Compiler Optimization
Compiler optimization is

- to generate **better** code
- not to generate **optimal** code
 - it is an NP-complete problem

What is a better version?

- Same program output
- Better one or more of the followings
 - Execution time
 - Memory usage
 - Energy/power consumption
 - Security
 - Reliability
 - Debuggability
 - Other criteria
Compiler optimization is essentially a transformation

- Delete something
- Add something
- Move something
- Modify something

Transform code or layout?

- Code-related optimizations
 - Optimizes *what* code is generated
- Layout-related optimizations
 - Optimizes *where* in memory code and data is placed
Layout-Related Optimizations
Layout-Related Optimizations

- Seeks to improve caching (or paging) behavior by
 - changing the layout of data or code
 - exploiting knowledge of machine memory hierarchy

- Change code layout

```c
f() {
    ... call h();
}
g() {
    ...
}
h() {
    ...
}
```

OR

```
<table>
<thead>
<tr>
<th>code of f()</th>
<th>code of g()</th>
</tr>
</thead>
<tbody>
<tr>
<td>code of h()</td>
<td></td>
</tr>
</tbody>
</table>

OR

```
<table>
<thead>
<tr>
<th>code of f()</th>
<th>code of h()</th>
</tr>
</thead>
<tbody>
<tr>
<td>code of g()</td>
<td></td>
</tr>
</tbody>
</table>
```
Which Code Layout is Better?

Assume:
- data cache has one N-word line
- the size of each function is N/2-word long
- access sequence is “g, f, h, f, h, f, h”

<table>
<thead>
<tr>
<th>code of f()</th>
<th>code of g()</th>
</tr>
</thead>
<tbody>
<tr>
<td>code of h()</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>code of f()</th>
<th>code of h()</th>
</tr>
</thead>
<tbody>
<tr>
<td>code of g()</td>
<td></td>
</tr>
</tbody>
</table>

6 cache misses

\[ g, f, h, f, h, f, h \]

2 cache misses
Data Layout Optimization

- Change the variable declaration order

```
struct S {
 int x1;
 int x2[200];
 int x3;
} obj[100];
for(...) {
 ... = obj[i].x1 + obj[i].x3;
}
```

```
struct S {
 int x1;
 int x3;
 int x2[200];
} obj[100];
for(...) {
 ... = obj[i].x1 + obj[i].x3;
}
```

- Improved spatial locality
  - Now x1 and x3 likely reside in same cache line
  - Access to x3 will always hit in the cache
Data Layout Optimization

- Change AOS (array of structs) to SOA (struct of arrays)

  ```c
 struct S {
 int x1;
 int x2;
 } obj[100];
 for(...) {
 ... = obj[i].x1 * 2;
 }
 for(...) {
 ... = obj[i].x2 * 2;
 }

 struct S {
 int x1[100];
 int x2[100];
 } obj;
 for(...) {
 ... = obj.x1[i] * 2;
 }
 for(...) {
 ... = obj.x2[i] * 2;
 }
  ```

- Improved spatial locality for x1 and x2
- More efficient vectorization (no need to gather/scatter)
  - Gather: Load data from dispersed locations into vector unit
  - Scatter: Store data from dispersed locations into vector unit
Code-Related Optimizations
Code-Related Optimizations

- Modifying code  e.g. strength reduction
  \[ A = 2a; \quad \equiv \quad A = a \ll 1; \]

- Deleting code  e.g. dead code elimination
  \[ A = 2; \quad A = a; \quad \equiv \quad A = a; \]

- Moving code  e.g. code motion
  \[ A = x \times y; \quad B = A + 1; \quad C = y; \quad \equiv \quad A = x \times y; \quad C = y; \quad B = A + 1; \]

- Inserting code  e.g. data prefetching
  \[
  \text{while (p!=NULL)} \{ \quad \ldots \quad \text{p=p->next;} \quad \} \\
  \equiv \\
  \text{while (p!=NULL)} \{ \quad \text{prefetch(p->next);} \quad \ldots \quad \text{p=p->next;} \quad \} 
  \]
Optimization Categories

- Optimize at what representation level?
  - Source code level
  - IR level
  - Machine code level

- Optimize for specific machine?
  - Machine independent — typically at IR or source level
  - Machine dependent — typically at machine code level

- Optimize across control flow?
  - Local optimization — scope within straight line code
  - Global optimization — scope across control structures

- Optimize across procedures?
  - Intra-procedural — scope within individual procedure
  - Inter-procedural — scope across different procedures
    (Analyze callee to optimize caller and vice versa)
Local Optimizations
Local Optimizations

- Optimizations where the scope includes no control flow
  - Limited in scope but can still do useful things

- **Strength Reduction**
  - The idea is to replace expensive operations (multiplication, division) by less expensive operations (add, sub, shift, mov)
  - Some are redundant and thus can be deleted
    - e.g. \( x = x + 0; \ y = y \times 1; \)
  - Some can be simplified
    - e.g. \( x = x \times 0; \ y = y \times 8; \)
    - can be replaced by \( x = 0; \ y = y \ll 3; \)
  - Is also machine-dependent since it uses knowledge about the underlying machine (e.g. multiplication is expensive)
More Local Optimizations

Constant folding

- Operations on constants can be computed at compile time
- In general, if \( x = y \text{ op } z \) and \( y \) and \( z \) are constants then compute at compile time and replace

Example:

```c
#define LEN 100
x = 2 * LEN;
if (LEN < 0) print(”error”);
```

Can be transformed to ...

