Lexical Analysis
What is Lexical Analysis

- What do we want to do?
 Example:
  ```
  if (i==j)
      z = 0;
  else
      z = 1;
  ```

- The input is just a string of characters
  ```
  "if(i == j)\n  tz = 0;\ntelse\n  tz = 1;\n"
  ```

- Goal: partition input string into substrings
 where these substrings are tokens
What is a Token?

- Token: a "word" in language (smallest unit with meaning)
 - Categorized into classes according to its role in language
 - In English:
 - noun, verb, adjective, ...
 - In a programming language:
 - identifier, integer, keyword, whitespace, ...

- Token classes comprise distinct sets of strings
 - Identifier: strings of letters and digits, starting with a letter
 - Integer: a non-empty string of digits
 - Keyword: “else”, “if”, “while”, ...
 - Whitespace: a sequence of blanks, newlines, and tabs
What are Tokens For?

- Classify program substrings according to role
- Output of lexical analysis is a stream of tokens
- Tokens are input to the syntax analyzer (also called Parser)

 ➢ Parser relies on token classes to identify roles
 a keyword is treated differently than an identifier

- Hence, lexical analysis is also called tokenization
Designing a Lexical Analyzer

- **Step 1:**
 - Define a finite set of token classes
 - Describe all items of interest
 - Depends on language, design of parser
 -

      ```
      if(i == j)\n      t\n      tz = 0; \ntelse\n      tz = 1; \n      
      ```
 - identifier, integer, keyword, whitespace
 - should "==" be one token? or two tokens?

- **Step 2:**
 - Describe which string belongs to which token class
An implementation must do two things

1. Recognize the token class the substring belongs to
2. Return the value or lexeme of the token

A token is a tuple \((\text{class}, \text{lexeme})\)

```
if(i == j) \n\n\ntz = 0; \ntelse\n\ntz = 1; \n```

Result of lexical analysis:

- (keyword, \textit{if})
- (leftparen, ()
- (id, i)
- (equals, ==)
- (id, j)
- (rightparen, )
- (id, z)
- (assign, =)
- (int, 0)
- (semicolon, ;)
- (keyword, \textit{else})
- (id, z)
- (assign, =)
- (int, 1)
- (semicolon, ;)

The lexer usually discards “non-interesting” tokens that don’t contribute to parsing, e.g., whitespace, comments

If token classes are non-ambiguous, tokens can be recognized in a single left-to-right scan of input string

Problems can occur when classes are ambiguous
Ambiguous tokens in FORTRAN

- FORTRAN compilation rule: whitespace is insignificant
  - Motivated from the inaccuracy of card punching by operators

- Consider
  - DO 5I=1,25
  - DO 5I=1.25

- We have
  - The first: a loop iterates from 1 to 25 with step 5
  - The second: an assignment

- Reading left-to-right, cannot tell if DO5I is a variable or DO statement; Have to continue until "," or "." is reached.
The problem is not only limited to Fortran.

C++ template syntax

```
FOO<Bar>
```

C++ stream syntax

```
cin >> var
```

Now, the problem

```
FOO<Bar<Bazz>>
```

Is the “>>” a stream operator or just two consecutive brackets?
Lesson Learned

- Observations from examples:
  - “lookahead” or “lookbehind” may be required to decide among different choices of tokens
  - Extracting some tokens requires looking at the larger context or structure
  - Structure emerges only at parsing stage with parse tree
  - Hence, sometimes feedback from parser needed for lexing

- However, by and large, tokens do not overlap
  - Tokenizing can be done in one pass without parser feedback
  - Allows clean division between lexical and syntactic analyses
Specifying Tokens in a Language

- Token specification is part of language specification.
- All language specifications should be:
  - Formal, unambiguous, and easy to understand
  - Easy to implement efficiently in a compiler
- A token specification should define:
  - What token classes there are
  - What strings belong to which class
- Answer: use **Regular Expressions** to specify tokens
  - Simple yet powerful (able to express patterns)
  - Tokenizer implementation can be generated automatically from specification (using a translation tool)
  - Resulting implementation is provably efficient
- But first we need to take a detour and talk about languages
Languages

