 4; \]
\[Y := 0; \]
\[X := X + 1; \]

\[A := 2 \times 4; \]

\[X := 3; \]
\[X := 3; \]
\[X := 3; \]
\[X := 3; \]
\[X := 3; \]

\[X := 4; \]
\[X := 4; \]
\[X := 4; \]
\[X := 4; \]
\[X := 4; \]

\[X := \ast; \]
\[X := \ast; \]
\[X := \ast; \]
\[X := \ast; \]
\[X := \ast; \]

\[X := *; \]
\[X := *; \]
\[X := *; \]
\[X := *; \]
\[X := *; \]

NAT SO FAST!
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

```
X:=3;
if (B>0)
  Y:=Z+W;
  X:=4;
  Y:=0;
  X:=X+1
A:=2*X;
```

Diagram:

- X
- Y
- Z
- W
- X:=3
- Y:=Z+W
- X:=4
- Y:=0
- X:=X+1
- A:=2*X
Example GCP with Loop (Iteration 2)

Fixed point is not reached in iteration 1 due to backedge
Must do another iteration to reach fixed point

```plaintext
X:=3;
if (B>0) {
  Y:=Z+W;
  X:=4;
  Y:=0;
  X:=X+1
}
A:=2*X;
```
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

```plaintext
X := 3;  
if (B > 0)  
Y := Z + W;  
X := 4;  
Y := 0;  
X := X + 1
```

Initialization:
- X = ∗
- X = 3
- A := 2 * X

Iteration 1:
- X = 4

Iteration 2:
- Y := 0;
X := X + 1

Final State:
- X = 4
Fixed point is not reached in iteration 1 due to backedge
Must do another iteration to reach fixed point

Example GCP with Loop (Iteration 2)
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

```
X := 3;
if (B > 0)
    Y := Z + W;
    X := 4;
    Y := 0;
    X := X + 1
A := 2 * X;
```
Components of a Dataflow Analysis Framework

Components: Defined by \(\{ D, V, \land, F : V \rightarrow V \} \)

- **D**: Direction of propagation (forwards or backwards)
- **V**: Set of values (depends on analyzed property)
- **\(\land \)**: Meet operator \((V \land V \rightarrow V) \)
 - Defines behavior when values meet at control flow merges
- **F**: Transfer function \(F : V \rightarrow V \)
 - Defines behavior of each basic block (statement)

Once **D**, **V**, **\(\land \)**, and **F** are defined, the framework takes care of the rest.

Each type of dataflow analysis will define them differently.

How are they defined for GCP?
Components of a Dataflow Analysis Framework

- Components: Defined by \(\{D, V, \land, F: V \rightarrow V\} \)
 - \(D\): Direction of propagation (forwards or backwards)
 - \(V\): Set of values (depends on analyzed property)
 - \(\land\): Meet operator \((V \land V \rightarrow V)\)
 - Defines behavior when values meet at control flow merges
 - \(F\): Transfer function \(F: V \rightarrow V\)
 - Defines behavior of each basic block (statement)

- Once \(D, V, \land, F\) are defined, framework takes care of rest
 - Each type of dataflow analysis will define them differently
 - How are they defined for GCP?
What is V?

Definition: Set of values in property under analysis

Property for GCP:
- What are the variables with constant values?
- And what are their values at the given point?
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
 - What are the variables with constant values?
 - And what are there values at the given point?
- A given variable can be in one of the following states:
 - \(x=* \) // not initialized (most optimistic)
 - \(x=1, x=2, ... \) // a constant value (in between)
 - \(x=# \) // not provably constant (most pessimistic)
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
 - What are the variables with constant values?
 - And what are their values at the given point?
- A given variable can be in one of the following states:
 - $x=*$ // not initialized (most optimistic)
 - $x=1, x=2, \ldots$ // a constant value (in between)
 - $x=#$ // not provably constant (most pessimistic)
- V for GCP: Set of values where each value is the set of variables and their respective states.
- Examples of values in V: $\{x=*, y=10, z=#\}$, $\{x=1, y=\#, z=5\}$
- Goal for GCP is to assign a value to each point in program
What is \land?

\land: Meet operator $(V \land V \rightarrow V)$
- Defines behavior when values meet at control flow merges
- Given
 - $V_{in}(B)$ — value at the entry of basic block B
 - $V_{out}(B)$ — value at the exit of basic block B
- $V_{in}(B) = \land V_{out}(P)$ for each P, where P is a predecessor of B

Example of \land operator for GCP:
\{x=*, y=2, z=3\} \land \{x=1, y=2, z=10\} = \{x=1, y=2, z=\#\}

Why is $z=\#$ after the meet?
Why is $x=1$ after the meet?