```c
x = 200;
if (false) print(”error”);
```

- Is machine-independent since it is beneficial regardless of machine
Global Optimizations and Control Flow Analysis
Global Optimizations and Control Flow

- Global optimization include more powerful optimizations
  - Can go across control structures (but not calls)
  - In effect, scope of optimization is one function
    (Not global as in entire program as the name implies)
  - E.g. Global Constant Propagation (GCP):
    - Replace variables with constants if value is known
      \[ X = 7; \]
      \[ \ldots \]
      \[ Y = X + 3; // \text{Can be replaced by } Y = 10; \]
    - Needs knowledge of control flow
      (Whether evaluation at point A happens before point B)

- Global optimization requires control flow analysis
  - Control flow analysis: Compiler analysis that determines
    flow of control during execution of a function
  - Constructs a control flow graph that describes the flow
Basic Block

- A **basic block** is a maximal sequence of instructions that
  - Except the first instruction, there are no other labels;
  - Except the last instruction, there are no jumps;

- Therefore,
  - Can only jump into the beginning of a block
  - Can only jump out at the end of a block

- Are units of control flow that cannot be divided further
  - All instructions in basic block execute or none at all
A control flow graph is a directed graph in which:

- Nodes are basic blocks
- Edges represent the flow of execution
  - Control statements such as if-then-else, while-loop, for-loop introduce control flow edges

CFG is widely used to represent a program.

CFG is widely used for program analysis, especially for global analysis/optimization.
Example

L1; t:= 2 * x;
   w:= t + y;
   if (w<0) goto L3
L2: ...
...
L3: w:= -w
...
Construction of CFG

- **Step 1:** partition code into basic blocks
  - Identify **leader** instructions that are
    - the first instruction of a program, or
    - target instructions of jump instructions, or
    - instructions immediately following jump instructions
  - A basic block consists of a leader instruction and subsequent instructions before the next leader

- **Step 2:** add an edge between basic blocks B1 and B2 if
  - there exist a jump from B1 to B2, or
  - B2 follows B1, and B1 does not end with unconditional jump
    - B1 ends with a conditional jump
    - B1 ends with a non-jump instruction (B2 is a target of a jump)
Example

01. A=4
02. T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt
Example

01. A=4
02. T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt
Global Optimizations

- Extend optimizations to flow of control, i.e. CFG

```
X := 3;
if (B > 0)
 Y := Z + W;
Y := 0;
A := 2 * X;

X := 3;
if (B > 0)
 Y := Z + W;
Y := 0;
A := 2 * 3;
```

- How do we know it is OK to globally propagate constants?
Correctness

In particular, there are situations that prohibit this optimization

To replace x by a constant C correctly, we must know

- Along all paths, the last assignment to X is “X:=C”
- All paths often include branches an even loops
  - Usually it is not trivial
Many compiler optimizations depend on knowing some property X at a particular point in program execution. Need to prove at that point property X holds along all paths. This ensures correctness by being conservative. If unsure, don’t do the optimization. While losing optimization opportunities, guarantees correctness. Examples include Global Constant Propagation (GCP): X = 7; ... Y = X + 3; // Replace by Y = 10, if X didn’t change. This involves data flow and control flow.
Optimizations Need to be Conservative

Many compiler optimizations depend on knowing some property $X$ at a particular point in program execution.

- Need to prove at that point property $X$ holds along all paths.
- Need to be **conservative** to ensure correctness.
  - An optimization is enabled only when $X$ is definitely true.
  - If not sure if it is true or not, it is safe to say don’t know.
  - If you don’t know, you don’t do the optimization.
  - May lose opt. opportunities but guarantees correctness.

E.g. Global Constant Propagation (GCP):