Definition

Let $\Sigma$ be a set of characters, a language over $\Sigma$ is a set of strings of the characters drawn from $\Sigma$. 
Examples of Languages

- Alphabet \( \sum = \) (set of) English characters
  Language \( L = \) (set of) English sentences

- Alphabet \( \sum = \) (set of) Digits, +, -
  Language \( L = \) (set of) Integer numbers

- Alphabet \( \sum = \) (set of) English characters
  Language \( L = \) (set of) Tokens in C

The set of tokens is also a language, just like English (!)

Languages are **subsets of all possible strings**

- Not all strings of English characters are sentences
- Not all sequences of digits and signs are integers
- Not all strings of English characters are tokens
Need a notation to specify strings in a particular language
  ➢ More complex languages need more complex notations

A simple notation is **regular expressions**
  ➢ Can express simple patterns (e.g. repeating sequences)
  ➢ Not powerful enough to express English (or even C)
  ➢ But powerful enough to express tokens such as identifiers

Languages that can be expressed using regular expressions are called **regular languages**

We will learn more complex languages and how to express them later in the lecture
Atomic Regular Expressions

- Smallest RE that cannot be broken down further
- Single character denotes a set of one string
  \('c' = \{ "c" \}\)

- **Epsilon** or $\epsilon$ character denotes a zero length string
  $\epsilon = \{ "" \}$

- Empty set is $\{ \}$ = $\phi$, not the same as $\epsilon$
  - $\text{size}(\phi) = 0$
  - $\text{size}(\epsilon) = 1$
  - $\text{length}(\epsilon) = 0$
**Compound Regular Expressions**

- **Union:** if $A$ and $B$ are REs, then
  $$A + B = \{ s \mid s \in A \text{ or } s \in B \}$$

- **Concatenation of sets/strings**
  $$A B = \{ ab \mid a \in A \text{ and } b \in B \}$$

- **Iteration (Kleene closure)**
  $$A^* = \bigcup_{i \geq 0} A^i$$
  where $A^i = A \ldots A$ ($i$ times)

  In particular
  $$A^* = \{ \varepsilon \} + A + AA + AAA + \ldots$$
  $$A^+ = A + AA + AAA + \ldots = A A^*$$
Regular Expressions

Definition

The regular expressions (REs) over $\sum$ are the total set of expressions that can be constructed using the following components:

- $\varepsilon$
- 'c' where $c \in \sum$
- $A + B$ where $A, B$ are RE over $\sum$
- $AB$ where $A, B$ are RE over $\sum$
- $A^*$ where $A$ is a RE over $\sum$
Regular Languages

- L(ε) = { “” }
- L(‘c’) = { “c” }
- L(A+B) = L(A) ∪ L(B)
- L(AB) = { ab | a ∈ L(A) and b ∈ L(B) }
- L(A*) = ∪_{i≥0} L(A)^i
RE Examples

Keyword: “else” or “if” or “while” or ...
Keyword: “else” or “if” or “while” or ...

- keyword = ‘else’ + ‘if’ + ‘while’ + ...
- ‘else’ abbreviates
  - ‘e’ (concatenate) ‘l’ (concatenate) ‘s’ (concatenate) ‘e’
Keyword: “else” or “if” or “while” or ...

- keyword = ‘else’ + ‘if’ + ‘while’ + ...
- ‘else’ abbreviates
  ‘e’ (concatenate) ‘l’ (concatenate) ‘s’ (concatenate) ‘e’
Keyword: “else” or “if” or “while” or ...