\land operator applied to values in V must form a Semilattice
- **Semilattice**: Partial ordering of values with a lower bound
- Meet-semilattice to be exact but let’s just call it semilattice
Semilattice for GCP \land operator (on just one variable):

$$\{x=\ast\}$$

$$\{x=-1\}$$

$$\{x=0\}$$

$$\{x=1\}$$

$$\{x=\#\}$$

\land operator is defined by **Greatest Lower Bound (GLB)**

- $\{x=\ast\} \land \{x=1\} = \{x=1\}$
- $\{x=0\} \land \{x=1\} = \{x=\#\}$

What makes this a semilattice?

1. There is a single lower bound ($\{x=\#\}$)
2. It’s a partial order (values monotonically head downwards)

Note: some operators are not meet operators (e.g. add)
In a semilattice, there are two special values: \(\top \) and \(\bot \).
In a semilattice, there are two special values: \(\top \) and \(\bot \)

- \(\top \): Called **Top Value** (at top of semilattice)
 - Initial value when analysis begins (most optimistic)
 - For GCP: \{x=*, y=*, z=*\} (all vars uninitialized)
 - Value is refined in the course of analysis

- \(\bot \): Called **Bottom Value** (at bottom of semilattice)
 - Value which can be refined no further (most pessimistic)
 - For GCP: \{x=#, y=#, z=#\} (no vars provably constant)
In a semilattice, there are two special values: \top and \bot.

\top: Called **Top Value** (at top of semilattice)
- Initial value when analysis begins (most optimistic)
- For GCP: \{x=*, y=*, z=*\} (all vars uninitializated)
- Value is refined in the course of analysis

\bot: Called **Bottom Value** (at bottom of semilattice)
- Value which can be refined no further (most pessimistic)
- For GCP: \{x=\#, y=\#, z=\#\} (no vars provably constant)

Properties of semilattice guarantee values stabilize
- Partial order guarantees value changes always downwards
- Lower bound (\bot) guarantees there is a termination point
What is F?

- **F**: Transfer function \((F: V \rightarrow V)\)
 - Defines what happens to value within a basic block
 - Given
 - \(V_{\text{in}}(B)\) — value at the entry of basic block \(B\)
 - \(V_{\text{out}}(B)\) — value at the exit of basic block \(B\)
 - \(V_{\text{out}}(B) = F(V_{\text{in}}(B))\)

- **F** for GCP:
 \[
 V_{\text{out}}(B) = (V_{\text{in}}(B) - \text{DEF}_v(B)) \cup \text{DEF}_c(B)
 \]
 where \(\text{DEF}_v(B)\) = set of vars assigned with variables in \(B\)
 \(\text{DEF}_c(B)\) = set of vars assigned with constants in \(B\)

- Easier if you treat each statement as a basic block
 - No multiple defs and overlaps between \(\text{DEF}_v(B)\), \(\text{DEF}_c(B)\)
There are two modes of propagation: \textbf{F} and \textbf{∧}

\begin{itemize}
 \item \textbf{F} — propagates values through basic blocks
 \begin{itemize}
 \item Variables in DEF\textsubscript{v} are set to \#
 \item Variables in DEF\textsubscript{c} are set to constant value
 \end{itemize}
 \item \textbf{∧} operator — propagates values through CFG edges
 \begin{itemize}
 \item Merges values from multiple predecessor blocks
 \end{itemize}
\end{itemize}
What is D?

\[D: \text{Direction of propagation (forwards or backwards)} \]

Forward Analysis

Backward Analysis
What is D?

- Values are propagated forward: **Forward Analysis**
- Values are propagated backward: **Backward Analysis**
- GCP is an example of a Forward Analysis
 - Starting from a constant definition, the ‘constantness’ of a variable propagates forward through CFG
- We will see an example of Backward Analysis soon
Forward Analysis Algorithm

- Pseudocode for Dataflow Analysis Framework (Forward)
 for (each basic block B) $V_{out}(B) = T$;
 $W = \{\text{all basic blocks}\}$;
 while ($W \neq \emptyset$) {
 $B = \text{choose basic block from } W$;
 $V_{in}(B) = \bigwedge_{P \text{ is a predecessor of } B} V_{out}(P)$
 $V_{out}(B) = F(V_{in}(B))$
 if ($V_{out}(B)$ is changed) $W = W \cup \{B\text{'s successors}\}$
 }

- V, \bigwedge and F defined differently for each type of analysis

- Will it eventually stop at a fixed point?
 - If there are loops, we may go through the loop many times
 - Is there a possibility of values changing forever?

