Compiler Optimization
Goal of optimization is to generate better code
- Impossible to generate optimal code
 - Factors beyond control of compiler (user input, OS design, HW design) all affect what is optimal
 - Even discounting above, it’s still an NP-complete problem

Better one or more of the following (in the average case)
- Execution time
- Memory usage
- Energy consumption
 - To reduce energy bill in a data center
 - To improve the lifetime of battery powered devices
- Binary Executable Size
 - If binary needs to be sent over the network
 - If binary must fit inside small device with limited storage
- Other criteria

Should never change program semantics
Types of Optimizations

- Compiler optimization is essentially a transformation
 - Delete / Add / Move / Modify something

- Code-related transformations
 - Optimizes *what* code is generated
 - Goal: execute least number of least costly instructions

- Layout-related transformations
 - Optimizes *where* in memory code and data is placed
 - Goal: maximize **spatial locality**
 - Spatial locality: on an access, likelihood that nearby locations will also be accessed soon
 - Increases likelihood latter accesses will be faster
 - E.g. If access fetches cache line, latter accesses can reuse
 - E.g. If access results in page fault, latter can reuse page
Layout-Related Optimizations
Two ways to lay out code

```
f() {
    ... call h();
}
g() {
    ...
}
h() {
    ...
}
```

OR

```
f()

code of f()

g()

code of g()

h()

code of h()

OR

f()

code of f()

h()

code of h()

g()

code of g()
Which Code Layout is Better?

Assume

- data cache has one N-word line
- the size of each function is N/2-word long
- access sequence is “g, f, h, f, h, f, h”

<table>
<thead>
<tr>
<th></th>
<th>code of f()</th>
<th>code of g()</th>
<th>code of h()</th>
</tr>
</thead>
</table>

6 cache misses

**g, f, h, f, h, f, h**

2 cache misses
Data Layout Optimization

- **Change the variable declaration order**

  ```c
 struct S {
 int x1;
 int x2[200];
 int x3;
 } obj[100];
 for(...) {
 ... = obj[i].x1 + obj[i].x3;
 }
  ```

  ```c
 struct S {
 int x1;
 int x3;
 int x2[200];
 } obj[100];
 for(...) {
 ... = obj[i].x1 + obj[i].x3;
 }
  ```

- **Improved spatial locality**
  - Now x1 and x3 likely reside in same cache line
  - Access to x3 will always hit in the cache
Data Layout Optimization

- Change AOS (array of structs) to SOA (struct of arrays)

  ```c
 struct Point {
 int x;
 int y;
 } points[100];
 for(...) {
 ... = points[i].x * 2;
 }
 for(...) {
 ... = pointsj[i].y * 2;
 }
  ```

  ```c
 struct Point {
 int x[100];
 int y[100];
 } points;
 for(...) {
 ... = points.x[i] * 2;
 }
 for(...) {
 ... = points.y[i] * 2;
 }
  ```

- Improved spatial locality for accesses to ‘x’s and ‘y’s
- More efficient vectorization (no need to gather/scatter)
  - Gather: Load data from dispersed locations into vector unit
  - Scatter: Store data from dispersed locations into vector unit
Code-Related Optimizations
Code-Related Optimizations

- Modifying code  e.g. **strength reduction**
  
  \[ A = 2 \times a; \equiv A = a \ll 1; \]

- Deleting code  e.g. **dead code elimination**
  
  \[ A = 2; A = y; \equiv A = y; \]

- Moving code  e.g. **code scheduling**
  
  \[ A = x \times y; B = A + 1; C = y; \equiv A = x \times y; C = y; B = A + 1; \]
  
  (Now \( C = y \); can execute while waiting for \( A = x \times y \);)

- Inserting code  e.g. **data prefetching**

  ```c
 while (p != NULL)
 { process(p); p = p->next; }
 \equiv
 while (p != NULL)
 { prefetch(p->next); process(p); p = p->next; }
  ```
  
  (Now access to \( p->next \) is likely to hit in cache)
Optimization Categories

- **Optimize at what representation level?**
  - Source level — represented using AST
  - IR level — represented using low-level IR (3-address code)
  - Machine level — represented using machine-code IR

- **Optimize across control flow?**
  - Local optimization — scope within straight line code
    - Cannot be interrupted by any incoming or outgoing jumps
    - All instructions in scope executed exactly once — simple
  - Global optimization — scope across control structures
    - Scope can contain if / while / for statements
    - Some insts may not execute, or even execute multiple times

- **Optimize across procedures?**
  - Intra-procedural — scope within individual procedure
  - Inter-procedural — scope across different procedures
    - Analyzes other procedures called within scope to do better
Local Optimizations
Local Optimizations

- Optimizations where the scope includes no control flow
  - Limited in scope but can still do useful things

- **Strength Reduction**
  - The idea is to replace expensive operations (multiplication, division) by less expensive operations (add, sub, shift, mov)
  - Some are redundant and thus can be deleted
    - e.g. `x=x+0; y=y*1;`
  - Some can be simplified
    - e.g. `x=x*0; y=y*8;`
    - can be replaced by `x=0; y=y«3;`
  - Typically performed at machine code level since knowledge of machine is required (e.g. multiplication is expensive)
Constant folding

- Operations on constants can be computed at compile time
- In general, if \( x = y \ op \ z \) and \( y \) and \( z \) are constants
  then compute at compile time and replace

Example:

```c
#define LEN 100
x = 2 * LEN;
if (LEN < 0) print(“error”);
```

Can be transformed to ...