```
X = 7;
...
Y = X + 3; // Replace by Y = 10, if X didn’t change
```

Needs knowledge of data flow, as well as control flow (Whether data flow is interrupted between points A and B).
Many compiler optimizations depend on knowing some property $X$ at a particular point in program execution:

- Need to prove at that point property $X$ holds along all paths.
- Need to be conservative to ensure correctness.
  - An optimization is enabled only when $X$ is definitely true.
  - If not sure if it is true or not, it is safe to say don’t know.
  - If you don’t know, you don’t do the optimization.
  - May lose opt. opportunities but guarantees correctness.

Property $X$ often involves data flow of program:

- E.g. Global Constant Propagation (GCP):
  
  ```
 X = 7;
 ...
 Y = X + 3; // Replace by Y = 10, if X didn’t change
  ```
  - Needs knowledge of data flow, as well as control flow.
  - (Whether data flow is interrupted between points A and B.)
Global Optimizations and Data Flow Analysis
Dataflow Analysis Framework

- **Dataflow analysis**: Compiler analysis that determines what values get propagated from point A to point B
  - Requires CFG since values flow through control flow edges
Dataflow Analysis Framework

Dataflow analysis: Compiler analysis that determines what values get propagated from point A to point B
- Requires CFG since values flow through control flow edges

Dataflow analysis framework: Framework for dataflow analysis that guarantees optimizations are conservative
- Defined by: \( \{ D, V, \wedge, F: V \rightarrow V \} \)
- \( D \): Direction of propagation (forwards or backwards)
- \( V \): Set of values (depends on analyzed property)
  - Value for GCP: set of variables with constant values
- \( \wedge \): Meet operator \( (V \wedge V \rightarrow V) \)
  - Defines behavior when values meet at control flow merges
- \( F \): Transfer function \( F: V \rightarrow V \)
  - Defines what happens to value within a basic block
Dataflow Analysis Framework

- **Dataflow analysis**: Compiler analysis that determines what values get propagated from point A to point B
  - Requires CFG since values flow through control flow edges

- **Dataflow analysis framework**: Framework for dataflow analysis that guarantees optimizations are **conservative**
  - Defined by: \{D, V, ∧, F: V → V \}
  - D: Direction of propagation (forwards or backwards)
  - V: Set of values (depends on analyzed property)
    - Value for GCP: set of variables with constant values
  - ∧: Meet operator (V ∧ V → V)
    - Defines behavior when values meet at control flow merges
  - F: Transfer function F: V → V
    - Defines what happens to value within a basic block

- **Goal**: To assign V for every point in program
  → aids optimization
Global Constant Propagation (GCP)

Rather than bore you with math, let’s learn by example: global constant propagation (GCP)

What is Global Constant Propagation?
- At compile time, if the value of a variable is a constant, replace the variable with the constant
- “Global” means we substitute across basic blocks and control flow
- At compile time, we don’t know which path is taken
Global Constant Propagation (GCP)

- Rather than bore you with math, let’s learn by example: **global constant propagation (GCP)**

- **What is Global Constant Propagation?**
  - At compile time, if the value of a variable is a constant, replace the variable with the constant
  - “Global” means we substitute across basic blocks and control flow
  - At compile time, we don’t know which path is taken

- Compiler can apply a dataflow analysis framework to the problem to ensure conservative optimization
  - What is $D$, $V$, $\land$, $F: V \rightarrow V$ in this context?
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are there values at the given point?
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are there values at the given point?
- A given variable can be in one of following states:
  - \( x=1, x=2, \ldots \) // defined a constant
  - \( x=* \) // not defined yet
  - \( x=# \) // don’t know (not provably constant)
What is V?

- Definition: Set of values in property under analysis
- Property for GCP:
  - What are the variables with constant values?
  - And what are there values at the given point?
- A given variable can be in one of following states:
  - \( x=1, x=2, \ldots \) // defined a constant
  - \( x=* \) // not defined yet
  - \( x=# \) // don’t know (not provably constant)
- \( V \) for GCP: Set of values where each value is the set of variables and their respective states.
- Examples of values in \( V \): \( \{x=*, y=10, z=#\}, \{x=1, y=#, z=5\} \)
- Goal for GCP is to assign a value to each point in program
What is $\wedge$?

- $\wedge$: Meet operator ($V \wedge V \rightarrow V$)
  - Defines behavior when values meet at control flow merges
  - Given
    - $V_{in}(B)$ — value at the entry of basic block $B$
    - $V_{out}(B)$ — value at the exit of basic block $B$
  - $V_{in}(B) = \wedge V_{out}(P)$ for each $P$, where $P$ is a predecessor of $B$

Example of $\wedge$ operator for GCP:

$\{x=*, y=2, z=3\} \wedge \{x=1, y=2, z=10\} = \{x=1, y=2, z=#\}$

- Why is $z=#$ after the meet?
- Why is $x=1$ after the meet?

Relationship between values in $V$ given by a meet operator is called a **Semilattice**
Semilattice

Semilattice for GCP (when there is one variable):

\{x=\ast\} \\
\{\ldots\} \quad \{x=-1\} \quad \{x=0\} \quad \{x=1\} \quad \{\ldots\} \\
\{x=\#\}

\wedge \text{ operator is defined by the } \textbf{Greatest Lower Bound (GLB)} \text{ between two values}

\begin{align*}
\{x=\ast\} \wedge \{x=1\} &= \{x=1\} \\
\{x=0\} \wedge \{x=1\} &= \{x=\#\}
\end{align*}

\text{Downward direction is always the conservative choice}

\text{In effect, GLB is the least } \textbf{conservative} \text{ but } \textbf{correct} \text{ choice}

\text{Semilattice essentially defines what meet operator means}
In a semilattice, there are two special values: $\top$ and $\bot$.
In a semilattice, there are two special values: \( \top \) and \( \bot \).

\( \top \): Called **Top Value**
- Initial value when analysis begins
- For GCP: \( \{x=*, y=*, z=*\} \)
- Value is refined in the course of analysis
In a semilattice, there are two special values: \( \top \) and \( \bot \).

- \( \top \): Called **Top Value**
  - Initial value when analysis begins
  - For GCP: \{\( x=\ast \), \( y=\ast \), \( z=\ast \)\}
  - Value is refined in the course of analysis

- \( \bot \): Called **Bottom Value**
  - Value which can be refined no further
  - For GCP: \{\( x=\# \), \( y=\# \), \( z=\# \)\}
  - Meaning: none of the variables are provably constant

Analysis iteratively refines values until they stabilize somewhere between \( \top \) and \( \bot \).
What is $F$?

- **$F$: Transfer function ($F: V \rightarrow V$)**
  - Defines what happens to value within a basic block
  - Given
    - $V_{in}(B)$ — value at the entry of basic block $B$
    - $V_{out}(B)$ — value at the exit of basic block $B$
  - $V_{out}(B) = F(V_{in}(B))$

- **$F$ for GCP:**
  $$V_{out}(B) = (V_{in}(B) - DEF_{v}(B)) \cup DEF_{c}(B)$$

  where $DEF_{v}(B)$ contains variable definitions in $B$
  $DEF_{c}(B)$ contains constant definitions in $B$

- Easier to reason about if you treat each individual statement as a basic block
There are two modes of propagation: \textbf{F} and \textcopyright{∧}.

- **Function \textbf{F}**— propagates values through basic blocks
  - Variables in \( \text{DEF}_v \) are set to \#.
  - Variables in \( \text{DEF}_c \) are set to constant value.

- **\textcopyright{∧} operator**— propagates values through CFG edges
  - Merges values from multiple predecessor blocks.
What is D?

- **D**: Direction of propagation (forwards or backwards)

Forward Analysis

Backward Analysis
What is D?

- Values are propagated forward: **Forward Analysis**
- Values are propagated backward: **Backward Analysis**
- GCP is an example of a Forward Analysis
  - Starting from a constant definition, the ‘constantness’ of a variable propagates forward through CFG
- We will see an example of Backward Analysis soon
In this example, constants can be propagated to $X+1$, $2X$.
In this example, constants can be propagated to \( X+1 \), \( 2*X \)
In this example, constants can be propagated to $X+1$, $2*X$.
In this example, constants can be propagated to $X+1$, $2*X$
In this example, constants can be propagated to \(X+1, 2*X\)
In this example, constants can be propagated to $X+1$, $2X$. 

```
X:=3;
if (B>0)
Y:=Z+W;
X:=4;
Y:=0;
X:=X+1
A:=2*X;
```
Example GCP without Loop

In this example, constants can be propagated to $X+1$, $2X$
In this example, constants can be propagated to $X+1$, $2X$
In this example, loop prevents any constant propagation

```
X := 3;
if (B > 0)
 Y := Z + W;
 X := 4;
Y := 0;
X := X + 1
A := 2 * X;
```
In this example, loop prevents any constant propagation
In this example, loop prevents any constant propagation

\[ X = * \]
\[ X = 3 \]
\[ X := 3; \]
\[ \text{if } (B > 0) \]
\[ Y := Z + W; \]
\[ X := 4; \]
\[ Y := 0; \]
\[ X := X + 1 \]
\[ A := 2 \times X; \]
In this example, loop prevents any constant propagation.

```plaintext
X := 3;
if (B > 0)
Y := Z + W;
X := 4;
Y := 0;
X := X + 1
A := 2 * X;
```

NOT SO FAST!
In this example, loop prevents any constant propagation.