- Will the fixed point give a correct and precise solution?
Termination Problem

- Existence of \bot value ensures termination
 - Values start from \top and can only go down in semilattice
 - Number of value changes is limited by height of semilattice

- Computational complexity ($V = \text{vars}$, $N = \text{basic blocks}$)
 - Each basic block can only change value $2 \times V$ times
 (Twice for each variable according to semilattice)
 - Maximal complexity: $O(2 \times V \times N) = O(V \times N)$
 - Each basic block can appear $2 \times V$ times in W (work list)
 - Practical complexity: $O(N)$
 - With reverse postorder traversal of basic blocks,
 1. Blocks in straight-line code change only once
 2. Blocks in singly-nested loop change at most twice
 (Loop always converges on second traversal, as we saw)
 3. Blocks in L-nested loop change at most $L+1$ times
 4. $O(L \times N) = O(N)$, since typically $L \leq 3$
A few different types of solutions:

- IDEAL: Meet of all possible paths \(F_P \) to this point

 \[
 \text{IDEAL}(B) = \bigwedge P \text{ is possible path from ENTRY to } B \ \text{\(F_P(V_{\text{ENTRY}}) \)}
 \]

- MOP (Meet-Over-Paths): Meet of all paths in CFG

 \[
 \text{MOP}(B) = \bigwedge P \text{ is path in CFG from ENTRY to } B \ \text{\(F_P(V_{\text{ENTRY}}) \)}
 \]

- MFP (Maximum Fixed Point): Given iterative solution

\[\text{MFP} \leq \text{MOP} \leq \text{IDEAL} \text{ (in semilattice)}\]

- MOP \leq IDEAL: Why?
 - Paths in CFG is a superset of all possible paths
 - \(MOP = IDEAL \wedge V_{\text{never taken paths}} \leq IDEAL \) (since GLB)

- MFP \leq MOP: Why?
 - MFP stops only when fixed point is reached:
 - Covers all paths in MOP, even for limitless iterations
 - For GCP: sometimes MFP < MOP (next slide)

MFP is correct but not precise (in short conservative)
When is MFP $< \text{MOP}$?

- Assume $V_{ENTRY} \equiv \{ A = \ast, B = \ast, C = \ast \}$:

 - **P1**: $A=1$; $B=2$;
 - **P2**: $A=2$; $B=1$;
 - **B**: $C=A+B$;

- $\text{MOP} \equiv F_B(F_{P1}(V_{ENTRY})) \land F_B(F_{P2}(V_{ENTRY}))$

 $\equiv \{ A = 1, B = 2, C = 3 \} \land \{ A = 2, B = 1, C = 3 \}$

 $\equiv \{ A = \#, B = \#, C = 3 \}$

- $\text{MFP} \equiv F_B(F_{P1}(V_{ENTRY}) \land F_{P2}(V_{ENTRY}))$

 $\equiv F_B(\{ A = \#, B = \#, C = \ast \}) \equiv \{ A = \#, B = \#, C = \# \}$

- F for GCP is not **distributive** (Refer to Chapter 9.3)
Once constants have been globally propagated, we would like to eliminate the dead code:

\[
\begin{align*}
x &:= 3; \\
\text{if } (b > 0) &\quad \text{if } (b > 0) \\
y &:= z + w; \\
z &:= 2x;
\end{align*}
\]
Once constants have been globally propagated, we would like to eliminate the dead code:

\[x := 3; \]
\[\text{if (b>0)} \]
\[y := z + w; \]
\[y := 0; \]
\[z := 2 \times 3; \]
Once constants have been globally propagated, we would like to eliminate the dead code

```
x := 3;
if (b > 0)
    y := z + w;
y := 0;
z := 2*3;
```
A **dead statement** calculates a value that is not used later.

Otherwise, it is a **live statement**.

In the example, the 1st statement is dead, the 2nd statement is live.
Global Liveness Analysis (GLA)

- A variable X is live at statement S if
 - There exists a statement S_2 after S that uses X
 - There is a path from S to S_2
 - There is no intervening assignment to X between S and S_2
Global Liveness Analysis (GLA)

- A variable X is live at statement S if
 - There exists a statement S2 after S that uses X
 - There is a path from S to S2
 - There is no intervening assignment to X between S and S2

Again a dataflow analysis framework can be applied

- What is \(D, V, \land, F : V \rightarrow V \) in this context?

What is \(D \)?

- Liveness Analysis is a Backward Analysis
 - Starting from a use, the ‘liveness’ of a variable propagates backward through CFG
 - Changes direction of \(\land \) operator and transfer function
Forward and Backward Analysis Again

Forward Analysis

Backward Analysis
What is V?

- **Definition**: Set of values in property under analysis
 - V for GLA: Each value is a set of live variables
 - Example values: $\{x, y, z\}$, $\{y\}$

- \top: initial value at the beginning
 - \top for GLA = $\{\}$
 - Start with assumption that no variables are live

- \bot: the don’t know value
 - \bot for GLA = *all variables in function*
 - Meaning: none of the variables are provably dead
What is \land?