```c
x = 200;
if (false) print(“error”);
```

- Performed at IR level since beneficial regardless of machine
Global Optimizations and Control Flow Analysis
Global optimization can work across control flow

- In effect, scope of optimization is entire function (Not global as in entire program as the name implies)
- E.g. Constant Propagation:
  - Replace variables with constants if value is known
    
    ```
 X = 7;
 ...
 Y = X + 3; // Can be replaced by Y = 10;
    ```
  - Local Constant Propagation works only on straightline code
  - Global Constant Propagation works even with jumps but needs to know the control flow between statements
    
    E.g. whether X = 7; is guaranteed to happen before Y = X+3;

Global optimization requires control flow analysis

- **Control flow analysis**: Compiler analysis that determines flow of execution between statements in function
- Constructs a control flow graph that describes the flow
A **basic block** is a maximal sequence of instructions that:
- Except the first instruction, there are no other labels;
- Except the last instruction, there are no jumps;

Therefore:
- Can only jump into the beginning of a block
- Can only jump out at the end of a block

Are units of control flow that cannot be divided further:
- All instructions in basic block execute or none at all
A control flow graph is a directed graph in which

- Nodes are basic blocks
- Edges represent flow of execution
  - Control statements such as if-then-else, while-loop, for-loop introduce control flow edges

CFG is widely used to represent a program

CFG is widely used for program analysis, especially for global analysis/optimization
Example

L1: t := 2 * x;
    w := t + y;
    if (w < 0) goto L3
L2: ...
    ...
L3: w := -w
    ...

L1: t := 2 * x;
    w := t + y;
    if (w < 0) goto L3
L2: ...
    ...
L3: w := -w
    ...

L1: t := 2 * x;
    w := t + y;
    if (w < 0) goto L3
L2: ...
    ...
L3: w := -w
    ...

no

yes
Construction of CFG

Step 1: partition code into basic blocks

- Identify leader instructions that are
  - the first instruction of a program, or
  - target instructions of jump instructions, or
  - instructions immediately following jump instructions

- A basic block consists of a leader instruction and subsequent instructions before the next leader

Step 2: add an edge between basic blocks B1 and B2 if

- B2 follows B1, and B1 may "fall through" to B2
  - B1 ends with a conditional jump to another basic block
  - B1 ends with a non-jump instruction (B2 is a target of a jump)
  - Note: if B1 ends in an unconditional jump, cannot fall through

- B2 doesn’t follow B1, but B1 ends with a jump to B2
Example

01. A=4
02. T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt
01. A=4
02. T1=A*B
03. L1: T2=T1/C
04:  if (T2<W) goto L2
05:  M=T1*K
06:  T3=M+1
07:  L2: H=I
08:  M=T3-H
09:  if (T3>0) goto L3
10:  goto L1
11:  L3: halt
Extend optimizations to flow of control, i.e. CFG

- \( X := 3; \)
  - if \( (B > 0) \)
    - \( Y := Z + W; \)
    - \( A := 2 \times X; \)
  - \( Y := 0; \)

- \( X := 3; \)
  - if \( (B > 0) \)
    - \( Y := Z + W; \)
    - \( A := 2 \times 3; \)
  - \( Y := 0; \)

How do we know it is OK to globally propagate constants?
Correctness

- Optimization must be stopped if incorrect in even one path.

- To replace \( x \) by a constant \( C \) correctly, we must know:
  - Along all paths, the last assignment to \( X \) is “\( X := C \)”
  - All paths often include branches and even loops.
    - Potentially, there can be an infinite number of paths.
    - Hard for compiler to always know which paths are possible (E.g. It may be \( B > 0 \) is always true at runtime)
Global Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property X at a particular point in program execution.

- Need to prove at that point property X holds along all paths.
Many compiler optimizations depend on knowing some property X at a particular point in program execution. Need to prove at that point property X holds along all paths. Need to be conservative to ensure correctness.

- An optimization is enabled only when X is definitely true.
- If not sure if it is true or not, it is safe to say don’t know.
- If analysis result is don’t know, no optimization done.
- May lose opt. opportunities but guarantees correctness.

Property X often involves data flow of program. E.g. Global Constant Propagation (GCP):

\[ X = 7; \]
\[ \ldots \]
\[ Y = X + 3; \] // Replace by Y = 10, if X didn’t change

Needs knowledge of data flow, as well as control flow (Whether data flow is interrupted between points A and B).
Global Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property X at a particular point in program execution

- Need to prove at that point property X holds along all paths
- Need to be conservative to ensure correctness
  - An optimization is enabled only when X is definitely true
  - If not sure if it is true or not, it is safe to say don’t know
  - If analysis result is don’t know, no optimization done
  - May lose opt. opportunities but guarantees correctness

Property X often involves data flow of program

- E.g. Global Constant Propagation (GCP):
  - X = 7;
  - ...
  - Y = X + 3; // Replace by Y = 10, if X didn’t change
  - Needs knowledge of data flow, as well as control flow
    (Whether data flow is interrupted between points A and B)
Global Optimizations and Data Flow Analysis
Most optimizations rely on a property at given point

- For Global Constant Propagation (GCP):
  
  $A = B + C; // Property: \{A=?, B=10, C=?\}$
  
  After optimization:
  
  $A = 10 + C; // Property: \{A=?, B=10, C=?\}$

For this discussion, let’s call these properties \textit{values}

\textbf{Dataflow analysis}: Compiler analysis that calculates values for each point in a program

- Values get propagated from one statement to the next
- Statements can modify values (for GCP, assigning to vars)
- Requires CFG since values flow through control flow edges

\textbf{Dataflow analysis framework}: A framework for dataflow analysis that guarantees correctness for all paths

- Does \textit{not} traverse all possible paths (could be infinite)
- To be feasible, makes \textbf{conservative} approximations
Overview of algorithm

- Initialize each point with the most optimistic values
  - For GCP: most optimistic $\Rightarrow$ all vars are uninitialized
    (That means compiler can replace var with any constant)
- Propagate each value one step through one statement
  - For GCP: $\{A=\,?, \ B=\,?\}$ through $A=1$; results in $\{A=1, \ B=\,?\}$
  - Each step refines values to be progressively pessimistic
- Iteratively propagate until a fixed point is reached

Two questions, which will be answered later:

- Does a fixed point exist (is it guaranteed to stop)?
- Does fixed point give a correct and precise set of values?

Rather than bore you with math, let’s first learn by example: global constant propagation (GCP)
Global Constant Propagation (GCP)

- Let’s apply framework to compute values for GCP
- Let’s use following notation to express the state of a var:
  - $x=*$ // not initialized (most optimistic)
  - $x=1, x=2, ...$ // a constant value (in between)
  - $x=#$ // not provably constant (most pessimistic)
- All values start as $x=*$ and are iteratively refined
  - Until they stabilize and reach a fixed point
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first): 

1. $X := 3$;
2. if $(B > 0)$
3. $Y := Z + W$;
4. $X := 4$;
5. $Y := 0$;
6. $X := X + 1$
7. $A := 2*X$;
In this example, constants can be propagated to $X+1$, $2X$.

Statements visited in reverse postorder (predecessor first):

$X := 3$

If $B > 0$

$Y := Z + W$

$X := 4$

$Y := 0$

$X := X + 1$

$A := 2X$
In this example, constants can be propagated to $X+1$, $2*X$

Statements visited in reverse postorder (predecessor first):

- $X:=3$;
- if ($B>0$)  
  - $Y:=Z+W$;
  - $X:=4$;
- $Y:=0$;
- $X:=X+1$;
- $A:=2*X$;
In this example, constants can be propagated to $X+1$, $2*X$

Statements visited in reverse postorder (predecessor first)

- $X:=3$
- If $(B>0)$
- $Y:=Z+W$
- $X:=4$
- $Y:=0$
- $X:=X+1$
- $A:=2*X$
In this example, constants can be propagated to $X+1$, $2*X$.

Statements visited in reverse postorder (predecessor first):

1. $A := 2*X$;
2. $X := X + 1$;
3. $Y := 0$;
4. $X := 4$;
5. $if (B > 0)$
6. $X := 3$;
7. $X := 3$;
8. $X := 3$;
In this example, constants can be propagated to $X+1$, $2X$.

Statements visited in reverse postorder (predecessor first):
In this example, constants can be propagated to **X+1, 2*X**.

**Statements visited in reverse postorder (predecessor first)**

- **A:=2*X;**
- **Y:=0; X:=X+1**
- **Y:=Z+W; X:=4;**
- **X:=3; if (B>0) Y:=Z+W; X:=4;**
- **X=4**
- **X=3**
- **X=3**
- **X=3**
- **X=***

**FIXED POINT**
In this example, constants can be propagated to $X+1$, $2\times X$.

Statements visited in reverse postorder (predecessor first):

1. $X:=3$;
2. $Y:=Z+W$;
3. $X:=4$;
4. $Y:=0$;
5. $X:=X+1$;
6. $A:=2\times 4$;
7. $X:=3+1$;
8. $Y:=0$;
9. $X:=X+1$;
10. $X:=3$;
11. $Y:=Z+W$;
12. $X:=4$;
13. $X=*$;
14. $X=3$;
15. $X=3$;
16. $X=3$;
17. $X=3$;
18. $X=3$;
19. $X=3$;
20. $X=4$;
21. $X=4$;
22. $X=4$;
23. $X=4$;
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first)

\[ X := 3; \]
\[ \text{if} \ (B > 0) \]
\[ Y := Z + W; \]
\[ X := 4; \]
\[ Y := 0; \]
\[ X := X + 1 \]
\[ A := 2 \times X; \]
In this example, loop prevents any constant propagation

Statements visited in reverse postorder (predecessor first)
Example GCP with Loop (Iteration 1)

- In this example, loop prevents any constant propagation
- Statements visited in reverse postorder (predecessor first)
Example GCP with Loop (Iteration 1)

- In this example, loop prevents any constant propagation
- Statements visited in reverse postorder (predecessor first)