- keyword = ‘else’ + ‘if’ + ‘while’ + ...
- ‘else’ abbreviates
  ‘e’ (concatenate) ‘l’ (concatenate) ‘s’ (concatenate) ‘e’

Integer

- digit = ‘0’ + ‘1’ + ‘2’ + ‘3’ + ‘4’ + ‘5’ + ‘6’ + ‘7’ + ‘8’ + ‘9’
- integer = digit digit*
RE Examples

Keyword: “else” or “if” or “while” or ...
- keyword = ‘else’ + ‘if’ + ‘while’ + ...
- ‘else’ abbreviates
  ‘e’ (concatenate) ‘l’ (concatenate) ‘s’ (concatenate) ‘e’

Integer
- digit = ‘0’ + ‘1’ + ‘2’ + ‘3’ + ‘4’ + ‘5’ + ‘6’ + ‘7’ + ‘8’ + ‘9’
- integer = digit digit*

Q: is ‘000’ an integer?
RE Examples

Keyword: “else” or “if” or “while” or ...
- keyword = ‘else’ + ‘if’ + ‘while’ + ...
- ‘else’ abbreviates
  ‘e’ (concatenate) ‘l’ (concatenate) ‘s’ (concatenate) ‘e’

Integer
- digit = ‘0’ + ‘1’ + ‘2’ + ‘3’ + ‘4’ + ‘5’ + ‘6’ + ‘7’ + ‘8’ + ‘9’
- integer = digit digit*

Q: is ‘000’ an integer?
Q: how to define another integer RE that excludes sequences with leading 0s?
More RE Examples

- **Identifier**: strings of letters or digits, starting with a letter
  - letter = ‘A’ + ... + ‘Z’ + ’a’ + ... + ‘z’
  - Identifier = letter (letter + digit)*

- **Whitespace**: a sequence of blanks, newlines and tabs
  - whitespace = ( ‘ ’ + ‘\n’ + ‘\t’) +
More RE Examples

- **Identifier**: strings of letters or digits, starting with a letter
  
  - letter = ‘A’ + ... + ‘Z’ + ’a’ + ... + ‘z’
  
  - Identifier = letter (letter + digit)*

  - Q: is (letter* + digit*) the same?

- **Whitespace**: a sequence of blanks, newlines and tabs
  
  - whitespace = ( ‘ ’ + ‘\n’ + ‘\t’) +
More RE Examples

Phones number: consider (412) 624-0000

- $\sum = \text{digit} \cup \{ -, (, ) \}$
- area = digit
- exchange = digit
- phone = digit

- phoneNumber = ‘(’ area ‘)’ exchange ‘-’ phone

Email address: student @ pitt.edu

- $\sum = \text{letter} \cup \{ ., @ \}$
- name = letter

- emailAddress = name ‘@’ name ‘.’ name
RE in Programming Languages

RE used in languages

- RE in PERL,
  
  ```perl
 if ($str =~ /\(d+)/) ...

 here,

 - $str denotes a variable
 - =~ denotes RE matching
 - (\d+) defines a RE pattern
  ```

- RE in C#,
  
  ```csharp
 Match m = Regex.Match("abrabceaab", "(a|b|r)+");
  ```
### Some Common REs in Programming Languages

<table>
<thead>
<tr>
<th></th>
<th>Meaning</th>
<th></th>
<th>Meaning</th>
<th></th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\d</td>
<td>Digits</td>
<td>\w</td>
<td>Any word char</td>
<td>\s</td>
<td>Space char</td>
</tr>
<tr>
<td>\D</td>
<td>Non-digits</td>
<td>\W</td>
<td>Non-word char</td>
<td>\S</td>
<td>Non-space char</td>
</tr>
<tr>
<td>[a-f]</td>
<td>Char range</td>
<td>[^a-f]</td>
<td>Exclude range</td>
<td>^</td>
<td>Matching string start</td>
</tr>
<tr>
<td>?</td>
<td>Optional</td>
<td>{n,m}</td>
<td>Appear n-m times</td>
<td>$</td>
<td>Matching string end</td>
</tr>
<tr>
<td>.</td>
<td>Any char</td>
<td>(...)</td>
<td>Capture matches</td>
<td>(,}</td>
<td>Matching (, { ...</td>
</tr>
<tr>
<td>.</td>
<td>Matching “.”</td>
<td>+</td>
<td>Appear &gt;=1 times</td>
<td>*</td>
<td>Appear 0 or many times</td>
</tr>
</tbody>
</table>
Implementation of Lexical Analysis
We have learnt how to specify tokens for lexical analysis — Regular expression (RE)