\land: Meet operator ($V \land V \rightarrow V$) for backward analysis

- Defines behavior when values meet at control divergence
- Given
 - $V_{in}(B)$ — value at the entry of basic block B
 - $V_{out}(B)$ — value at the exit of basic block B
- $V_{out}(B) = \land V_{in}(S)$ for each S, where S is successor of B
- Note the reversal in direction! GLA is a backward analysis.

\land operator for GLA:

- Meet operator is a simple union \cup
- Example: $\{x, y\} \land \{y, z\} = \{x, y\} \cup \{y, z\} = \{x, y, z\}$
- Union operator monotonically increases set (a partial order), hence values form a semilattice from \top to \bot
What is F?

F: Transfer function (F: V → V) for backward analysis

- Defines what happens to value within a basic block
- Given
 - \(V_{in}(B) \) — value at the entry of basic block \(B \)
 - \(V_{out}(B) \) — value at the exit of basic block \(B \)
- \(V_{in}(B) = F(V_{out}(B)) \)
- Again note the reversal in direction!

F for GLA:

\[
V_{in}(B) = (V_{out}(B) - DEF(B)) \cup USE(B)
\]

where DEF(B) contains variable definitions in B

USE(B) contains variable uses in B

Easier to reason about if you treat each individual statement as a basic block
Liveness Example

b = b + c

a = d + 1;
Liveness Example

\[b\leftarrow b+c \]
\[a\leftarrow d+1; \]
Liveness Example

\[b = b + c \]
\[a = d + 1; \]

\[V_{\text{in}}(B1) \]
\[V_{\text{out}}(B1) \]
\[V_{\text{in}}(B2) \]

\[V_{\text{out}}(B2) \]

\[V_{\text{in}}(B3) \]

\[V_{\text{out}}(B3) = \{ a, b \} \]
Liveness Example

Two sets:
- DEF = \{a\}
- USE = \{d\}

Diagram:
- \(b = b + c \)
- \(a = d + 1; \)
- \(V_{in}(B2) \)
- \(V_{out}(B2) \)
- \(V_{out}(B3) = \{a, b\} \)
- \(V_{out}(B3) \)
Liveness Example

(b + c)

\[b = b + c \]

\[a = d + 1; \]

Two sets:
- \(\text{DEF} = \{a\} \)
- \(\text{USE} = \{d\} \)
Liveness Example

\[b = b + c \]
\[a = d + 1; \]

Two sets:
- **DEF** = \{a\}
- **USE** = \{d\}

\[V_{in}(B1) \]
\[V_{in}(B2) = \{b, c\} \]
\[V_{in}(B3) = \{b, d\} \]

\[V_{out}(B2) \]
\[V_{out}(B3) = \{a, b\} \]
Liveness Example

\[b = b + c \]
\[a = d + 1; \]

Two sets:
- **DEF** = \{a\}
- **USE** = \{d\}

Graph:
- \(V_{in}(B1) \)
- \(V_{out}(B1) = \{b, c, d\} \)
- \(V_{in}(B2) = \{b, c\} \)
- \(V_{out}(B2) \)
- \(V_{in}(B3) = \{b, d\} \)
- \(V_{out}(B3) = \{a, b\} \)
Backward Analysis Algorithm

Pseudocode for Dataflow Analysis Framework (Backward)
for (each basic block B) \(V_{in}(B) = \top \);
\(W = \{ \text{all basic blocks} \} \);
while (\(W \neq \emptyset \)) {
 B = \text{choose basic block from } W;
 \(V_{out}(B) = \bigwedge S \text{ is a successor of } B \ V_{in}(S) \)
 \(V_{in}(B) = F(V_{out}(B)) \)
 if (\(V_{in}(B) \) is changed) \(W = W \cup \{ B's \text{ predecessors} \} \)
}

Note the reversal in direction compared to forward analysis

Will backward analysis for GLA eventually stop?
- Again properties of semilattice ensures termination
- Value can change \(V \) times, where \(V \) is number of vars
- Maximal complexity: \(O(V \times N) \)
- Practical complexity: \(O(N) \), with postorder traversal
Is GLA Precise?