```
X := 3;
if (B > 0)
 Y := Z + W;
X := 4;
Y := 0;
X := X + 1
```

```
A := 2 * X;
```
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

X := 3

if (B > 0)

Y := Z + W;

X := 4;

Y := 0;

X := X + 1

A := 2 * X;
In this example, loop prevents any constant propagation

Statements visited in reverse postorder (predecessor first)
In this example, loop prevents any constant propagation.
Statements visited in reverse postorder (predecessor first)

X = *
X = 3
X = 3
X = 3
Y := Z + W;
X := 4;
X := 4
X := 4

Y := 3;
if (B > 0)

Y := 0;
X := 3 + 1
X := 4
X := 4

A := 2 * 4;
In this example, loop prevents any constant propagation.

Statements visited in reverse postorder (predecessor first):

\[ X := 3; \]
\[ \text{if } (B > 0) \]
\[ Y := Z + W; \]
\[ X := 4; \]
\[ X := 4; \]
\[ X := X + 1; \]
\[ A := 2 \times X; \]

NOT SO FAST!
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

```
X := 3;
if (B > 0) Y := Z + W;
X := 4;
Y := 0;
X := X + 1
```

```
A := 2 * X;
```
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

```
X:=3;
if (B>0)
 Y:=Z+W;
 X:=4;
 Y:=0;
 X:=X+1
A:=2*X;
```

Diagram showing the flow of execution and variable assignments.
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

X := 3;
if (B > 0)
  Y := Z + W;
  X := 4;
  Y := 0;
  X := X + 1
A := 2 * X;
X := *
Fixed point is not reached in iteration 1 due to backedge
Must do another iteration to reach fixed point

X := 3;
if (B > 0)
  Y := Z + W;
  X := 4;

Y := 0;
X := X + 1

A := 2 * X;

X := 3;
X := 3
X := 4
X := #
X := #
X := #
X := #
X := *
X := *
X := *
X := *
Example GCP with Loop (Iteration 2)

- Fixed point is not reached in iteration 1 due to backedge
- Must do another iteration to reach fixed point

X := 3;
if (B > 0) {
  Y := Z + W;
  X := 4;
  Y := 0;
  X := X + 1
}
A := 2 * X;
Components of a Dataflow Analysis Framework

Components: Defined by \{D, V, \land, F: V \rightarrow V \}\n
- \textbf{D}: Direction of propagation (forwards or backwards)
- \textbf{V}: Set of values (depends on analyzed property)
- \textbf{\land}: Meet operator (\(V \land V \rightarrow V\))
  - Defines behavior when values meet at control flow merges
- \textbf{F}: Transfer function \(F: V \rightarrow V\)
  - Defines behavior of each basic block (statement)

Once \(D, V, \land, F\) are defined, the framework takes care of the rest. Each type of dataflow analysis will define them differently. How are they defined for GCP?
Components of a Dataflow Analysis Framework

- Components: Defined by \{D, V, \land, F: V \rightarrow V \}
  - D: Direction of propagation (forwards or backwards)
  - V: Set of values (depends on analyzed property)
  - \land: Meet operator (V \land V \rightarrow V)
    - Defines behavior when values meet at control flow merges
  - F: Transfer function F: V \rightarrow V
    - Defines behavior of each basic block (statement)

- Once D, V, \land, F are defined, framework takes care of rest
  - Each type of dataflow analysis will define them differently
  - How are they defined for GCP?
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are there values at the given point?
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are there values at the given point?
- A given variable can be in one of following states:
  - \( x = \ast \) // not initialized (most optimistic)
  - \( x = 1, x = 2, \ldots \) // a constant value (in between)
  - \( x = \# \) // not provably constant (most pessimistic)
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are their values at the given point?
- A given variable can be in one of the following states:
  - \( x = \ast \) // not initialized (most optimistic)
  - \( x = 1, x = 2, \ldots \) // a constant value (in between)
  - \( x = \# \) // not provably constant (most pessimistic)
- \( V \) for GCP: Set of values where each value is the set of variables and their respective states.
- Examples of values in \( V \): \{\( x = \ast, y = 10, z = \# \), \( x = 1, y = \#, z = 5 \}\)
- Goal for GCP is to assign a value to each point in program
What is $\wedge$?

- $\wedge$: Meet operator ($V \wedge V \rightarrow V$)
  - Defines behavior when values meet at control flow merges
  - Given
    - $V_{in}(B)$ — value at the entry of basic block $B$
    - $V_{out}(B)$ — value at the exit of basic block $B$
  - $V_{in}(B) = \wedge V_{out}(P)$ for each $P$, where $P$ is a predecessor of $B$

Example of $\wedge$ operator for GCP:

{\text{x}=*, \text{y}=2, \text{z}=3} \wedge \{\text{x}=1, \text{y}=2, \text{z}=10\} = \{\text{x}=1, \text{y}=2, \text{z}=#\}

- Why is $z=#$ after the meet?
- Why is $x=1$ after the meet?

$\wedge$ operator applied to values in $V$ must form a **Semilattice**

- **Semilattice**: Partial ordering of values with a lower bound
- Meet-semilattice to be exact but let’s just call it semilattice
Semilattice

Semilattice for GCP ∧ operator (on just one variable):

