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Abstract—In this paper we explore compiler techniques
for achieving ef cient communications on circuit switching
interconnection networks. We propose a compilation frame-
work for identifying communication patterns and compiling
these patterns as network con guration directives. This has
the potential of providing signi cant performance bene ts
when connections can be established in the network prior
to the actual communications. The framework includes a
exible and powerful communication pattern representation
scheme that captures the property of communication pat-
terns and allows manipulation of these patterns. In this
way, communication phases can be identi ed within the
application. Additionally, we extend the classi cation of
static and dynamic communications to include persistent
communications. Persistent communications are a subclass
of dynamic communications that remain unchanged for large
segments of the application execution. An experimental com-
piler has been developed to implement the framework. This
compiler is capable of detecting both static and persistent
communications within an application. We show that for
the NAS Parallel Benchmarks, 100% of the point-to-point
communications can be classi ed as either static or persistent
and 100% of the collectives are either static or persistent with
the exception of IS. Simulation-based performance analysis
demonstrates the bene t of using our compiler techniques
for achieving ef cient communications in multiprocessor
systems.

Index Terms—Compiled Communication, High Perfor-
mance Computing, Multiprocessor Systems, MPI, Circuit-
switching networks, Communication Patterns.

I. INTRODUCTION

MANY high performance computing systems use
packet-switched networks to interconnect system

processors. As systems get larger, a scalable interconnect
can assume a disproportionately high portion of the
system cost when striving to meet the demands of
low-latency and high-bandwidth. Although the quest
for cheap, low-latency, high-bandwidth packet-switched
interconnections for large scale systems is worthwhile,
circuit switching networks [1], [2] have the potential of
achieving higher ef ciency than packet and wormhole
networks with relatively lower cost. However, the over-
head of circuit establishment can be relatively large, and
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the bene ts of circuit switching can only outweigh its
drawbacks when communication exhibits locality and
when this locality is appropriately explored. Thus, us-
ing compiler techniques to explore the communication
patterns of parallel applications–referred to as com-
piled communication in [3]–[5]–becomes a promising
approach for achieving ef cient communications in the
high performance computing domain. There are other
techniques to analyze communication locality such as
trace analysis and to leverage communication locality
such as runtime scheduling. However, trace analysis can
be mislead with speci c data sets and runtime analysis
is subject to cold start misses and potentially allows
thrashing which can lead to poor performance.
In contrast, our approach discovers the communica-

tion patterns between logical nodes based on the struc-
ture of the application code and through system calls
during execution, provides them to a run-time system
that manages circuit switched interconnections. We pro-
pose a framework that integrates traditional and new
compiler techniques to realize this approach.
The motivation of this work partially stems from the

proposal to include an optical circuit switching (OCS)
network in the design of next generation high perfor-
mance computing systems [6]. In that proposal long-
lived bulk data transfers are routed through all optical
switches, which are characterized by high data rates with
high overhead for circuit establishment. An OCS is less
expensive than its electronic counterpart as it uses fewer
optical transceivers. This interconnection technique is
more effective if connections are pre-established and
the relatively long switch times are amortized over the
lifetime of the connections. For example, Shalf et. al.
proposes another interconnection network that use both
passive (circuit switching) and active (packet switching)
switches to deliver performance equivalent to that of a
fully-interconnected network [7]. In their approach, the
switches must be recon gured to emulate a suitable in-
terconnection topology to achieve the best performance
for an application. The effectiveness of this topology
optimization process heavily depends on the ability to
identify the communication pattern of the application.
The research in this direction in the high performance
computing domain mandates the exploration of new
compiler techniques and the development of a system-
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atic compiler-based approach to infer the communication
topology at compile-time.
Based on the temporal and spatial localities of commu-

nications and the capability of the compiler to identify
the temporal properties and the topology of the commu-
nications, we classify communications during a phase
of an application’s execution into three categories: static,
persistent and dynamic. In this context, the topology of
communication is the speci cation of the source and
destination of the messages exchanged.
Static – Communication is static if it can be completely
determined through compile-time analysis. That is the
compiler can identify both the temporal locality and the
exact topology of the communication.
Persistent – Communication is persistent if, though the
compiler cannot determine the exact topology of com-
munication, it can determine that the topology does not
change during the phase. That is, its temporal locality
can be identi ed by the compiler, but its spatial proper-
ties remains unknown until run-time.
Dynamic – Communication is dynamic if it it neither
static nor persistent.
Given that communications of applications may