```
X:=3;
if (B>0)
 Y:=Z+W;
X:=4;
Y:=0;
X:=X+1
```

```
A:=2*X;
X:=X+1
```
In this example, loop prevents any constant propagation.
Forward Analysis Algorithm

- Pseudocode for Forward Analysis

\[
\text{for (each basic block } B \text{) } V_{out}(B) = \top; \\
W = \{\text{all basic blocks}\}; \\
\text{while } (W \neq \emptyset) \{ \\
\quad B = \text{choose basic block from } W; \\
\quad V_{in}(B) = \bigwedge_{P \text{ is a predecessor of } B} V_{out}(P) \\
\quad V_{out}(B) = F(V_{in}(B)) \\
\quad \text{if } (V_{out}(B) \text{ is changed}) \ W = W \cup \{B\text{'s successors}\} \\
\}\n\]

- \(\bigwedge\) and \(F\) defined differently for each type of analysis

- Will it eventually stop?
  - If there are loops, we may go through the loop many times
  - Is there a possibility of an infinite loop?

- Will it give me an accurate solution?
Termination Problem

- Existence of \( \perp \) value ensures termination
  - Values start from \( \top \)
  - Values can only go down in the semilattice
  - Value for single variable can change at most twice
    ... from * to C, and from C to #

- Computational complexity (\( V = \text{vars}, N = \text{nodes} \))
  - Each node can only change value \( 2 \times V \) times
    (Twice for each variable)
  - There are N nodes in the CFG
  - Maximal complexity: \( O(2 \times V \times N) = O(V \times N) \)
  - Practical complexity: \( O(N) \)
    - With depth-first traversal of nodes in \( W \),
    Nodes in straight-line code change only once
    Nodes in loops change at most twice
    (Loops always converge on second traversal, as we saw)
Accuracy Problem

- A few different types of solutions:
  - IDEAL: Meet of all possible paths \( F_P \) to this point
    \[
    \text{IDEAL}(B) = \land_{P \text{ is possible path from ENTRY to } B} F_P(V_{ENTRY})
    \]
  - MOP (Meet-Over-Paths): Meet of all paths in CFG
    \[
    \text{MOP}(B) = \land_{P \text{ is path in } \text{CFG} \text{ from ENTRY to } B} F_P(V_{ENTRY})
    \]
  - MFP (Maximum Fixed Point): given iterative solution

- MFP \( \leq \) MOP \( \leq \) IDEAL (in semilattice)
  - MOP \( \leq \) IDEAL: Why?
    - Paths in CFG is a superset of all possible paths
    - \( MOP = \text{IDEAL} \land V_{\text{never taken paths}} \leq \text{IDEAL} \) (since GLB)
  - MFP \( \leq \) MOP: Why?
    - MFP stops only when fixed point is reached:
      Covers all paths in MOP, even for limitless iterations
    - For GCP: sometimes MFP < MOP (next slide)

- MFP is correct but not maximal (in short conservative)
When is \( \text{MFP} < \text{MOP} \)?

Assume \( V_{\text{ENTRY}} \equiv \{ A = *, B = *, C = * \} \):

- \( P_1: A=1; B=2; \)
- \( P_2: A=2; B=1; \)
- \( B: C=A+B; \)

\( \text{MOP} \equiv F_B(F_{P_1}(V_{\text{ENTRY}})) \land F_B(F_{P_2}(V_{\text{ENTRY}})) \)
\[ \equiv \{ A = 1, B = 2, C = 3 \} \land \equiv \{ A = 2, B = 1, C = 3 \} \]
\[ \equiv \{ A = \#, B = \#, C = 3 \} \]

\( \text{MFP} \equiv F_B(F_{P_1}(V_{\text{ENTRY}}) \land F_{P_2}(V_{\text{ENTRY}})) \)
\[ \equiv F_B(\{ A = \#, B = \#, C = * \}) \equiv \{ A = \#, B = \#, C = \# \} \]

Refer to Chapter 9.3 in textbook
Once constants have been globally propagated, we would like to eliminate the dead code.

\[
x := 3; \\
\text{if } (b > 0) \\
y := z + w; \\
y := 0; \\
z := 2 \times x;
\]
Once constants have been globally propagated, we would like to eliminate the dead code

```
x:=3;
if (b>0)
 y:=z+w;
 y:=0;
z:=2*3;
```
Once constants have been globally propagated, we would like to eliminate the dead code

\[
\begin{align*}
x &:= 3; \\
\text{if } (b > 0) & \\
y &:= z + w; \\
y &:= 0; \\
z &:= 2 \times 3;
\end{align*}
\]
A **dead statement** calculates a value that is not used later.

Otherwise, it is a **live statement**

In the example, the 1st statement is dead, the 2nd statement is live.
Global Liveness Analysis (GLA)

A variable $X$ is live at statement $S$ if
- There exists a statement $S_2$ after $S$ that uses $X$
- There is a path from $S$ to $S_2$
- There is no intervening assignment to $X$ between $S$ and $S_2$
Global Liveness Analysis (GLA)

- A variable X is live at statement S if:
  - There exists a statement S2 after S that uses X
  - There is a path from S to S2
  - There is no intervening assignment to X between S and S2

Again a dataflow analysis framework can be applied
- What is $D, V, \land, F: V \rightarrow V$ in this context?

What is $D$?
- Liveness Analysis is a Backward Analysis
  - Starting from a use, the ‘liveness’ of a variable propagates backward through CFG
- Changes direction of $\land$ operator and transfer function
Forward and Backward Analysis Again

Forward Analysis

Backward Analysis
What is \( V \)?

- Definition: Set of values in property under analysis
  - \( V \) for GLA: Each value is a set of live variables
  - Example values: \( \{x, y, z\}, \{y\} \)

- \( \top \): initial value at the beginning
  - \( \top \) for GLA = \( \{\} \)
  - Start with assumption that no variables are live

- \( \bot \): the don’t know value
  - \( \bot \) for GLA = \( \{\text{all variables in function}\} \)
  - Meaning: none of the variables are provably dead
What is $\land$?

$\land$: Meet operator ($V \land V \rightarrow V$) for backward analysis

- Defines behavior when values meet at control divergence
- Given
  - $V_{in}(B)$ — value at the entry of basic block $B$
  - $V_{out}(B)$ — value at the exit of basic block $B$

  - $V_{out}(B) = \land V_{in}(S)$ for each $S$, where $S$ is successor of $B$
  - Note the reversal in direction! GLA is a backward analysis.

$\land$ operator for GLA:

- Meet operator is a simple union $\cup$
- Example: $\{x, y\} \land \{y, z\} = \{x, y\} \cup \{y, z\} = \{x, y, z\}$
- Union operation monotonically increases set, hence values form a semilattice from $\top$ to $\bot$
What is F?

- **F**: Transfer function \( F: V \rightarrow V \) for backward analysis
- Defines what happens to value within a basic block
- Given
  - \( V_{in}(B) \) — value at the entry of basic block \( B \)
  - \( V_{out}(B) \) — value at the exit of basic block \( B \)
- \( V_{in}(B) = F( V_{out}(B) ) \)
- Again note the reversal in direction!

F for GLA:
\[
V_{in}(B) = ( V_{out}(B) - DEF(B) ) \cup USE(B)
\]
where \( DEF(B) \) contains variable definitions in \( B \)
\( USE(B) \) contains variable uses in \( B \)

- Easier to reason about if you treat each individual statement as a basic block
Liveness Example

\[ b = b + c \]

\[ a = d + 1; \]
Liveness Example

\[ b = b + c \]
\[ a = d + 1; \]
Liveness Example

\[
\begin{align*}
&\text{V}_{\text{in}}(B1) \\
&\text{V}_{\text{in}}(B2) \\
&b = b + c \\
&\text{V}_{\text{out}}(B2) \\
&\text{V}_{\text{out}}(B3) = \{a, b\} \\
&\text{V}_{\text{out}}(B3) \\
&\text{V}_{\text{in}}(B1) \\
&a = d + 1;
\end{align*}
\]
Liveness Example