- For GLA, MFP = MOP \leq IDEAL
- MOP \leq IDEAL: CFG is a superset of all paths (like GCP)
- MFP = MOP: Why?
 - MFP emulates all paths in MOP (like GCP)
 - Unlike GCP, transfer function F for GLA is **distributive**
 - $MOP \equiv F_B(F_{P_1}(V) \land F_B(F_{P_2}(V))$
 - $\equiv F_B(F_{P_1}(V) \land F_{P_2}(V)) \equiv MFP$
- If MOP = IDEAL, GLA is precise
Comparison of GCP and GLA

- **D**: Direction of propagation
 - GCP: Forward
 - GLA: Backward

- **V**: Set of values propagated
 - GCP: Set of variables with constant values
 - GLA: Set of live variables

- **∧**: Meet operator
 - GCP: Given by semilattice (Top \rightarrow Constant \rightarrow Bottom)
 - GLA: Simply the set union operator

- **F**: Transfer function
 - GCP: - var defs to variables, + vars defs to constants
 - GLA: - var defs, + var uses
Application of Liveness Analysis

- Global dead code elimination is based on GLA
 - Dead code detection
 - `x = ...;` is dead code if `x` is dead after this statement
 - Dead statement can be deleted from the program

- Global register allocation is also based on GLA
 - Only live variables are placed in registers
 - Registers holding dead variables can be reused
Register Allocation
What is Register Allocation?

- Process of assigning (a large number of) variables to (a small number of) CPU registers

- Registers are fast
 - access to memory: 100s of cycles
 - access to cache: a few to 10s of cycles
 - access to registers: 1 cycle

- But registers are limited in number
 - x86: 8 regs, MIPS: 32 regs, ARM: 32 regs ...

- Goals of register allocation:
 - Keep frequently accessed variables in registers
 - Keep variables in registers only as long as they are live
Allocate registers basic block by basic block

- Makes decisions on a per-block basis (hence ‘local’)
- Uses results of Global Liveness Analysis for decisions

Requires only a single scan through each basic block

- Keeps track of two tables:
 - Register Table: which regs are in use and which available
 - Address Table: location(s) where each variable is stored
 (locations can be: register, stack memory, static memory)

- Initially, no regs in use and all vars stored in memory
 - Local variables, temporary variables ⇒ stack memory
 - Global variables ⇒ static memory

- During scan, do below for every use of variable:
 1. If var already in reg according to Address Table, no action
 2. If not, find available reg from Register Table and allocate
 3. If no available regs, select reg for displacement

Q: Which register should be displaced?
Local Register Allocation - Displacement

- Choose regs that can be recycled without saving value:
 - Register whose value is no longer live (given by GLA)
 - Register whose value has a copy in another location

- If none exist, choose reg to be spilled to memory

- **Spill**: storing variable in original memory location
 - Original memory location: stack or static memory
 - Store instruction to memory generated at point of spill
 - All uses of variable onwards must load from memory

- At end of scan, spill all live registers at end of block
 - To make all regs available for next basic block allocation
 - Allows next block allocation to remain 'local'
 - Causes unnecessary spills at basic block boundaries

- So what if we don't spill? Not as simple as you think
 - On control flow merges, what if two blocks have differing allocations of vars to regs?
 - ⇒ Must somehow reconcile
 - Global allocation decisions required to minimize the above
Local Register Allocation - Displacement

- Choose regs that can be recycled without saving value:
 - Register whose value is no longer live (given by GLA)
 - Register whose value has a copy in another location

- If none exist, choose reg to be spilled to memory

- **Spill**: storing variable in original memory location
 - Original memory location: stack or static memory
 - Store instruction to memory generated at point of spill
 - All uses of variable onwards must load from memory

- At end of scan, spill all live registers at end of block
 - To make all regs available for next basic block allocation
 - Allows next block allocation to remain ‘local’
 - Causes unnecessary spills at basic block boundaries
 - So what if we don’t spill? Not as simple as you think
 - On control flow merges, what if two blocks have differing allocations of vars to regs? Must somehow reconcile
 - Global allocation decisions required to minimize the above
Global Register Allocation

- Makes global decisions about register allocation such that
 - Var to reg mappings remain consistent across blocks
 - Structure of CFG is taken into account on decisions

- Relies on Global Liveness Analysis just like local allocation

- Three well-known register allocation algorithms
 1. Graph coloring allocator
 2. Linear scan allocator
 3. ILP (Integer Linear Programming) allocator
Algorithm steps:

1. Identify live range interference using GLA
2. Build register interference graph (RIG)
 - Node represents a variable
 - Edge represents overlap in live ranges between two vars
3. Attempt K-coloring of the graph
 - K is the number of available registers
 - Color each node such that adjacent nodes are different
4. On failure, spill a variable and go back to 3.
 - Spilling var to memory removes it from the graph
 - Which var decided using some heuristic. Considerations:
 Which var when spilt will simplify graph the most?
 Which var is the cheapest to spill (min. access frequency)?
Live Range Interference

Live Range: Set of program points where a variable is live

- Two live ranges interfere if there is an overlap
- Vars with interfering ranges cannot reside in same register
Live Range Interference