change during different phases of execution, an im-
portant part of the analysis of communication patterns
is to identify and segregate different communication
phases. We observe that a main source of communica-
tion temporal locality originates from loop structures of
parallel programs. Hence, it is natural to consider loops
that contain communications as the building blocks of
phases.
In Figure 1, we illustrate the de nition of static, persis-

tent and dynamic communications when a phase is de-
ned as a loop. Speci cally, the communication is static if
the topology can be completely resolved at compile-time,
as in Figure 1(a). In Figure 1(b), the topology can not be
determined until run-time. However, once de ned, the
topology is repeatedly used within the loop. In this case
we call the communications persistent. In Figure 1(c), the
communication is dynamic because during each iteration
of the loop, the topology is re-calculated.
The above classi cation implies different possibilities

for reducing communication overhead. For example,
considering circuit switching networks with preloading
capability such as an OCS network, the earliest oppor-
tunity for determining the network con guration for a
static communication is at compile-time. Thus, network
con guration instructions may be statically inserted into
the code by the compiler at phase boundaries to estab-
lish connections between logical nodes in the system.
These logical nodes are translated into physical nodes by
the runtime system. For persistent communication, the
topology of the communication is not known at compile-
time. However, it is possible to insert at compile-time
network con guration instructions containing symbolic
expressions specifying the topology that will be resolved
at runtime. By placing these network con guration in-
structions at the earliest point where the expression can

be resolved, the network recon guration may still be
able to take place prior to the actual communication
within a phase amortizing as much as possible the
network recon guration time. Additionally, if process
migration between physical processors occurs (e.g. for
fault-tolerance), even within a phase, our compilation
approach is unaffected as it deals with logical nodes. For
a circuit switching target, the runtime system can easily
migrate the connections along with the process to the
new physical processor.
In this paper, we present a compilation framework

for identifying and compiling static and persistent com-
munication patterns. Many previous efforts to analyze
parallel applications’ communications characteristics are
based solely on trace analysis [7]–[9]. However, the
traces can provide the communication information for
only a single execution instance of an application on a
particular platform. Our approach is to reveal the under-
lying communication patterns and make it available at
compile-time. We implement the compilation framework
by developing an experimental compiler which identi es
communication patterns from the source code. It com-
piles the communication pattern of an application and
enhances it with network con guration directives. An-
other capability of the compiler is to augment the code
with trace generation instructions which can produce
information about the communication pattern correlated
to the structure of the source (e.g. loops, conditionals,
etc.).
We use a powerful scheme to represent communica-

tion patterns that includes both collective and point-to-
point communications in terms of communication vec-
tors and matrices. The vectors and matrices contain exact
values if the communication pattern contains only static
communications. Otherwise, they may contain symbolic
expressions for later resolution. This scheme allows the
manipulation of communication patterns through a set
of convenient operations. It is also exible and can be
easily tailored to other types of communication analysis.
The remainder of this paper is organized as follows.

Section II reviews major related work. We describe our
framework in Section III and we describe an experimen-
tal compiler which implements the framework in Sec-
tion IV. A set of results from applying the experimental
compiler are presented in Section V. Conclusions are
given in Section VI.

II. BACKGROUND AND CONTEXT

High performance computing systems are being built
out of ever-increasing numbers of processors [10], [11].
These large systems, however, typically use packet or
wormhole routing for interprocessor communication
with only a few systems built around statically con g-
ured circuit switching networks. The most well known
example of a circuit switching based network is the NEC
Earth Simulator [12], which uses a huge electronic cross-
bar, with 640x640 ports. The ICN (Interconnection Cache
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Fig. 1. Static, persistent and dynamic communications when a phase is a loop.

Network) [13], [14] is similar to the Earth Simulator
in its one-to-one relationship between each processing
node and one channel or circuit that it handles. Circuit
switching can also be achieved in parallel systems using
passive optical components through time-division mul-
tiplexing (TDM) [15], [16], wavelength division multi-
plexing (WDM) [17] or a combination of the two [18]–
[20], which does demonstrate an interest in optical circuit
switching in the high performance computing domain.
Circuit switching hardware continues to improve due

to improvements in technology. Newer technologies
such as optical networking continues to be an alternative
to electronic circuit switching that provides several ad-
vantages such as capabilities to handle long wire lengths
and achieve high bandwidths. The biggest argument for
use of optical circuit switching (OCS) is a savings in cost
over fast electronic networks as OCS removes the need
for expensive transceivers to convert signals between
optics and electronics [6]. However, the recon guration
time of optical switching may be relatively long (ms vs
μs) [6], [21], [22]. Hence, implementing circuit switching
with relatively long switching latency mandates a tech-
nique to amortize connection establishment overhead
and to explore the locality of communications in par-
allel applications. This inspires us to combine compiled
communication and circuit switching techniques.
Our previous work [23] shows that much of the