```
b=b+c
a=d+1;
```

Two sets:
- DEF={a}
- USE={d}
Liveness Example

Two sets:
DEF={a}
USE={d}
Liveness Example

\[ b = b + c \]
\[ a = d + 1; \]

Two sets:
- DEF = \{a\}
- USE = \{d\}

\[ V_{\text{in}}(B1) \]
\[ V_{\text{out}}(B1) \]

\[ V_{\text{in}}(B2) = \{b, c\} \]
\[ V_{\text{out}}(B2) \]

\[ V_{\text{in}}(B3) = \{b, d\} \]
\[ V_{\text{out}}(B3) = \{a, b\} \]
Liveness Example

- $b = b + c$
- $a = d + 1$

**$V_{in}(B1)$:** $\{b, c, d\}$

**$V_{in}(B2)$:** $\{b, c\}$

**$V_{out}(B2)$**

**$V_{in}(B3)$:** $\{b, d\}$

**$V_{out}(B3)$:** $\{a, b\}$

**Two sets:**
- $DEF = \{a\}$
- $USE = \{d\}$
Backward Analysis Algorithm

- Pseudocode for Backward Analysis
  - for (each basic block B) $V_{in}(B) = \top$;
  - $W = \{\text{all basic blocks}\}$;
  - while ($W \neq \emptyset$) {
    - $B =$ choose basic block from $W$;
    - $V_{out}(B) = \bigwedge S \text{ is a successor of } B V_{in}(S)$
    - $V_{in}(B) = F(V_{out}(B))$
    - if ($V_{in}(B)$ is changed) $W = W \cup \{B\text{'s predecessors}\}$
  }

- Note the reversal in direction compared to forward analysis

- Will backward analysis for GLA eventually stop?
  - Again existence of $\bot$ value ensures termination
  - Node value can change $V$ times, where $V$ is number of vars
  - Maximal complexity: $O(V \times N)$
  - Practical complexity: $O(N)$, with in-depth traversal
Is GLA Accurate?

- For GLA, $MFP = MOP \leq IDEAL$
- $MOP \leq IDEAL$: CFG is a superset of all paths (like GCP)
- $MFP = MOP$: Why?
  - MFP emulates all paths in MOP (like GCP)
  - Unlike GCP, transfer function of GLA is **distributive**
    
    
    $$MOP \equiv F_B(F_{P1}(V)) \land F_B(F_{P2}(V))$$
    
    $$\equiv F_B(F_{P1}(V) \land F_{P2}(V)) \equiv MFP$$

- If all paths in CFG can be taken, GLA is maximal
- Refer to Chapter 9.3 in textbook for discussion on distributive transfer functions
Comparison of GCP and GLA

D: Direction of propagation
- GCP: Forward
- GLA: Backward

V: Set of values propagated
- GCP: Whether each variable is constant, and if so the value
- GLA: Set of live variables

∧: Meet operator
- GCP: Defined by semilattice (Top $\rightarrow$ Constant $\rightarrow$ Bottom)
- GLA: Simply the set union operator

F: Transfer function
- GCP: Subtract variable definitions, add constant definitions
- GLA: Add variable uses, subtract variable definitions
Global dead code elimination is based on global liveness analysis (GLA)

- Dead code detection
  - A statement $x = \ldots$ is dead code if $x$ is dead after this statement
  - Dead statement can be deleted from the program

Global register allocation is also based on GLA

- Live variables should be placed in registers
- Registers holding dead variables can be reused
Register Allocation
What is Register Allocation?

- Process of assigning (a large number of) variables to (a small number of) CPU registers

- Registers are fast
  - access to memory: 100s of cycles
  - access to cache: a few to 10s of cycles
  - access to registers: 1 cycle

- But registers are limited in number
  - x86: 8 regs, MIPS: 32 regs, ARM: 32 regs ...

- Goals of register allocation:
  - Keep frequently accessed variables in registers
  - Keep variables in registers only as long as they are live
Local Register Allocation

Allocate registers basic block by basic block
- Makes allocation decisions on a per-block basis
- Hence the prefix ‘local’
- Uses results of Global Liveness Analysis

Requires only a single scan through each basic block
- Keeps track of two tables:
  - Register table: which regs are currently allocated and where
  - Address table: location(s) where each variable is stored
    (locations can be: register, stack memory, global memory)
- For every use of variable:
  - If variable is already in reg, no action
  - If not, allocate reg to variable from available regs
  - If no available regs, select reg for displacement
Local Register Allocation

Which register should be displaced?
- Register whose value is no longer live (given by GLA)
- Register whose value has a copy in another location
- These registers can be safely recycled
- Otherwise the register needs to be spilled

Spill: storing variable in its own memory location
- Own memory location can be in
  - Stack memory: local variables, temporary variables
  - Global memory: global variables
- Generate store instruction to memory on assignment
- Generate load instruction from memory on use

At the end of basic block all live registers are spilled
- Makes all registers available for next basic block allocation
  (Gives allocator clean slate for next basic block)
- Can be source of inefficiency due to unnecessary spills
  → Addressed by Global Register Allocation
Global Register Allocation

- Allocates registers across basic blocks
- Relies on Global Liveness Analysis just like local register allocation
- Three popular register allocation algorithms
  1. Graph coloring allocator
  2. Linear scan allocator
  3. ILP (Integer Linear Programming) allocator
Algorithm steps:
1. Identify live range interference using GLA
2. Build register interference graph
3. Attempt K-coloring of the graph
   - K is the number of available registers
4. If none found, modify the program, rebuild graph until K-coloring can be obtained
   - Insert spill code to the program
**Live Range Interference**

- **Live Range**: Set of program points where a variable is live.
  - Two live ranges interfere if there is an overlap.
  - Vars with interfering ranges cannot reside in the same register.