Implementation of Lexical Analysis
We have learnt how to specify tokens for lexical analysis — Regular expression (RE)

How do we go from specification to implementation?
We have learnt how to specify tokens for lexical analysis — Regular expression (RE)

How do we go from specification to implementation?

Solution 1: to implement using a tool — Lex (for C), Flex (for C++), Jlex (for java)

- Programmer specifies tokens using RE formalism
- The tool generates the source code from the given REs
Implementation of Lexical Analysis

- We have learnt how to specify tokens for lexical analysis — Regular expression (RE)

- How do we go from specification to implementation?
  - **Solution 1**: to implement using a tool — Lex (for C), Flex (for C++), Jlex (for java)
    - Programmer specifies tokens using RE formalism
    - The tool generates the source code from the given REs
  
  - **Solution 2**: to write the code yourself
    - More freedom; even tokens not expressible through REs
    - But difficult to verify; not self-documenting; not portable; usually not efficient
    - Generally not encouraged
Lex: a Tool for Lexical Analysis

Big difference from your previous coding experience
- Write REs instead of C code to implement them
- Write actions in C associated with each RE
  (Usually generating the correct token)

abc.yy.c is C code after REs in abc.l are translated to C

Implementation of the Lex tool itself will be discussed later
Lex Specifications

```c
{% /* include, extern, etc. */
int yyline = 1, yycolumn = 1;
#include "token.h"
%}
/* pattern definitions. format: name + definition */
number [0-9]+
newline \n
%
/* rules. format: pattern + action */
{number} {
 printf("Token: int const %s (len=%d)", yytext, yyleng);
 return ICONSTNUM;
}
{newline} yyline++;
%
/* auxiliary user code */
int myTableInsert() { ... }
```
```
int yyline = 1, yycolumn = 1;
#include "token.h"
/* rules. format: pattern + action */
int yylex (void) {
 while (1) { /* loop until token returned or EOF */
 /* read input until pattern detected and assign yy_act */
 switch(yy_act) {
 case 1:
 printf("Token: int const %s (len=%d)", yytext, yyleng);
 return ICONSTNUM;
 case 2:
 yyline++;
 }
 }
 /* auxiliary user code */
 int myTableInsert() { ... }
```
**yylex() Operation**

- Parser calls `yylex()` repeatedly to retrieve tokens from lexer.
- `yylex()` reads in characters until a token is returned or EOF.
- Read in characters until pattern detected or EOF.
- For characters not part of any pattern, print to stdout.
- For string of characters matching a pattern:
  - Assign pointer to beginning of string to `yytext`.
  - Assign length of string to `yyleng`.
  - Perform corresponding user action using above variables (May cause a token to be returned).
- Repeat from Step 1.
- `yylex()` always tries to consume longest string possible.
  - Given string “if”, it chooses token (keyword, if) over two tokens (id, i) (id, f).
  - Given two patterns of same length, patterns are chosen in precedence they appear in specification file.
Write regular expressions for all tokens in language

Comments: keep track of nesting level if nesting allowed

String table maintained by you to detect duplicate identifiers / strings

`yytext`, `yyleng` maintained by lex library

`yylval`, `yyline`, `yycolumn` maintained by you

Special characters

- `\n` — newline
- `\t` — tab
- `\'` — single quote
- `\\` — backslash
Discussion of RE and Lexical Analysis

- Lexer uses RE to extract tokens from input string
- Regular Expressions is only a language specification
  - An implementation is still needed
  - How does Lex translate REs in a specification file to pattern matching C code?
- The code should be able to answer the question:

Given a string $s$ and a regular expression $RE$, is $s \in L(RE)$?
Implementing Lexical Analysis with Finite Automata
Our implementation sketch

Lexical Specification

Regular Expression → NFA → DFA → Table-driven Implementation of DFA
An Overview of RE to FA

Our implementation sketch

- Lexical Specification
- Regular Expression
- NFA
- DFA
- Table-driven Implementation of DFA

manual conversion

auto conversion
RE $\rightarrow$ NFA $\rightarrow$ DFA $\rightarrow$ Table-driven Implementation

We will discuss in this order:
1. Deterministic Finite Automata (DFAs)
2. Converting DFAs to Table-driven implementations
3. Non-deterministic Finite Automata (NFAs)
4. Converting REs to NFAs
5. Converting NFAs to DFAs

Let’s start by talking about what a DFA is

RE $\rightarrow$ NFA $\rightarrow$ DFA $\rightarrow$ Table-driven Implementation
Some alternative notations we will use:

**Union:** $A \mid B \equiv A + B$

**Option:** $A \mid \varepsilon \equiv A ?$

**Range:** ‘a’ + ‘b’ + ... + ‘z’ $\equiv [a-z]$

**Excluded range:**
- complement of [a-z] $\equiv [^a-z]$
A finite automata consists of 5 components \((\Sigma, S, n, F, \delta)\):

1. An input alphabet \(\Sigma\)
2. A set of states \(S\)
3. A start state \(n \in S\)
4. A set of accepting states \(F \subseteq S\)
5. A set of transitions \(\delta: S_a \xrightarrow{\text{input}} S_b\)

For lexical analysis:
- Specification — Regular expression
- Implementation — Finite automata
More About Transitions

Transition \( \delta: S_1 \xrightarrow{a} S_2 \) means:
When in state \( S_1 \), on input “a”, go to state \( S_2 \)

Begin from start state \( n \), consume input chars one by one

At the end of input, if current state \( X \)
  ➢ \( X \in \text{accepting set } F \), then ⇒ accept
  ➢ otherwise, ⇒ reject
A state graph is a good way to visualize a FA

A state graph includes

- A set of states
- A start state
- A set of accepting states
- A set of transitions

Example: a finite state automata that accepts only "1"
A **state graph** is a good way to visualize a FA

- A state graph includes
  - A set of states
  - A start state
  - A set of accepting states
  - A set of transitions

**Example:** a finite state automata that accepts only “1”
A finite automata accepting any number of 1s followed by a single 0. Alphabet = \{0,1\}. 

Example: What language does the following state graph recognize? Alphabet = \{0,1\}. 

Diagram: 

- Single node with transitions labeled 1 and 0.
A finite automata accepting any number of 1s followed by a single 0. Alphabet = \{0,1\}.

Example: What language does the following state graph recognize? Alphabet = \{0,1\}. 
More Examples

- A finite automata accepting any number of 1s followed by a single 0. Alphabet = \{0,1\}.

Example: What language does the following state graph recognize? Alphabet = \{0,1\}.
Table Implementation of a DFA

Now let’s convert the DFA to a table implementation

RE $\rightarrow$ NFA $\rightarrow$ DFA $\rightarrow$ Table-driven Implementation
Given the state graph of a DFA,
Given the state graph of a DFA,

```plaintext
 0 1
S T U
```

<table>
<thead>
<tr>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

→ input characters

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>
Table Implementation of a DFA

Given the state graph of a DFA,

\[ \begin{array}{c|cc}
\text{state} & 0 & 1 \\
\hline
S & T & U \\
T & T & U \\
U & T & x \\
\end{array} \]
Table Implementation of a DFA

Given the state graph of a DFA,

![State Graph]

Table-driven Code:
```c
DFA() {
 state = "S";
 while (!done) {
 ch = fetch_input();
 state = Table[state][ch];
 if (state == "x")
 print("reject");
 }
 if (state ∈ F)
 printf("accept");
 else
 printf("reject");
}
```