```
{x=*}

{...} {x=-1} {x=0} {x=1} {...}

{x=#}
```

∧ operator is defined by Greatest Lower Bound (GLB)

- \( \{x=*\} \land \{x=1\} = \{x=1\} \)
- \( \{x=0\} \land \{x=1\} = \{x=#\} \)

What makes this a semilattice?

1. There is a single lower bound \( \{x=#\} \)
2. It’s a partial order (values monotonically head downwards)

Note: some operators are not meet operators (e.g. add)
In a semilattice, there are two special values: \(\top\) and \(\bot\).
In a semilattice, there are two special values: $\top$ and $\bot$.

$\top$: Called **Top Value** (at top of semilattice)
- Initial value when analysis begins (most optimistic)
- For GCP: $\{x=\ast, y=\ast, z=\ast\}$ (all vars uninitializd)
- Value is refined in the course of analysis

$\bot$: Called **Bottom Value** (at bottom of semilattice)
- Value which can be refined no further (most pessimistic)
- For GCP: $\{x=#, y=#, z=#\}$ (no vars provably constant)
In a semilattice, there are two special values: $\top$ and $\bot$

$\top$: Called **Top Value** (at top of semilattice)
- Initial value when analysis begins (most optimistic)
- For GCP: $\{x=*, y=*, z=*\}$ (all vars uninitialized)
- Value is refined in the course of analysis

$\bot$: Called **Bottom Value** (at bottom of semilattice)
- Value which can be refined no further (most pessimistic)
- For GCP: $\{x=\#, y=\#, z=\#\}$ (no vars provably constant)

Properties of semilattice guarantee values stabilize
- Partial order guarantees value changes always downwards
- Lower bound ($\bot$) guarantees there is a termination point
What is $F$?

- **$F$:** Transfer function ($F: V \rightarrow V$)
  - Defines what happens to value within a basic block
  - Given
    - $V_{in}(B)$ — value at the entry of basic block $B$
    - $V_{out}(B)$ — value at the exit of basic block $B$
  - $V_{out}(B) = F(V_{in}(B))$

- **$F$ for GCP:**
  \[V_{out}(B) = (V_{in}(B) - \text{DEF}_v(B)) \cup \text{DEF}_c(B)\]
  where $\text{DEF}_v(B) =$ set of vars assigned with variables in $B$
  $\text{DEF}_c(B) =$ set of vars assigned with constants in $B$

- Easier if you treat each statement as a basic block
  - No multiple defs and overlaps between $\text{DEF}_v(B)$, $\text{DEF}_c(B)$
There are two modes of propagation: \( F \) and \( \land \).

- **Function \( F \)** — propagates values through basic blocks
  - Variables in \( \text{DEF}_v \) are set to \#.
  - Variables in \( \text{DEF}_c \) are set to constant value.

- **\( \land \) operator** — propagates values through CFG edges
  - Merges values from multiple predecessor blocks.

### Example

**BB1:**
- \( \text{P}_{in}(1)\): \(\{X=3, Y=\#, W=\#\}\)
- \( \text{P}_{out}(1)\): \(\{X=\#, Y=4, W=\#\}\)
- \( Y := X + 1; \)
- \( X := X \times W; \)

**BB2**
- \( \text{P}_{out}(1)\): \(\{X=3, Y=4\}\)
- \( \text{P}_{out}(2)\): \(\{X=3, Y=\*\}\)

**BB3**
- \( \text{P}_{in}(3)\): \(\{X=3, Y=4\}\)
What is D?

D: Direction of propagation (forwards or backwards)

Forward Analysis

Backward Analysis
What is D?

- Values are propagated forward: **Forward Analysis**
- Values are propagated backward: **Backward Analysis**
- GCP is an example of a Forward Analysis
  - Starting from a constant definition, the ‘constantness’ of a variable propagates forward through CFG
- We will see an example of Backward Analysis soon
Forward Analysis Algorithm

- Pseudocode for Dataflow Analysis Framework (Forward)
  for (each basic block B) \( V_{\text{out}}(B) = \top \);
  \( W = \{ \text{all basic blocks} \} \);
  while \( W \neq \emptyset \) {
    \( B = \text{choose basic block from } W \);
    \( V_{\text{in}}(B) = \wedge P \text{ is a predecessor of } B \ V_{\text{out}}(P) \);
    \( V_{\text{out}}(B) = F(V_{\text{in}}(B)) \);
    if \( V_{\text{out}}(B) \) is changed \( W = W \cup \{ B's \text{ successors} \} \)
  }

- \( V, \wedge \text{ and } F \) defined differently for each type of analysis

- Will it eventually stop at a fixed point?
  - If there are loops, we may go through the loop many times
  - Is there a possibility of values changing forever?

- Will the fixed point give a correct and precise solution?
Termination Problem

- Existence of ⊥ value ensures termination
  - Values start from ⊤ and can only go down in semilattice
  - Number of value changes is limited by height of semilattice

- Computational complexity (V = vars, N = basic blocks)
  - Each basic block can only change value 2 * V times
    (Twice for each variable according to semilattice)
  - Maximal complexity: $O(2 \times V \times N) = O(V \times N)$
    - Each basic block can appear 2 * V times in W (work list)
  - Practical complexity: $O(N)$
    - With reverse postorder traversal of basic blocks,
      1. Blocks in straight-line code change only once
      2. Blocks in singly-nested loop change at most twice
         (Loop always converges on second traversal, as we saw)
      3. Blocks in L-nested loop change at most X+1 times
      4. $O(L \times N) = O(N)$, since typically L <= 3
Precision Problem

A few different types of solutions:

- **IDEAL**: Meet of all possible paths \( F_P \) to this point
  \[
  \text{IDEAL}(B) = \bigwedge_{P \text{ is possible path from ENTRY to } B} F_P(V_{\text{ENTRY}})
  \]

- **MOP** (Meet-Over-Paths): Meet of all paths in CFG
  \[
  \text{MOP}(B) = \bigwedge_{P \text{ is path in CFG from ENTRY to } B} F_P(V_{\text{ENTRY}})
  \]

- **MFP** (Maximum Fixed Point): Given iterative solution
  \[
  \text{MFP} \leq \text{MOP} \leq \text{IDEAL} \text{ (in semilattice)}
  \]

- **MFP \leq MOP \leq IDEAL**: Why?
  - MOP \leq IDEAL: Why?
    - Paths in CFG is a superset of all possible paths
    - \( MOP = \text{IDEAL} \land V_{\text{never taken paths}} \leq \text{IDEAL} \) (since GLB)
  - MFP \leq MOP: Why?
    - MFP stops only when fixed point is reached:
      Covers all paths in MOP, even for limitless iterations
    - For GCP: sometimes MFP < MOP (next slide)

- **MFP is correct but not precise** (in short conservative)
When is MFP < MOP?

- Assume $V_{ENTRY} \equiv \{ A = *, B = *, \; C = * \}$:

  \[
P_1: \begin{align*}
  A &= 1; \\
  B &= 2;
  \end{align*}
  \]

  \[
P_2: \begin{align*}
  A &= 2; \\
  B &= 1;
  \end{align*}
  \]

  \[
  B: \; C = A + B;
  \]

- $MOP \equiv F_B(F_{P_1}(V_{ENTRY})) \land F_B(F_{P_2}(V_{ENTRY}))$
  \[
  \equiv \{ A = 1, B = 2, \; C = 3 \} \land \{ A = 2, B = 1, \; C = 3 \}
  \equiv \{ A = \#, B = \#, \; C = 3 \}
  \]

- $MFP \equiv F_B(F_{P_1}(V_{ENTRY}) \land F_{P_2}(V_{ENTRY}))$
  \[
  \equiv F_B(\{ A = \#, B = \#, \; C = * \}) \equiv \{ A = \#, B = \#, \; C = \# \}
  \]

- $F$ for GCP is not **distributive** (Refer to Chapter 9.3)


Another Analysis: Liveness Analysis

Once constants have been globally propagated, we would like to eliminate the dead code:

```c
x:=3;
if (b>0)
 y:=z+w;
y:=0;
z:=2*x;
```
Once constants have been globally propagated, we would like to eliminate the dead code:

```plaintext
x:=3;
if (b>0)

y:=z+w;

z:=2*3;
```

```plaintext
y:=0;
```
Once constants have been globally propagated, we would like to eliminate the dead code.

```
x := 3;
if (b > 0)
 y := z + w;
else
 y := 0;

z := 2 * 3;
```
A **dead statement** calculates a value that is not used later. Otherwise, it is a **live statement**.

In the example, the 1st statement is dead, the 2nd statement is live.
Global Liveness Analysis (GLA)

A variable $X$ is live at statement $S$ if

- There exists a statement $S_2$ after $S$ that uses $X$
- There is a path from $S$ to $S_2$
- There is no intervening assignment to $X$ between $S$ and $S_2$
Liveness Analysis

- Global Liveness Analysis (GLA)
  - A variable $X$ is live at statement $S$ if
    - There exists a statement $S_2$ after $S$ that uses $X$
    - There is a path from $S$ to $S_2$
    - There is no intervening assignment to $X$ between $S$ and $S_2$
  - Again a dataflow analysis framework can be applied

- What is $D$, $V$, $\land$, $F: V \rightarrow V$ in this context?

- What is $D$?
  - Liveness Analysis is a **Backward Analysis**
    - Starting from a use, the ‘liveness’ of a variable propagates backward through CFG
  - Changes direction of $\land$ operator and transfer function
Forward and Backward Analysis Again

Forward Analysis: $V_{in}$, $V_{out}$

Backward Analysis: $V_{in}$, $V_{out}$
What is V?

- **Definition**: Set of values in property under analysis
  - \( V \) for GLA: Each value is a set of live variables
  - Example values: \( \{x, y, z\}, \{y\} \)

- **\( \top \)**: initial value at the beginning
  - \( \top \) for GLA = \( \{\} \)
  - Start with assumption that no variables are live

- **\( \bot \)**: the don’t know value
  - \( \bot \) for GLA = \{all variables in function\}
  - Meaning: none of the variables are provably dead
What is $\land$?

$\land$: Meet operator ($V \land V \rightarrow V$) for backward analysis

- Defines behavior when values meet at control divergence
- Given
  - $V_{in}(B)$ — value at the entry of basic block $B$
  - $V_{out}(B)$ — value at the exit of basic block $B$
- $V_{out}(B) = \land V_{in}(S)$ for each $S$, where $S$ is successor of $B$
- Note the reversal in direction! GLA is a backward analysis.

$\land$ operator for GLA:

- Meet operator is a simple union $\cup$
- Example: $\{x, y\} \land \{y, z\} = \{x, y\} \cup \{y, z\} = \{x, y, z\}$
- Union operator monotonically increases set (a partial order), hence values form a semilattice from $\top$ to $\bot$
What is F?

- **F**: Transfer function (F: V → V) for backward analysis
  - Defines what happens to value within a basic block
  - Given
    - $V_{\text{in}}(B)$ — value at the entry of basic block B
    - $V_{\text{out}}(B)$ — value at the exit of basic block B
  - $V_{\text{in}}(B) = F(V_{\text{out}}(B))$
  - Again note the reversal in direction!

- F for GLA:
  - $V_{\text{in}}(B) = (V_{\text{out}}(B) - \text{DEF}(B)) \cup \text{USE}(B)$
  - where DEF(B) contains variable definitions in B
    - USE(B) contains variable uses in B
  - Easier to reason about if you treat each individual statement as a basic block
Liveness Example

\[ b = b + c \]

\[ a = d + 1; \]
Liveness Example

\[
b = b + c
\]

\[
a = d + 1;
\]
Liveness Example

\[ b = b + c \]
\[ a = d + 1; \]

\( V_{in}(B1) \)
\( V_{out}(B1) \)

\( V_{in}(B2) \)
\( V_{out}(B2) \)

\( V_{in}(B3) \)
\( V_{out}(B3) = \{a, b\} \)
Liveness Example

\begin{align*}
\text{V}_{\text{in}}(B1) & \\
\text{V}_{\text{out}}(B1) & \\
\text{V}_{\text{in}}(B2) & \\
\text{V}_{\text{out}}(B2) & \\
\text{V}_{\text{in}}(B3) & \\
\text{V}_{\text{out}}(B3) & = \{a, b\}
\end{align*}

Two sets:
DEF = \{a\}
USE = \{d\}
Liveness Example

\[ b = b + c \]

\[ a = d + 1; \]

Two sets:
- DEF = \{a\}
- USE = \{d\}
Liveness Example

Let's consider the following code:

\[ b = b + c \]

\[ a = d + 1; \]

We have two sets:

- **DEF** = \{a\}
- **USE** = \{d\}

The incoming values for block B1 are:

\[ V_{in}(B1) = \{b, c\} \]

The outgoing values for block B1 are:

\[ V_{out}(B1) \]

The incoming values for block B2 are:

\[ V_{in}(B2) = \{b, c\} \]

The outgoing values for block B2 are:

\[ V_{out}(B2) = \{a, b\} \]

The incoming values for block B3 are:

\[ V_{in}(B3) = \{b, d\} \]

The outgoing values for block B3 are:

\[ V_{out}(B3) = \{a, b\} \]
**Liveness Example**

\[ b = b + c \]

\[ a = d + 1; \]

Out: \( B_2 \) => \( \{ a, b \} \)

In: \( B_1 \) => \( \{ b, c, d \} \)

Out: \( B_3 \) => \( \{ a, b \} \)

In: \( B_2 \) => \( \{ b, c \} \)

In: \( B_3 \) => \( \{ b, d \} \)

Two sets:
- **DEF** = \{a\}
- **USE** = \{d\}
Backward Analysis Algorithm

- Pseudocode for Dataflow Analysis Framework (Backward)
  
  for (each basic block B) \( V_{in}(B) = \top; \)
  
  \( W = \{ \text{all basic blocks} \}; \)
  
  while (\( W \neq \emptyset \)) {
    