```
x := ...
y := ...
:= ...
x := ...
y := ...
```
Live Range Interference

**Live Range**: Set of program points where a variable is live

- Two live ranges interfere if there is an overlap
- Vars with interfering ranges cannot reside in same register

\[
x := ... \quad \text{x is live}
\]
\[
y := ... \quad \text{y is live}
\]

\[
x := ... \\
y := ...; \quad y := ...x; \\
\]

\[
:= y
\]
**Live Range Interference**

**Live Range**: Set of program points where a variable is live

- Two live ranges interfere if there is an overlap
- Vars with interfering ranges cannot reside in same register

We annotate each program point (between two statements) to explicitly show the interference.
Example of GLA and interfering live ranges

```
a := b + c;
d := -a;
e := d + f;
f := 2 * e;
b := f + c;
b := d + e;
e := e - 1;
```
Register Interference Graph

- Construct **Register Interference Graph (RIG)** such that
  - Each node represents a variable
  - An edge between two nodes $V_1$ and $V_2$ represents an interference in live ranges

- Based on RIG,
  - Two variables can be allocated in the same register if there is no edge between them
  - Otherwise, they cannot be allocated in the same register
In the RIG for our example:

- b, c cannot be in the same register
- a, b, d can be in the same register
Graph coloring is a theoretical problem where ...
- A coloring of a graph is an assignment of colors to nodes such that nodes connected by an edge have different colors
- A graph is k-colorable if it has a coloring with k colors

Problem of register allocation in RIG maps to graph coloring problem
- Instead of assigning k-colors, we need to assign k registers
- K is the number of available machine registers
- If the graph is k-colorable, we have a register assignment that uses no more than k registers
This is an coloring of our example RIG using 4 colors

There is no solution with less than 4 colors
Using the coloring result, map it back to the code

a:=b+c;
d:=-a;
e:=d+f;

f:=2*e;

b:=d+e;
e:=e-1;

b:=f+c;
Using the coloring result, map it back to the code

\[ a \rightarrow R1 \]
\[ b \rightarrow R2 \]
\[ c \rightarrow R3 \]
\[ d \rightarrow R2 \]
\[ e \rightarrow R1 \]
\[ f \rightarrow R4 \]

\[ f := 2 \times e; \]
\[ b := d + e; \]
\[ e := e - 1; \]
\[ b := f + c; \]
\[ R1 := R2 + R3; \]
\[ R2 := -R1; \]
\[ R1 := R2 + R4; \]
After Register Allocation

Using the coloring result, map it back to the code

\begin{align*}
    a &\rightarrow R1 \\
    b &\rightarrow R2 \\
    c &\rightarrow R3 \\
    d &\rightarrow R2 \\
    e &\rightarrow R1 \\
    f &\rightarrow R4
\end{align*}

\begin{align*}
    b := d + e; \\
    e := e - 1; \\
    b := f + c; \\
    R1 := R2 + R3; \\
    R2 := -R1; \\
    R1 := R2 + R4; \\
    R4 := 2 * R1;
\end{align*}
Using the coloring result, map it back to the code:

- \( a \rightarrow R1 \)
- \( b \rightarrow R2 \)
- \( c \rightarrow R3 \)
- \( d \rightarrow R2 \)
- \( e \rightarrow R1 \)
- \( f \rightarrow R4 \)

\[
\begin{align*}
R1 &= R2 + R3; \\
R2 &= -R1; \\
R1 &= R2 + R4; \\
R4 &= 2 \times R1; \\
R2 &= R2 + R1; \\
R1 &= R1 - 1; \\
b &= f + c;
\end{align*}
\]
After Register Allocation

Using the coloring result, map it back to the code

\[
R1 := R2 + R3;  \\
R2 := -R1;  \\
R1 := R2 + R4;  \\
R4 := 2*R1;  \\
R2 := R4 + R3;  \\
R2 := R2 + R1;  \\
R1 := R1 - 1;  \\
R2 := R2 + R4;  \\
R1 := R1 - 1;
\]
How is Graph Coloring Performed?

For graph G and k>2, determining whether G is k-colorable is NP complete

- Problem of k-register allocation is NP complete
- In practice: use heuristic polynomial algorithm that gives close to optimal allocations most of the time
- Chaitin’s graph coloring is a popular heuristic algorithm
  - Most backends of GCC use Chaitin’s algorithm by default

What if k-register allocation does not exist?

- Spill a register to memory to reduce RIG and try again
Observation: for a $k$-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Observation: for a $k$-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what...
Observation: for a $k$-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Observation: for a $k$-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Observation: for a $k$-coloring problem, a node with $k-1$ neighbors can always be colored, no matter what
Chaitin’s Graph Coloring

**Corollary**: Given graph $G$ for a $k$-coloring problem
- Let $G'$ be the graph after removing a node with fewer than $k$ neighbors
- If $G'$ can be $k$-colored then $G$ can be $k$-colored

**Insight**: Solving for $G'$ is easier than solving for $G$, so solve for $G'$ instead of $G$

**Algorithm**
- Phase 1: Repeat until there are no nodes left
  - Pick a node $V$ with fewer than $k$ neighbors
  - Put $V$ on a stack and remove it and its associated edges from the graph
- Phase 2: Assign colors to nodes on the stack in LIFO order
  - Pick a color that is different from its neighbors
  - Such a color is guaranteed to exist due to corollary (Analogous to coloring $G$ after adding removed node to $G'$)
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{\}$
Chaitin’s algorithm applied to our example where $k=4$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where k=4

Stack={a}
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d\}$
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d\}$
Chaitin’s algorithm applied to our example where $k=4$
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b\}$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c\}$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c\}$
Chaitin’s Graph Coloring Example

Chaitin’s algorithm applied to our example where k=4

Stack={a,d,b,c,e}
Chaitin’s algorithm applied to our example where $k=4$

Stack=$\{a,d,b,c,e\}$
Coloring Result

Starting assigning colors to f, e, b, c, d, a

Diagram showing a graph with nodes labeled f, e, b, c, d, a and colors R1, R2, R3, R4.
Is Chaitin’s Graph Coloring Optimal?

According to Chaitin’s algorithm:
Every node has 3 outgoing edges, thus it is not 3-colorable
Is Chaitin’s Graph Coloring Optimal?

- According to Chaitin’s algorithm: Every node has 3 outgoing edges, thus it is not 3-colorable.
- However, it is 3-colorable as you can see above.
- Chaitin’s algorithm is not optimal.
What if Coloring Fails?

- Spill the variable to memory
  - a spilled variable temporarily **lives** in memory
  - e.g. to color the previous graph using 3 colors
    - spill “f” into memory