<table>
<thead>
<tr>
<th>state</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>x</td>
</tr>
</tbody>
</table>
Implementation can be automatically generated

- Each RE has a different DFA, and different tables
- However string recognition code is identical regardless
- Hence, Lex tool need only generate new table for new DFA

Implementation is provably efficient

- Needs finite memory $O(S \times \Sigma)$
  - Size of transition table
- Needs finite time $O($input length$)$
  - Number of state transitions
From RE to NFA

Our implementation sketch

Lexical Specification

Regular Expression → NFA → DFA → Table-driven Implementation of DFA
Epsilon Moves

Another kind of transition: $\varepsilon$-moves

- Machine can move from state A to state B without reading any input
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
  - One transition per input per state
  - No $\varepsilon$-moves

- Non-deterministic Finite Automata (NFA)
  - Can have multiple transitions for one input in a given state
  - Can have $\varepsilon$-moves
Examples
Execution of Finite Automata

- A DFA can take only one path through the state graph
  - Completely determined by input
- An NFA has multiple choices available to it
  - Whether to make $\varepsilon$-moves
  - Which of multiple transitions for a single input to take
  - Acceptance of NFAs
    - An NFA can end up in multiple states
    - **Rule**: NFA accepts an input if at least one of those final states is an accepting state

- DFA $\subseteq$ NFA and $L(DFA) \subseteq L(NFA)$
  - All DFAs are NFAs by definition
- Now is $L(NFA) \subseteq L(DFA)$?
  - Are all Ls expressible using NFA expressible using DFA?
  - Yes, as we will later learn, hence $L(NFA) \equiv L(DFA)$. 
Converting RE to NFA

- McNaughton-Yamada-Thompson Algorithm

- Step 1: processing atomic REs
  - $\epsilon$ expression
    - $\epsilon$ expression
  - single character RE a
    - single character RE a
Step 2: processing compound REs

- $r = s \mid t$
- $r = s \cdot t$
- $r = s^*$
Step 2: processing compound REs

- \( r = s \mid t \)

- \( r = s \cdot t \)

- \( r = s^* \)
Step 2: processing compound REs

- $r = s \mid t$
- $r = s \cdot t$
- $r = s^*$
Step 2: processing compound REs

- $r = s \mid t$
- $r = s \cdot t$
- $r = s^*$
Step 2: processing compound REs

- $r = s \mid t$

- $r = s \cdot t$

- $r = s^*$
Step 2: processing compound REs

- \( r = s \mid t \)
  - NFA(s) \rightarrow \epsilon \rightarrow \text{NFA(t)} \rightarrow \epsilon \rightarrow \text{NFA(s)}

- \( r = s \cdot t \)
  - NFA(s) \rightarrow \epsilon \rightarrow \text{NFA(t)} \rightarrow \epsilon \rightarrow \text{NFA(s)}

- \( r = s^* \)
  - NFA(s) \rightarrow \epsilon \rightarrow \text{NFA(s)}
Step 2: processing compound REs

- \( r = s \mid t \)
- \( r = s \cdot t \)
- \( r = s^* \)
In-class Practice

Convert “(a|b)*a b b” to NFA
In-class Practice

Convert "(a|b)* a b b" to NFA
From RE to FA

- Our implementation sketch

Lexical Specification

Regular Expression → NFA → DFA → Table-driven Implementation of DFA
Converting NFA to DFA

Question: is \( L(NFA) \subseteq L(DFA) \)?
  ➢ Otherwise, conversion would be futile

Theorem: \( L(NFA) \equiv L(DFA) \)
  ➢ Both recognize regular languages \( L(RE) \)
  ➢ Will show \( L(NFA) \subseteq L(DFA) \) by construction (NFA → DFA)
  ➢ Since \( L(DFA) \subseteq L(NFA) \), \( L(NFA) \equiv L(DFA) \)