circuit switching overhead can be amortized by pre-
establishing connections and re-using connections as
much as possible. In fact, the network con guration
pre-loading scheme has been shown to perform better
than traditional wormhole and non-predictive circuit
switching techniques in many instances. However, this
solution requires that the communication pattern must
be known early enough, ideally at compile-time. In
cases where the communication operations require more
bandwidth than the network can provide, it is necessary
to detect the communication pattern and pre-schedule
the communication operations in the different phases for
circuit switching to be effective [24].
There have been several attempts [8], [9], [25], [26] to

understand the communication characteristics of parallel
applications. Shires, et. al. presented an algorithm for
building a program ow graph representation of an
MPI program [25]. They provided an interesting ba-
sis for important program analyses useful in software

testing, debugging and code optimization. In [9], Vet-
ter and Mueller examined the explicit communication
characteristics of several sophisticated scienti c appli-
cations, while focusing on the Message Passing Inter-
face (MPI) [27] and by using hardware counters on
microprocessors. Faraj and Yuan [8] investigated the
communication characteristics of MPI implementations
of the NAS parallel benchmarks [28]. Ho and Lin studied
the static analysis of communication structures in pro-
grams written in a channel-based message passing lan-
guage called communication compiling component [26].
Although these attempts analyzed the communication
characteristics of parallel applications such as the ratio of
different kinds of communications and implicitly discuss
persistence of communication and phases, they do not
provide any systematic way to identify accurate commu-
nication patterns with respect to connections or specify
a quantitative measure of persistence.

Many interesting research projects in the high per-
formance computing domain can take advantage of or
rely on information about communication patterns. For
example, Cappello and Germain proposed an approach
to associate compiled communications and a circuit
switched interconnection network [3]. Yuan et. al. ex-
plored using compiled communication for HPF-like par-
allel applications as an alternative to dynamic network
control [4]. The compiled communication technique re-
quires that a large portion of static communications
be identi ed at compile-time. Dietz and Mattox stud-
ied the Flat Neighborhood Network (FNN) which uses
the communication patterns to determine the design of
the network [29]. Liang et. al. described a compiler,
which supports compile-time scheduled communication
for their adaptive System-On-a-Chip (aSOC) communi-
cation architecture [30]. As previously described, our
previous work introduces a switch design which can
use our compilation technique to pre-program a TDM
network switch [23]. Each of these techniques can take
advantage of compile-time knowledge of the communi-
cation pattern to reduce the overhead in the interconnec-
tion network.

In contrast to these efforts we provide a systematic
technique to address compiled communication in MPI
applications and to leverage this information for a circuit
switching network.
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III. COMPILATION FRAMEWORK

In this section, we present our compilation framework
in the context of MPI programs. We also present it in the
context of the abstract communication model described
next.

A. Model of the Target Systems

We assume a high performance computing system in
which computing nodes are interconnected through a
circuit switched network. The circuit switching network
can support k simultaneous connections to each process-
ing node, loading pre-computed network con gurations,
and recon guration at the boundaries of communication
phases. We also assume the system is able to ef ciently
perform dynamic and collective communications. Based
on these assumptions, an abstract model of the target
high performance computing incorporates two separate
communication networks: a circuit switching network
used for static and persistent communications, and a
packet switching network to accommodate collectives
and short-lived dynamic communications. This inter-
connect model provides a signi cant cost advantage
over a very, highly-buffered fast packet switch [6]. An
overview of the model is shown in Figure 2. Separating
the communication classes in this manner enables us to
target each class with the most appropriate network tech-
nology and operating mechanism. Static and persistent
communications will be compiled and dispatched to the
circuit switching interconnect network.