- **Live Range**: Set of program points where a variable is live
 - Two live ranges interfere if there is an overlap
 - Vars with interfering ranges cannot reside in the same register

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```

```
x := ...
y := ...
y := ...
y := ...
```
Live Range Interference

Live Range: Set of program points where a variable is live

- Two live ranges interfere if there is an overlap
- Vars with interfering ranges cannot reside in same register

We annotate each program point (between two statements) to explicitly show the interference.
Example of GLA and interfering live ranges

```plaintext
a := b + c;
d := -a;
e := d + f;
f := 2 * e;
b := b + e;
e := e - 1;
b := f + c;
```
Construct **Register Interference Graph (RIG)** such that

- Each node represents a variable
- An edge between two nodes V_1 and V_2 represents an interference in live ranges

Based on RIG,

- Two variables can be allocated in the same register if there is no edge between them
- Otherwise, they cannot be allocated in the same register
In the RIG for our example:

- b, c cannot be in the same register
- a, b, d can be in the same register
Allocating Registers using Graph Coloring

- Graph coloring is a theoretical problem where ...
 - A coloring of a graph is an assignment of colors to nodes such that nodes connected by an edge have different colors
 - A graph is k-colorable if it has a coloring with k colors

- Problem of register allocation maps to graph coloring
 - Once solved, k colors can be mapped back to k registers
 - If the graph is k-colorable, it’s k-register-allocatable
This is an coloring of our example RIG using 4 colors

There is no solution with less than 4 colors
Using the coloring result, map it back to the code

\[
\begin{align*}
\text{a} &:= \text{b} + \text{c}; \\
\text{d} &:= -\text{a}; \\
\text{e} &:= \text{d} + \text{f}; \\
\text{f} &:= 2 \times \text{e}; \\
\text{b} &:= \text{d} + \text{e}; \\
\text{e} &:= \text{e} - 1; \\
\text{b} &:= \text{f} + \text{c};
\end{align*}
\]
Using the coloring result, map it back to the code

\[
\begin{align*}
\text{a} & \rightarrow R1 \\
\text{b} & \rightarrow R2 \\
\text{c} & \rightarrow R3 \\
\text{d} & \rightarrow R2 \\
\text{e} & \rightarrow R1 \\
\text{f} & \rightarrow R4
\end{align*}
\]

\[
\begin{align*}
f & := 2 \times e; \\
b & := d + e; \\
e & := e - 1; \\
r1 & := r2 + r3; \\
r2 & := -r1; \\
r1 & := r2 + r4;
\end{align*}
\]
After Register Allocation

Using the coloring result, map it back to the code

\[a \rightarrow R1 \]
\[b \rightarrow R2 \]
\[c \rightarrow R3 \]
\[d \rightarrow R2 \]
\[e \rightarrow R1 \]
\[f \rightarrow R4 \]

\[R1 := R2 + R3; \]
\[R2 := -R1; \]
\[R1 := R2 + R4; \]

\[R4 := 2 \times R1; \]

\[b := d + e; \]
\[e := e - 1; \]

\[b := f + c; \]
Using the coloring result, map it back to the code

a–R1
b–R2
c–R3
d–R2
e–R1
f–R4

R1 := R2 + R3;
R2 := -R1;
R1 := R2 + R4;

R4 := 2 * R1;

b := f + c;

R2 := R2 + R1;
R1 := R1 + 1;

R2 := R2 + R1;
R1 := R1 - 1;
Using the coloring result, map it back to the code

\[
\begin{align*}
R1 & := R2 + R3; \\
R2 & := -R1; \\
R1 & := R2 + R4; \\
R4 & := 2 \times R1; \\
R2 & := R4 + R3; \\
R2 & := R2 + R1; \\
R1 & := R1 - 1; \\
R2 & := R2 + R1; \\
R1 & := R1 - 1;
\end{align*}
\]
Determining whether a graph is k-colorable is NP-complete

- Therefore, problem of k-register allocation is NP-complete
- In practice: use heuristic polynomial algorithm that gives close to optimal allocations most of the time
- Chaitin’s graph coloring is a popular heuristic algorithm
 - E.g. most backends of GCC use Chaitin’s algorithm

What if k-register allocation does not exist?
- Spill a variable to memory to reduce RIG and try again
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Observation: for a k-coloring problem, a node with k-1 neighbors can always be colored, no matter what
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Corollary: Given graph \(G \) for a \(k \)-coloring problem
- Let \(G' \) be graph after removing a node with <\(k \) neighbors
- If \(G' \) can be \(k \)-colored then \(G \) can be \(k \)-colored. How?
 1. Color \(G' \) then add back removed node
 2. Remaining node is always colorable since <\(k \) neighbors