Resulting DFA consumes more memory than NFA
  ➢ Potentially larger transition table as shown later

But DFAs are faster to execute
  ➢ For DFAs, number of transitions \( \equiv \) length of input
  ➢ For NFAs, number of potential transitions can be larger

NFA → DFA conversion is done because the speed of DFA far outweigh its extra memory consumption
Both accept "(a|b)*a b b"
How to Convert NFA to DFA

- **Idea:** Given a NFA, simulate its execution using a DFA
  - At step $n$, the NFA may be in any of multiple possible states
  - Set of possible states is a state in the new DFA
  - If any possible state is an accepting state in the NFA, it is an accepting state in the DFA

- **The new DFA is constructed as follows,**
  - A state of DFA $\equiv$ a non-empty subset of states of the NFA
  - Start state $\equiv$ the set of NFA states reachable through $\varepsilon$-moves from NFA start state

- A transition $S_a \xrightarrow{c} S_b$ is added iff $S_b$ is the set of NFA states reachable from any state in $S_a$ after seeing the input $c$, considering $\varepsilon$-moves as well
What is the Equivalent DFA?

\[ \text{Diagram: A -> B, B -> C, C -> A, B -> 0, A -> 1, 1/0} \]
What is the Equivalent DFA?

State transition table:

<table>
<thead>
<tr>
<th>state</th>
<th>alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- States: A, B, C
- Alphabet: 0, 1
- Transitions:
  - A → B on 1
  - B → C on 0
  - C → A on 1

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Example NFA to DFA

What is the Equivalent DFA?

![NFA Diagram]

<table>
<thead>
<tr>
<th>state</th>
<th>→ alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>AC</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Example NFA to DFA

What is the Equivalent DFA?

![NFA Diagram]

<table>
<thead>
<tr>
<th>state</th>
<th>→ alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>AC</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BC</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Example NFA to DFA

What is the Equivalent DFA?

![NFA Diagram]

state ↓ ▶ alphabet

<table>
<thead>
<tr>
<th>state</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>BC</td>
</tr>
<tr>
<td>B</td>
<td>AC</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the Equivalent DFA?

Example NFA to DFA

state ↓ → alphabet

<table>
<thead>
<tr>
<th>state</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>BC</td>
</tr>
<tr>
<td>B</td>
<td>AC</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AC</td>
<td>AC</td>
<td>BC</td>
</tr>
<tr>
<td>BC</td>
<td>AC</td>
<td>BC</td>
</tr>
</tbody>
</table>

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Example NFA to DFA

What is the Equivalent DFA?

![Diagram of NFA and DFA with states A, B, and C, and transitions for 0 and 1 inputs.]

<table>
<thead>
<tr>
<th>state ↓</th>
<th>alphabet →</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0: A, 1: BC</td>
</tr>
<tr>
<td>B</td>
<td>0: AC, 1: B</td>
</tr>
<tr>
<td>C</td>
<td>0: C, 1: C</td>
</tr>
<tr>
<td>AC</td>
<td>0: AC, 1: BC</td>
</tr>
<tr>
<td>BC</td>
<td>0: AC, 1: BC</td>
</tr>
<tr>
<td>AB</td>
<td>x, x</td>
</tr>
<tr>
<td>ABC</td>
<td>x, x</td>
</tr>
</tbody>
</table>

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Example NFA to DFA

What is the Equivalent DFA?

