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Consider the graph, G, defined as follows:
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Vertices = 4

Edges = 3

0: 1,2

1: 0,3

2: 0

3: 1

In general, we can find the chromatic polynomial by either reducing G to
compositions of null graphs or complete graphs. Practically speaking, we will
reach a solution faster if we consider the edge density of the graph, and proceed
either by reducing to null graphs if our original graph is closer to a null graphs,
and complete graphs if it is closer to a omplete graph.

We note that a complete graph (or “clique”) with V = 4 vertices would

have (V )(V−1)
2 = 6 edges, while a null graph would obviously have 0 edges.

Since G has exactly (V )(V−1)
4 = 3 edges, we can choose to find the chromatic

polynomial either reducing to null graphs or complete graphs. We will consider
each approach in turn.

1 Reducing to null graphs

Start by selecting a pair of adjacent vertices (u, v) and removing their edge
from the original graph. The Fundamental Reduction Theorem for edge-
removing reductions states that:

P (G, x) = P (G− uv, x) − P (Guv, x)

In other words, the chromatic polynomial of the original graph G can be ex-
pressed as the difference of the chromatic polynomials of two new graphs:

1. G− uv, which is constructed from G by removing edge (u, v); and

2. Guv, which is constructed from G by merging vertices u and v.
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Selecting (0, 2) gives us:

P


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
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 − P


0,2 1
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
Since not all of these composite graphs are null, we must recurse on these

graphs until we have expressed P (G) in terms of a linear combination of the
chromatic polynomials of null graphs.

Note that, from an implementation standpoint, in order to represent the
second graph as an object of type Graph, we would need to logically renumber
the vertices, so the internal representation of the third graph above (Guv) would
become simply:
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Vertices = 3

Edges = 2

0: 1

1: 0,2

2: 1

On each recursive call, we further decompose one of our non-null graphs.
Fundamentally, order doesn’t matter, but let’s decompose the more complex
graph first. For the purposes of brevity and clarity, we will omit the P () notation
moving forward.
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Eventually, we will have reduced this first graph to a null graph:
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However, we still have some non-null graphs, so we continue recursively reducing
them.
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Now that we have only null graphs, we simply apply algebraic principles to
their chromatic polynomials to simplify this expression:
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Lastly, to compute the chromatic polynomial of the original graph G, we
plug in the chromatic polynomials of the composite null graphs. Recall that

P (Null(n), x) = xn;

that is, the chromatic polynomial of a null graph with n vertices is xn. So,

P (G) = x4 − 3
(
x3
)

+ 3
(
x2
)
− x1

= x4 − 3x3 + 3x2 − x

2 Reducing to complete graphs

Start by selecting a pair of non-adjacent vertices (u, v) and adding such an edge
to the original graph. The Fundamental Reduction Theorem for edge-
adding reductions states that:

P (G, x) = P (G + uv, x) + P (Guv, x)

In other words, the chromatic polynomial of the original graph G can be ex-
pressed as the sum of the chromatic polynomials of two new graphs:

1. G + uv, which is constructed from G by adding edge (u, v); and

2. Guv, which is constructed from G by merging vertices u and v.

Selecting (2, 3) gives us:
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Since not all of these composite graphs are complete, we must recurse on
these graphs until we have expressed P (G) in terms of a linear combination
of the chromatic polynomials of complete graphs. On each recursive call, we
further decompose one of our non-complete graphs.
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Eventually, we will have reduced this first graph to a complete graph:
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However, we still have some non-complete graphs, so we continue recursively
reducing them.
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Now that we have only complete graphs, we simply apply algebraic principles
to their chromatic polynomials to simplify this expression:
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Lastly, to compute the chromatic polynomial of the original graph G, we
plug in the chromatic polynomials of the composite complete graphs. Recall
that

P (Complete(n), x) = x(x− 1)(x− 2) . . . (x− n + 1);

that is, the chromatic polynomial of a complete graph with n vertices is x(x−
1)(x− 2) . . . (x− n + 1). So,

P (G) = x(x− 1)(x− 2)(x− 3) + 3 (x(x− 1)(x− 2)) + x(x− 1)

= (x4 − 6x3 + 11x2 − 6x) + 3(x3 − 3x2 + 2x) + (x2 − x)

= x4 − 6x3 + 11x2 − 6x + 3x3 − 9x2 + 6x + x2 − x

= x4 − 3x3 + 3x2 − x

which is, happily, the same answer we obtained with the edge-removing reduc-
tions.
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