    \( B = \text{choose basic block from } W; \)
    
    \( V_{out}(B) = \wedge S \text{ is a successor of } B \ V_{in}(S) \)
    
    \( V_{in}(B) = F(V_{out}(B)) \)
    
    if (\( V_{in}(B) \) is changed) \( W = W \cup \{ B's \text{ predecessors} \} \)
  }

- Note the reversal in direction compared to forward analysis

- Will backward analysis for GLA eventually stop?
  - Again properties of semilattice ensures termination
  - Value can change \( V \) times, where \( V \) is number of vars
  - Maximal complexity: \( O(V \times N) \)
  - Practical complexity: \( O(N) \), with postorder traversal
Is GLA Precise?

- For GLA, MFP = MOP ≤ IDEAL
- MOP ≤ IDEAL: CFG is a superset of all paths (like GCP)
- MFP = MOP: Why?
  - MFP emulates all paths in MOP (like GCP)
  - Unlike GCP, transfer function $F$ for GLA is **distributive**
    - $MOP \equiv F_B(F_{P1}(V)) \land F_B(F_{P2}(V))$
    - $\equiv F_B(F_{P1}(V) \land F_{P2}(V)) \equiv MFP$
- If MOP = IDEAL, GLA is precise
Comparison of GCP and GLA

- **D**: Direction of propagation
  - GCP: Forward
  - GLA: Backward

- **V**: Set of values propagated
  - GCP: Set of variables with constant values
  - GLA: Set of live variables

- **∧**: Meet operator
  - GCP: Given by semilattice (Top $\rightarrow$ Constant $\rightarrow$ Bottom)
  - GLA: Simply the set union operator

- **F**: Transfer function
  - GCP: - var defs to variables, + vars defs to constants
  - GLA: - var defs, + var uses
Application of Liveness Analysis

- Global dead code elimination is based on GLA
  - Dead code detection
    - `x = ...;` is dead code if `x` is dead after this statement
    - Dead statement can be deleted from the program

- Global register allocation is also based on GLA
  - Only live variables are placed in registers
  - Registers holding dead variables can be reused
Register Allocation
What is Register Allocation?

- Process of assigning (a large number of) variables to (a small number of) CPU registers
- Registers are fast
  - access to memory: 100s of cycles
  - access to cache: a few to 10s of cycles
  - access to registers: 1 cycle
- But registers are limited in number
  - x86: 8 regs, MIPS: 32 regs, ARM: 32 regs ...
- Goals of register allocation:
  - Keep frequently accessed variables in registers
  - Keep variables in registers only as long as they are live
Local Register Allocation

- Allocate registers basic block by basic block
  - Makes allocation decisions on a per-block basis
  - Hence the prefix ‘local’
  - Uses results of Global Liveness Analysis

- Requires only a single scan through each basic block
  - Keeps track of two tables:
    - Register table: which regs are currently allocated and where
    - Address table: location(s) where each variable is stored
      (locations can be: register, stack memory, global memory)
  - For every use of variable:
    - If variable is already in reg, no action
    - If not, allocate reg to variable from available regs
    - If no available regs, select reg for displacement
Local Register Allocation

- Which register should be displaced?
  - Register whose value is no longer live (given by GLA)
  - Register whose value has a copy in another location
  - These registers can be safely recycled
  - Otherwise the register needs to be spilled

- **Spill**: storing variable in its own memory location
  - Own memory location can be in
    - Stack memory: local variables, temporary variables
    - Global memory: global variables
  - Generate store instruction to memory on assignment
  - Generate load instruction from memory on use

- At the end of basic block all live registers are spilled
  - Makes all registers available for next basic block allocation
    (Gives allocator clean slate for next basic block)
  - Can be source of inefficiency due to unnecessary spills
    → Addressed by Global Register Allocation
Global Register Allocation

- Allocates registers across basic blocks
- Relies on Global Liveness Analysis just like local register allocation
- Three popular register allocation algorithms
  1. Graph coloring allocator
  2. Linear scan allocator
  3. ILP (Integer Linear Programming) allocator
Algorithm steps:

1. Identify live range interference using GLA
2. Build register interference graph
3. Attempt K-coloring of the graph
   - K is the number of available registers
4. If none found, modify the program, rebuild graph until K-coloring can be obtained
   - Insert spill code to the program
**Live Range Interference**

- **Live Range**: Set of program points where a variable is live
  - Two live ranges interfere if there is an overlap
  - Vars with interfering ranges cannot reside in the same register

Diagram:

- `x := ...`
- `y := ...;`  
  - `:= ...x...`
- `:= y`
- `x is live`
- `y is live`
**Live Range Interference**

- **Live Range**: Set of program points where a variable is live
  - Two live ranges interfere if there is an overlap
  - Vars with interfering ranges cannot reside in the same register