Idea: Recursively solve for the simpler \(G' \) instead of \(G \)

Algorithm
- Phase 1: Repeat until there are no nodes left
 - Pick a node \(V \) with fewer than \(k \) neighbors
 - Push \(V \) on a stack and remove it and its edges from \(G \)
- Phase 2: Assign colors to nodes on the stack in LIFO order
 - Pop a node \(V \) from the stack
 - Pick a color for \(V \) that is different from its neighbors
 (Such a color is guaranteed to exist due to corollary)
Chaitin’s algorithm applied to our example where \(k=4 \)

\[
\begin{array}{c}
\text{Stack=\{\}} \\
\end{array}
\]
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a\}$
Chaitin’s algorithm applied to our example where $k=4$

Stack={a}
Chaitin’s algorithm applied to our example where $k=4$

Stack={a,d}

Graph:
- Nodes: a, b, c, d, e, f
- Edges: $a-b, a-c, a-d, b-c, b-d, c-d, e-f, e-c, e-b, e-d, f-c, f-b, f-d$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d\}$
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b\}$
Chaitin’s algorithm applied to our example where k=4

Stack={a,d,b}
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where \(k=4 \)

Stack = \{a,d,b,c\}
Chaitin’s algorithm applied to our example where \(k=4 \)

Stack = \{a,d,b,c\}
Chaitin’s algorithm applied to our example where $k=4$

Stack={a, d, b, c, e}
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c,e\}$

\bullet
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c,e,f\}$
Chaitin’s algorithm applied to our example where \(k=4 \)

\[
\text{Stack} = \{a,d,b,c,e,f\}
\]
Starting assigning colors to **f,e,c,b,d,a**

Stack={a,d,b,c,e,f}

Stack={a,d,b,c,e}

Stack={a,d,b,c}

Stack={a,d,b}

Stack={a,d}

Stack={a}

Stack={}
Is Chaitin’s Graph Coloring Optimal?

- According to Chaitin’s algorithm:
 Every node has 3 outgoing edges, thus it is not 3-colorable

![Graph Diagram]

![Graph Diagram]
Is Chaitin’s Graph Coloring Optimal?

- According to Chaitin’s algorithm:
 Every node has 3 outgoing edges, thus it is not 3-colorable

- However, it is 3-colorable as you can see above
- Chaitin’s algorithm is not optimal
What if Coloring Fails?

- Spill the variable to memory
 - Spilled var stays in memory and is not allocated a reg
 - e.g. To color the previous graph using 3 colors
 - Spill “f” into memory since it has the most edges
What if Coloring Fails?

- Spill the variable to memory
 - Spilled var stays in memory and is not allocated a reg
 - e.g. To color the previous graph using 3 colors
 - Spill “f” into memory since it has the most edges
What if Coloring Fails?

- Spill the variable to memory
 - Spilled var stays in memory and is not allocated a reg
 - e.g. To color the previous graph using 3 colors
 - Spill “f” into memory since it has the most edges
What if Coloring Fails?

- Spill the variable to memory
 - Spilled var stays in memory and is not allocated a reg
 - e.g. To color the previous graph using 3 colors
 - Spill “f” into memory since it has the most edges
What if Coloring Fails?

- Spill the variable to memory
 - Spilled var stays in memory and is not allocated a reg
 - e.g. To color the previous graph using 3 colors
 - Spill “f” into memory since it has the most edges
Linear Scan Register Allocation

- On-line compilers need to generate binary code quickly
 - Just-in-time compilation
 - Interactive environments e.g. IDE

- In these cases, it is beneficial to sacrifice code performance a bit for quicker compilation
 - A faster allocation algorithm
 - Not sacrificing too much in code quality

- Proposed in following publication:
 - Poletto, M., Sarkar, V., "Linear scan register allocation", in ACM Transactions on Programming Languages and Systems (TOPLAS), 1999
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each **live interval**

```
scan order

A
B
C
D
E
code
```
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each **live interval**
Linear Scan Register Allocation

Layout the code in a certain linear order
Do a single scan to allocate register for each live interval

Allocate greedily at each numbered point in program
 A and D may use same register (same for B and E)
Live Interval: Smallest interval of code containing all live ranges in the given linear code layout

- Live range of \(a = \{B1, B3\} \), \(b = \{B2, B4\} \)
- If code layout is “B1,B3,B2,B4”, only 1 register is enough
 - Live interval of \(a = \{B1, B3\} \), \(b = \{B2, B4\} \)
- If code layout is “B1,B2,B3,B4”, then need 2 registers
 - Live interval of \(a = \{B1, B2, B3\} \), \(b = \{B2, B3, B4\} \)
Linear Scan Algorithm