Is the DFA minimal? (See Textbook 3.9.6: Minimization)
Algorithm Illustrated: Converting NFA to DFA

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1: Construct the NFA Table

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>G</td>
<td>BH</td>
<td>J</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Update $\varepsilon$ Column to $\varepsilon$-closure

<table>
<thead>
<tr>
<th></th>
<th>$\varepsilon$</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 3: Update Other Columns Based on $\epsilon$-closure

<table>
<thead>
<tr>
<th></th>
<th>$\epsilon$</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>DJ</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>BHCE</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHCE</td>
<td>DJ</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>DJ</td>
<td>DJ</td>
<td>FK</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>DJ</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>DJ</td>
<td>DJ</td>
<td>FK</td>
</tr>
<tr>
<td>F</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>FK</td>
<td>DJ</td>
<td>FM</td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th>ε</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>CE</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>GBHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>BHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>DJ</td>
<td>DJ</td>
<td>FK</td>
</tr>
<tr>
<td>F</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>FK</td>
<td>DJ</td>
<td>FM</td>
</tr>
<tr>
<td>FM</td>
<td>DJ</td>
<td>F</td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>DJ</td>
<td>DJ</td>
<td>FK</td>
</tr>
<tr>
<td>F</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>FK</td>
<td>DJ</td>
<td>FM</td>
</tr>
<tr>
<td>FM</td>
<td>DJ</td>
<td>F</td>
</tr>
</tbody>
</table>
Step 4: Construct the DFA Table

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHCE</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>DJ</td>
<td>DJ</td>
<td>FK</td>
</tr>
<tr>
<td>F</td>
<td>DJ</td>
<td>F</td>
</tr>
<tr>
<td>FK</td>
<td>DJ</td>
<td>FM</td>
</tr>
<tr>
<td>FM</td>
<td>DJ</td>
<td>F</td>
</tr>
</tbody>
</table>
```

- Converted DFA state graph:
An NFA may be in many states at any time

How many different possible states in DFA?
- If there are N states in NFA, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
  - \(2^N - 1\) many states

The resulting DFA has \(O(2^N)\) space complexity where N is the number of original states (typically much fewer)
An DFA or NFA is implemented by a 2D table $T$

- The two dimensions are: “states” and “alphabet”
- For $S_a \xrightarrow{c} S_b$, we have $T[S_a, c] = S_b$

**DFA execution**

- If the current state is $S_a$ and input is $c$, then read $T[S_a, c]$
- Update the current state to $S_b$, assuming $S_b = T[S_a, c]$
- Requires $O(|X|)$ steps, where $|X|$ is the length of input

**NFA execution**

- At a given step, there is a set of possible states, up to $N$
- On input $c$, must access table for each possible state to get set of next possible states
- Requires $O(|X| \ast N)$ steps
Implementation in Practice

- GNU Lex
  1. Converts regular expression to NFA
  2. Converts NFA to DFA
  3. Performs DFA state minimization to reduce space
  4. Generates transition table from DFA
  5. Performs table compression to further reduce space

- Most other automated lexers also trade off space for speed by choosing DFA over NFA
Our implementation sketch

Lexical Specification

Regular Expression

NFA

DFA

Table-driven Implementation of DFA
A scanner recognizes multiple REs.
How much should we match?

- In general, find the longest match possible.
- If same length, rule appearing first takes precedence.

Example:

On input **123.45**, we match it as:

- (numConst, 123.45)

rather than:

- (numConst, 123), (dot, "."), (numConst, 45)
How to Match Keywords?

Example: to recognize the following tokens
Identifiers: letter(letter|digit)*
Keywords: if, then, else

Approach 1: Make REs for keywords and place them before REs for identifiers so that they will take precedence
- Will result in more bloated finite state machine

Approach 2: Recognize keywords and identifiers using same RE but differentiate using special keyword table
- Will result in more streamlined finite state machine
- But extra table lookup is required

Usually approach 2 is more efficient than 1, but you will implement 1 in your projects for simplicity
Beyond Regular Languages

- Regular languages are expressive enough for tokens
  - Can express identifiers, strings, comments, etc.

- However, it is the weakest (least expressive) language
  - Many languages are not regular
    - C programming language is not
    - The language matching braces "{{{...}}}" is also not
  - Finite automata cannot count # of times char encountered
    - Crucial for analyzing languages with nested structures
      (e.g. nested for loop in C language)

- We need a more powerful language for parsing
  - In the next lecture, we will discuss context-free languages