```
x := ...
y := ...;
:= ...x:
```

```
:= ...
... :=x;
```

```
:= y
```

x is live

y is live
**Live Range Interference**

- **Live Range**: Set of program points where a variable is live
  - Two live ranges interfere if there is an overlap
  - Vars with interfering ranges cannot reside in the same register

We annotate each program point (between two statements) to explicitly show the interference.
Example of GLA and interfering live ranges

\[
a := b + c; \\
d := -a; \\
e := d + f; \\
f := 2*e; \\
b := d + e; \\
e := e - 1; \\
b := f + c;
\]
Register Interference Graph

Construct **Register Interference Graph (RIG)** such that

- Each node represents a variable
- An edge between two nodes $V_1$ and $V_2$ represents an interference in live ranges

Based on RIG,

- Two variables can be allocated in the same register if there is no edge between them
- Otherwise, they cannot be allocated in the same register
In the RIG for our example:

- $b, c$ cannot be in the same register
- $a, b, d$ can be in the same register
Allocating Registers using Graph Coloring

- Graph coloring is a theoretical problem where...
  - A coloring of a graph is an assignment of colors to nodes such that nodes connected by an edge have different colors
  - A graph is k-colorable if it has a coloring with k colors

- Problem of register allocation in RIG maps to graph coloring problem
  - Instead of assigning k-colors, we need to assign k registers
  - K is the number of available machine registers
  - If the graph is k-colorable, we have a register assignment that uses no more than k registers
This is an coloring of our example RIG using 4 colors

There is no solution with less than 4 colors
After Register Allocation

Using the coloring result, map it back to the code

a – R1
b – R2
c – R3
d – R2
e – R1
f – R4

```
a := b + c;
d := -a;
e := d + f;
```

```
f := 2 * e;
```

```
b := d + e;
e := e - 1;
```

```
b := f + c;
```

```
b := d + e;
e := e - 1;
```

```
f := 2 * e;
```
Using the coloring result, map it back to the code

- a := R1
- b := R2
- c := R3
- d := R2
- e := R1
- f := R4

```
R1 := R2 + R3;
R2 := -R1;
R1 := R2 + R4;
```

```
f := 2 * e;
```

```
b := d + e;
e := e - 1;
```

```
b := f + c;
```

```
Using the coloring result, map it back to the code

- Using the coloring result, map it back to the code.

```plaintext
b := d + e;
e := e - 1;
b := f + c;
R1 := R2 + R3;
R2 := -R1;
R1 := R2 + R4;
R4 := 2*R1;
```
Using the coloring result, map it back to the code

- a→R1
- b→R2
- c→R3
- d→R2
- e→R1
- f→R4

```
R4 := 2*R1;

b := f + c;

R1 := R2 + R3;
R2 := -R1;
R1 := R2 + R4;

R2 := R2 + R1;
R1 := R1 - 1;
```
After Register Allocation

Using the coloring result, map it back to the code

\[
\begin{align*}
a &\rightarrow R1 \\
b &\rightarrow R2 \\
c &\rightarrow R3 \\
d &\rightarrow R2 \\
e &\rightarrow R1 \\
f &\rightarrow R4 \\
R1 &:= R2 + R3; \\
R2 &:= -R1; \\
R1 &:= R2 + R4; \\
R4 &:= 2 * R1; \\
R2 &:= R4 + R3; \\
R2 &:= R2 + R1; \\
R1 &:= R1 - 1; \\
R1 &:= R1 - 1; \\
\end{align*}
\]
How is Graph Coloring Performed?

- For graph G and $k>2$, determining whether G is k-colorable is NP complete
 - Problem of k-register allocation is NP complete
 - In practice: use heuristic polynomial algorithm that gives close to optimal allocations most of the time
 - Chaitin’s graph coloring is a popular heuristic algorithm
 - Most backends of GCC use Chaitin’s algorithm by default
- What if k-register allocation does not exist?
 - Spill a register to memory to reduce RIG and try again
Observation: for a \(k \)-coloring problem, a node with \(k-1 \) neighbors can always be colored, no matter what
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Observation: for a k-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Corollary: Given graph G for a k-coloring problem
- Let G' be the graph after removing a node with fewer than k neighbors
- If G' can be k-colored then G can be k-colored

Insight: Solving for G' is easier than solving for G, so solve for G' instead of G

Algorithm
- Phase 1: Repeat until there are no nodes left
 - Pick a node V with fewer than k neighbors
 - Put V on a stack and remove it and its associated edges from the graph
- Phase 2: Assign colors to nodes on the stack in LIFO order
 - Pick a color that is different from its neighbors
 - Such a color is guaranteed to exist due to corollary (Analogous to coloring G after adding removed node to G')
Chaitin’s algorithm applied to our example where $k=4$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where k=4

Stack={a}
Chaitin’s algorithm applied to our example where $k=4$

Stack={a}
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where $k=4$

Stack={a,d}
Chaitin’s algorithm applied to our example where $k=4$

Stack={a, d}
Chaitin’s algorithm applied to our example where k=4

Stack={a,d,b}
Chaitin’s algorithm applied to our example where k=4

Stack={a,d,b}
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c\}$
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a, d, b, c\}$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where \(k = 4 \)

Stack = \(\{a, d, b, c, e\} \)
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a, d, b, c, e\}$

\bullet
Starting assigning colors to f, e, b, c, d, a
According to Chaitin’s algorithm:
Every node has 3 outgoing edges, thus it is not 3-colorable
Is Chaitin’s Graph Coloring Optimal?

- According to Chaitin’s algorithm:
 Every node has 3 outgoing edges, thus it is not 3-colorable

- However, it is 3-colorable as you can see above
- Chaitin’s algorithm is not optimal
What if Coloring Fails?