```
\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (2,0) {b};
 \node (c) at (2,2) {c};
 \node (d) at (0,2) {d};
 \node (e) at (0,1) {e};
 \node (f) at (1,1) {f};
 \draw (a) -- (b) -- (c) -- (d) -- (e) -- (f) -- (a);
\end{tikzpicture}
\end{center}
```
What if Coloring Fails?

- Spill the variable to memory
  - a spilled variable temporarily **lives** in memory
  - e.g. to color the previous graph using 3 colors
    - spill “f” into memory
What if Coloring Fails?

- Spill the variable to memory
  - a spilled variable temporarily lives in memory
  - e.g. to color the previous graph using 3 colors
    - spill “f” into memory

Graph:
- Nodes: f, e, c, b, d
- Edges: f <-> e, e <-> c, c <-> d, d <-> b, b <-> f
What if Coloring Fails?

- Spill the variable to memory
  - a spilled variable temporarily lives in memory
  - e.g. to color the previous graph using 3 colors
    - spill “f” into memory
What if Coloring Fails?

- Spill the variable to memory
  - a spilled variable temporarily **lives** in memory
  - e.g. to color the previous graph using 3 colors
    - spill “f” into memory

![Graph Diagram]

- f
- e
- c
- d
On-line compilers need to generate binary code quickly
  ➢ Just-in-time compilation
  ➢ Interactive environments e.g. IDE

In these cases, it is beneficial to sacrifice code performance a bit for quicker compilation
  ➢ A faster allocation algorithm
  ➢ Not sacrificing too much in code quality

Proposed in following publication:
  ➢ Poletto, M., Sarkar, V., "Linear scan register allocation", in ACM Transactions on Programming Languages and Systems (TOPLAS), 1999
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each live interval

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
</table>

Scan order

Code
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each live interval

Diagram:
- Code layout with scan order
- Live intervals marked for allocation
- A and D may be allocated to the same register
Linear Scan Register Allocation

- Layout the code in a certain linear order
- Do a single scan to allocate register for each live interval

Allocate greedily at each numbered point in program

- A and D may be allocated to same register
**Live Interval**: Smallest interval of code containing all live ranges in the given linear code layout

- Live range of $a = \{B1, B3\}$, $b = \{B2, B4\}$
- If code layout is “B1,B3,B2,B4”, only 1 register is enough
  - Live interval of $a = \{B1, B3\}$, $b = \{B2, B4\}$
- If code layout is “B1,B2,B3,B4”, then need 2 registers
  - Live interval of $a = \{B1, B2, B3\}$, $b = \{B2, B3, B4\}$

```
B1
 a= ...

B2
 b= ...