Linear scan RA consists of four steps

S1. Order all instructions in linear fashion
 - Order affects quality of allocation but not correctness

S2. Calculate the set of live intervals
 - Each variable is given a live interval

S3. Greedily allocate register to each interval in order
 - If register not available, spill a live interval (variable)
 - When spilling, prefer longest remaining interval length

S4. Rewrite the code according to the allocation

Coloring vs Linear Scan Complexity Comparison

- Chaitin Coloring: \(O(V \times V) \), where \(V \) = number of vars
 - \(V \) steps to color graph with \(V \) nodes
 - At worst, \(V \) spills leading to \(V \) colorings

- Linear Scan: \(O(V) \), where \(V \) = number of vars
 - \(V \) allocations of live intervals in single scan
Register Allocation Time Comparison

- **Usage Counts**, **Linear Scan**, and **Graph Coloring** shown.
- Linear Scan allocation is always faster than Graph Coloring.
ILP-based Register Allocation

- Idea and steps:
 1. Convert RA problem to a ILP problem
 2. Solve ILP problem using widely known ILP solvers
 3. Map the ILP solution back to register assignment

- Goal: find “optimal” allocation
 - Chaitin graph coloring is a heuristic algorithm
 - Optimal (NP-complete) graph coloring algorithms exist, but still uses heuristics for spilling
 - ILP finds optimal allocation and placement of spill code

- Complexity restricts adoption for complex programs
 - Optimal ILP solution is NP-hard (similar to graph coloring)
 - Heuristic polynomial ILP solvers exist and are researched
What is Integer Linear Programming (ILP)?

- Integer Linear Programming (ILP)
 - Variables: a, b
 - Constraints:
 - $0 \leq a \leq 10$
 - $0 \leq b \leq 29$
 - $a + b \leq 36$
 - Goal function
 - minimize $f(a,b) = 3a + 4b$

- It is trivial if a and b can take real values
- It is NP hard if a and b can only take integer values
How to Convert Register Allocation to ILP?

- An example

 (9) ...
 (10) ... = b + a ;
 (11) ...

 ➢ Want to know to which register b should be allocated i.e.
 load Rx, addr(b)

- Convert to an ILP problem

 ➢ assume there are four free registers R1, R2, R3, R4

S1: Define the variables in ILP

\[V_{var(location)}^{Ri} \] — Whether var at location is allocated to Ri

\[V^{R1}_{b(10)}, V^{R2}_{b(10)}, V^{R3}_{b(10)}, V^{R4}_{b(10)} \]

Value of 0 — not allocate to that register at the place
Value of 1 — is allocated to that register at the place
Converting Register Allocation to ILP

S2: Define constraints. E.g. for code (10) \(b + a, \)

- A register can hold at most one variable per place
 \[V_{b(10)}^{R1} + V_{a(10)}^{R1} \leq 1, V_{b(10)}^{R2} + V_{a(10)}^{R2} \leq 1, \ldots \]
- A variable is allocated to exactly one register per place
 \[V_{b(10)}^{R1} + V_{b(10)}^{R2} + V_{b(10)}^{R3} + V_{b(10)}^{R4} = 1 \]
 \[V_{a(10)}^{R1} + V_{a(10)}^{R2} + V_{a(10)}^{R3} + V_{a(10)}^{R4} = 1 \]
- and many more ...

S3: Define goal function

- To minimize cost of memory operations for spilling:
 \[f_{cost} = \sum V_{v(\text{loc})}^{stack} \ast U_{v(\text{loc})} \ast \text{exec_count}(\text{loc}) \ast \text{LOAD}_{cost} \]
 \(V_{v(\text{loc})}^{stack} \): Whether \(v \) at \(\text{loc} \) is allocated to stack (spilled)
 \(U_{v(\text{loc})} \): Whether variable \(v \) is used at \(\text{loc} \)
 \(\text{exec_count}(\text{loc}) \): Expected runtime execution count of \(\text{loc} \)
 \(\text{LOAD}_{cost} \): Cost of load instruction in given machine

S4: Run your favorite ILP solver
Conclusion

- Good Register Allocation is crucial to code quality
 - Accesses to memory are costly, even with caches

- Trade-offs between allocation time and code quality
 - Coloring: where quality is important
 - Linear scan: where allocation time is important (e.g. JIT)
 - ILP: where quality is paramount (e.g. real time systems)

- Previous compiler opts may affect allocation quality
 - E.g. Constant propagation may replace vars with constants
 - E.g. Dead code elimination may remove var uses altogether
 - Affect of compiler opts are intertwined and hard to separate
 - Finding optimal opt combinations is in itself research
 - Compilers package opts that typically go together into levels (e.g. -O1, -O2, -O3)
The END !