- Spill the variable to memory
 - a spilled variable temporarily **lives** in memory
 - e.g. to color the previous graph using 3 colors
 - spill “f” into memory
What if Coloring Fails?

- Spill the variable to memory
 - a spilled variable temporarily **lives** in memory
 - e.g. to color the previous graph using 3 colors
 - spill “f” into memory

```
  a
 /|
/  \
 f --- e --- d
 \
   /|
  \
    b
 /|
    
 c
```


What if Coloring Fails?

- Spill the variable to memory
 - a spilled variable temporarily **lives** in memory
 - e.g. to color the previous graph using 3 colors
 - spill “f” into memory

```
  f --- e --- d
    |        |
    v        v
  b --- c
```

What if Coloring Fails?

- Spill the variable to memory
 - a spilled variable temporarily lives in memory
 - e.g. to color the previous graph using 3 colors
 - spill “f” into memory
What if Coloring Fails?

- Spill the variable to memory
 - a spilled variable temporarily **lives** in memory
 - e.g. to color the previous graph using 3 colors
 - spill “f” into memory

![Graph diagram](image-url)
On-line compilers need to generate binary code quickly

- Just-in-time compilation
- Interactive environments e.g. IDE

In these cases, it is beneficial to sacrifice code performance a bit for quicker compilation

- A faster allocation algorithm
- Not sacrificing too much in code quality

Proposed in following publication:

- Poletto, M., Sarkar, V., "Linear scan register allocation", in ACM Transactions on Programming Languages and Systems (TOPLAS), 1999
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each **live interval**

![Diagram showing scan order and code with letters A to E]
Layout the code in a certain linear order

Do a single scan to allocate register for each \textit{live interval}
Layout the code in a certain linear order

Do a single scan to allocate register for each live interval

Allocate greedily at each numbered point in program

- A and D may be allocated to same register
Linear Scan and Live Intervals

- **Live Interval**: Smallest interval of code containing all live ranges in the given linear code layout

 - Live range of \(a = \{B_1, B_3\}, \ b = \{B_2, B_4\}\)
 - If code layout is “B1,B3,B2,B4”, only 1 register is enough
 - Live interval of \(a = \{B_1, B_3\}, \ b = \{B_2, B_4\}\)
 - If code layout is “B1,B2,B3,B4”, then need 2 registers
 - Live interval of \(a = \{B_1, B_2, B_3\}, \ b = \{B_2, B_3, B_4\}\)
Linear scan RA consists of four steps

S1. Order all instructions in linear fashion
 - Order affects quality of allocation but not correctness

S2. Calculate the set of live intervals
 - Each variable is given a live interval

S3. Greedily allocate register to each interval in order
 - If a register is available then allocation is possible
 - If a register is not available then an already allocated register is chosen (register spill occurs)

S4. Rewrite the code according to the allocation
 - CPU registers replace temporary or program variables
 - Spill code is generated
Register Allocation Time Comparison

- **Usage Counts**, **Linear Scan**, and **Graph Coloring** shown
- Linear Scan allocation is always faster than Graph Coloring

![Graph showing register allocation time comparison](image-url)
ILP-based Register Allocation

- Idea and steps:
 1. Convert RA problem to an ILP problem
 2. Solve ILP problem using widely known ILP solvers
 3. Map the ILP solution back to register assignment

- Goal: find “optimal” allocation
 - Chaitin graph coloring is a heuristic algorithm
 - Optimal (NP-complete) graph coloring algorithms exist, but still use heuristics for spilling
 - ILP finds optimal allocation and placement of spill code

- Complexity restricts adoption by industrial compilers
 - Optimal ILP solution is NP-hard (similar to graph coloring)
 - ILP allocation is slow → does not scale to large programs
What is Integer Linear Programming (ILP)?

- **Integer Linear Programming (ILP)**
 - **Variables:**
 - a, b
 - **Constraints:**
 - \(0 \leq a \leq 10\)
 - \(0 \leq b \leq 29\)
 - \(a + b \leq 36\)
 - **Goal function**
 - minimize \(f(a,b) = 3a + 4b\)

- It is trivial if a and b can take real values
- It is NP hard if a and b can only take integer values
How to Convert Register Allocation to ILP?

- An example

 (9) ...
 (10) ... = b + a ;
 (11) ...

 ➢ Want to know to which register b should be allocated i.e. load Rx, addr(b)

- Convert to an ILP problem

 ➢ assume there are four free registers R1, R2, R3, R4

S1: Define the variables in ILP

\[V_{var(location)}^{Ri} \] — Whether var at location is allocated to Ri

\[V_{b(10)}^{R1}, V_{b(10)}^{R2}, V_{b(10)}^{R3}, V_{b(10)}^{R4} \]

Value of 0 — not allocate to that register at the place

Value of 1 — is allocated to that register at the place
Converting Register Allocation to ILP

S2: Define constraints. E.g. for code (10) ... = b + a,

- A register can hold at most one variable per place
 \[V_{R1}^{b(10)} + V_{R1}^{a(10)} \leq 1, \ V_{R2}^{b(10)} + V_{R2}^{a(10)} \leq 1, \ ... \]
- A variable is allocated to exactly one register per place
 \[V_{R1}^{b(10)} + V_{R2}^{b(10)} + V_{R3}^{b(10)} + V_{R4}^{b(10)} = 1 \]
 \[V_{R1}^{a(10)} + V_{R2}^{a(10)} + V_{R3}^{a(10)} + V_{R4}^{a(10)} = 1 \]
- and many more ...

S3: Define goal function

- To minimize cost of memory operations for spilling:
 \[f_{\text{cost}} = \sum V_{\text{stack}}^{v(\text{loc})} \ast U_{v(\text{loc})} \ast \text{exec_count}(\text{loc}) \ast \text{LOAD}_{\text{cost}} + ... \]
 \[V_{\text{stack}}^{v(\text{loc})} : \text{Whether v at loc is allocated to stack (spilled)} \]
 \[U_{v(\text{loc})} : \text{Whether variable v is used right after loc} \]
 \[\text{exec_count}(\text{loc}) : \text{Expected runtime execution count of loc} \]
 \[\text{LOAD}_{\text{cost}} : \text{Cost of load instruction in given machine} \]
Conclusion

- Good Register Allocation is crucial to code quality
 - Accesses to memory are costly, even with caches
 - Even with few program variables, intermediate values introduce many more temporary variables, adding to register pressure

- Different algorithms make different trade-offs between allocation time and code quality
The END!