B3
 ...=a

B4
 ...=b
```
Linear Scan Algorithm

- Linear scan RA consists of four steps
  - S1. Order all instructions in linear fashion
    - Order affects quality of allocation but not correctness
  - S2. Calculate the set of live intervals
    - Each variable is given a live interval
  - S3. Greedily allocate register to each interval in order
    - If a register is available then allocation is possible
    - If a register is not available then an already allocated register is chosen (register spill occurs)
  - S4. Rewrite the code according to the allocation
    - CPU registers replace temporary or program variables
    - Spill code is generated
Register Allocation Time Comparison

- Usage Counts, Linear Scan, and Graph Coloring shown
- Linear Scan allocation is always faster than Graph Coloring
ILP-based Register Allocation

- Idea and steps:
  1. Convert RA problem to an ILP problem
  2. Solve ILP problem using widely known ILP solvers
  3. Map the ILP solution back to register assignment

- Goal: find “optimal” allocation
  - Chaitin graph coloring is a heuristic algorithm
  - Optimal (NP-complete) graph coloring algorithms exist, but still use heuristics for spilling
  - ILP finds optimal allocation and placement of spill code

- Complexity restricts adoption by industrial compilers
  - Optimal ILP solution is NP-hard (similar to graph coloring)
  - ILP allocation is slow → does not scale to large programs
What is Integer Linear Programming (ILP)?

- Integer Linear Programming (ILP)
  - Variables: a, b
  - Constraints:
    - \(0 \leq a \leq 10\)
    - \(0 \leq b \leq 29\)
    - \(a + b \leq 36\)
  - Goal function
    - minimize \(f(a,b) = 3a + 4b\)

- It is trivial if a and b can take real values
- It is NP hard if a and b can only take integer values
How to Convert Register Allocation to ILP?

An example

(9) ...
(10) ... = b + a ;
(11) ...

- Want to know to which register b should be allocated i.e. load Rx, addr(b)

Convert to an ILP problem
- Assume there are four free registers R1, R2, R3, R4

S1: Define the variables in ILP

$V_{var(location)}^{R_i}$ — Whether var at location is allocated to Ri

$V_{b(10)}^{R_1}$, $V_{b(10)}^{R_2}$, $V_{b(10)}^{R_3}$, $V_{b(10)}^{R_4}$

Value of 0 — not allocate to that register at the place
Value of 1 — is allocated to that register at the place
Converting Register Allocation to ILP

**S2:** Define constraints. E.g. for code (10) ... = b + a,

- A register can hold at most one variable per place
  \[ V_{R1}^{b(10)} + V_{R1}^{a(10)} \leq 1, \quad V_{R2}^{b(10)} + V_{R2}^{a(10)} \leq 1, \ldots \]
- A variable is allocated to exactly one register per place
  \[ V_{R1}^{b(10)} + V_{R2}^{b(10)} + V_{R3}^{b(10)} + V_{R4}^{b(10)} = 1 \]
  \[ V_{R1}^{a(10)} + V_{R2}^{a(10)} + V_{R3}^{a(10)} + V_{R4}^{a(10)} = 1 \]
  and many more ...

**S3:** Define goal function

- To minimize cost of memory operations for spilling:
  \[ f_{cost} = \sum V_{v(loc)}^{stack} \times U_{v(loc)} \times \text{exec\_count}(loc) \times LOAD_{cost} + \ldots \]
  \[ V_{v(loc)}^{stack} \]: Whether \( v \) at \( loc \) is allocated to stack (spilled)
  \[ U_{v(loc)} \]: Whether variable \( v \) is used right after \( loc \)
  \[ \text{exec\_count}(loc) \]: Expected runtime execution count of \( loc \)
  \[ LOAD_{cost} \]: Cost of load instruction in given machine
Conclusion

- Good Register Allocation is crucial to code quality
  - Accesses to memory are costly, even with caches
  - Even with few program variables, intermediate values introduce many more temporary variables, adding to register pressure

- Different algorithms make different trade-offs between allocation time and code quality
Instruction Selection
Instruction Selection

- Instruction selection is the task to select appropriate machine instructions to implement the operations in the intermediate representation (IR).
  - Very important for CISC machines, and machines with special purpose instructions (MMX)
  - X86, ARM, DSP, ...

- There are many semantically equivalent instruction sequences
  - How to find the “minimal cost” sequence?
## Some Instruction Patterns

<table>
<thead>
<tr>
<th>Name</th>
<th>Effect</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>( d_i \leftarrow d_j + d_k )</td>
<td>( d + )</td>
</tr>
<tr>
<td>MUL</td>
<td>( d_i \leftarrow d_j \times d_k )</td>
<td>( d \times d )</td>
</tr>
<tr>
<td>SUB</td>
<td>( d_i \leftarrow d_j - d_k )</td>
<td>( d - )</td>
</tr>
<tr>
<td>DIV</td>
<td>( d_i \leftarrow d_j / d_k )</td>
<td>( d \div d )</td>
</tr>
<tr>
<td>ADDI</td>
<td>( d_i \leftarrow d_j + \text{const} )</td>
<td>( d + \text{CONST} )</td>
</tr>
<tr>
<td>SUBI</td>
<td>( d_i \leftarrow d_j - \text{const} )</td>
<td>( d \text{CONST} )</td>
</tr>
<tr>
<td>MOVEA</td>
<td>( d_j \leftarrow a_i )</td>
<td>( d a )</td>
</tr>
<tr>
<td>MOVED</td>
<td>( a_j \leftarrow d_i )</td>
<td>( a d )</td>
</tr>
<tr>
<td>LOAD</td>
<td>( d_i \leftarrow M[a_j + \text{const}] )</td>
<td>( d \text{MEM} \text{MEM} \text{CONST} )</td>
</tr>
<tr>
<td>STORE</td>
<td>( M[a_j + \text{const}] \leftarrow d_i )</td>
<td>( d \text{MEM} \text{MEM} \text{CONST} )</td>
</tr>
<tr>
<td>MOVEM</td>
<td>( M[a_j] \leftarrow M[a_i] )</td>
<td>( d \text{MEM} \text{MEM} )</td>
</tr>
</tbody>
</table>
A Parse Tree to be Tiled

MOVE

MEM [MEM [MEM [FP const] + temp_i] * const] + MEM [FP const]
A Parse Tree to be Tiled

```
MOVE
 | MEM | MEM |
 | + | + |
 | * | |
 | | FP |
 | | const |
 | MEM |
 | temp_i |
 | 2: load R, M[fp+a] |
 | const |
 | const |
```
A Parse Tree to be Tiled

```
MOVE
 MEM MEM
 +
 +
 *
FP const

1: const
2: load R, M[fp+a]
3: temp;i
```
A Parse Tree to be Tiled

1: const
2: load R, M[fp+a]
3: temp_
4: addi R2, R0+4

MOVE

MEM
  | +
  | |
MEM

MEM
  | *
  | |
FP
  |
const
A Parse Tree to be Tiled

1: const
2: load R, M[fp+a]
3: temp
4: addi R2, R0+4
5: mul R2, Ri × R2
A Parse Tree to be Tiled

1: const

2: load R, M[fp+a]

3: const

4: addi R2, R0+4

5: mul R2, Ri × R2

6: add R1, R1+R2

MOVE

MEM

MEM

FP

const

temp

const
A Parse Tree to be Tiled

1: M
2: load R, M[fp+a]
3: temp;
4: addi R2, R0+4
5: mul R2, Ri × R2
6: add R1, R1+R2
7: +

MEM MOVE MEM

FP const

const
A Parse Tree to be Tiled

```
MOVE

MEM

MEM

6: add R1, R1+R2

5: mul R2, Ri × R2

8: addi R2, fp+x

2: load R, M[fp+a]

temp;

3:

4: addi R2, R0+4

1:

FP

const

FP

const

```
A Parse Tree to be Tiled

1: const
2: load R, M[fp+a]
3: temp
4: addi R2, R0+4
5: mul R2, Ri × R2
6: add R1, R1+R2
7: temp
8: addi R2, fp+x
9: MoveMem M[R1], M[R2]

MEM

MOVE

MEM

FP

const

FP const

const

const
A Parse Tree to be Tiled

1: const
2: load R, M[fp+a]
3: temp
4: addi R2, R0+4
5: mul R2, Ri \times R2
6: add R1, R1+R2
7: const

MOVE

MEM

MEM

MEM

FP

const
A Parse Tree to be Tiled

1: const

2: load R, M[fp+a]

3: temp

4: addi R2, R0+4

5: mul R2, Ri \times R2

6: add R1, R1+R2

7: 

8: load R2, M[fp+x]

MOVE

MEM

MEM

MEM

FP

const

temp

const
A Parse Tree to be Tiled

1: \( \text{const} \)

2: load \( R, M[fp+a] \)

3: \( \text{addi} R2, R0+4 \)

4: \( \text{mul} R2, \text{const} \)

5: \( \text{mul} R2, \text{Ri} \times \text{R2} \)

6: \( \text{add} R1, R1+R2 \)

7: \( \text{load} R2, M[fp+x] \)

8: load \( R2, M[fp+x] \)

9: store \( M[R1+0], R2 \)

\[ \text{MEM} \quad \text{MEM} \]
The END !