B. Compilation Paradigm

Current compiler techniques, such as control and data
ow graph (CDFG) analysis, inter-procedural analysis,
and array analysis can be used to infer information from
the code that is essential for analyzing the communica-
tion behavior of an entire program with explicit message
passing. Our compiler identi es the MPI functions in the
code, and uses these analysis tools to construct a com-
munication pattern for the application. As MPI allows
messages to be received from any source, our approach
is to pro le the message send operations to determine
the communication pattern. The representation for a
communication pattern is detailed in Section III-C.
The communication behavior of the application is par-

titioned into communication phases with the knowledge
of the target network speci cation. By mapping the
communication patterns into a sequences of phases it
is possible to create more ef cient communication working
sets or groups of communications that occur in relatively
close proximity. The granularity of the communication
phases depends on the capacities of the communication
network. Thus, the communication pattern identi ed
during analysis according to particular interconnection
network speci cation can be leveraged through network
con guration instructions inserted into the application.
For static communication patterns, the compiler gen-

erates a network con guration le that can be used by

Fig. 2. High performance computing with circuit switching.

the loader and inserts respective network con guration
setup instructions in the program. For persistent commu-
nication patterns, the compiler inserts symbolic network
con guration instructions that aim at pre-establishing
the needed connections at run-time prior to the actual
communications.

C. Phases and Pattern Representation

Several research groups have observed that the com-
munication operations in many applications exhibit reg-
ular patterns [6], [26], [30], [31]. Additionally, it has been
shown that these regular communication patterns can of-
ten be discovered through analysis of the source code [3],
[8], [32]. Our compilation framework is motivated by
these two discoveries.
Often, a parallel program is written to solve a par-

ticular scienti c problem. These applications are often
organized in phases and although different processors
may take different paths, they tend to work in the
same computational phase at approximately the same
time but primarily on their local data. Given that these
parallel applications have computational phases, we can
expect their communication operations to behave sim-
ilarly. For example, the communication topologies of
adaptive applications evolve during their execution time.
Even for parallel applications that have static communi-
cation patterns, their active communication working set
may change as the phases change. The result is one or
more communication phases. Communication phases are
not identical to computational phases, but are strongly
associated with them. For example, some computational
phases contain no communication and thus can be ig-
nored when identifying communication patterns. Several
computational phases may just yield a single communi-
cation phase. The number of phases is an artifact of the
analysis used to partition the communications into phases.
To effectively perform compile-time communication

analysis it is necessary to represent the communication
patterns identi ed from the code in a form that is both
exible and accurate. In the following sections we de-
scribe a communication matrix/vector pair that are used
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to represent the communication pattern in an applica-
tion. Additionally, we describe how the communication
pattern representations can be manipulated to closely
correspond to the underlying communication network.
The fact that the communication pattern of an applica-

tion contains phases is important and must be described
while representing the pattern. However, the traditional
technique to represent the communication pattern of an
application is to describe its rough logical topology, (e.g.
2-D mesh, hypercube, etc.), or to provide a communica-
tion matrix. Such representations are too coarse and can
not describe the communication topologies accurately.
They also fail to disclose temporal information. Our com-
munication pattern representation scheme is designed
speci cally to avoid this limitation and to effectively
represent the temporal and spatial properties of the
pattern.
We de ne all the communication operations of an

application as a communication pattern. When the exe-
cution is partitioned into phases, the communications
within each phase need to be speci ed. There are two
types of communications in MPI applications: collective
communications and point-to-point communications. In
order to represent the collective communications in a
pattern, we de ne a c-enumeration to describe the set of
collective communication functions invoked in a parallel
application.

De nition A c-enumeration is a list of all the collective
communications that appear in a parallel application.
Each collective communication is represented by a pair,
the function name and optionally the corresponding
communicator. For example, for the function names,
we use AA, AV, AR, and RD to represent MPI Alltoall,
MPI Alltoallv, MPI Allreduce, and MPI Reduce respec-
tively. The communicator is omitted if it is the default
MPI communicator. For each related MPI communicator,
the same collective MPI functions have exactly one in-
stance in the c-enumeration. Each communication pattern
retains a unique c-enumeration.

Example 1: CEE = {AA, AR , (AR, commu1), RD}
indicates that there are three different types of collective
communications in the application. The rst two and the
last operations are performed in the default MPI com-
municator while the third operation, MPI Allreduce, is
performed in a user-de ned communicator commu1. The
communication detection component of the framework
is responsible for building c-enumerations.
Formally we use the grammar described in Figure 3

to represent the communication pattern that describes
the communications in different phases of a program.
In the expression for c-enumeration, coli represents any
collective MPI function, and commi represents the corre-
sponding MPI communicator. In this gure, we assume
that m is the number of elements in c-enumeration.
A communication pattern consists of a sequence of

phases. A basic communication phase is described by a
c−vector and a p−matrix that represent all the collective

communication pattern→ c−enumeration, phases

c−enumeration→ {(col0, comm0), ..., (colm−1, commm−1)}
phases→ ε|phase phases|[phases] phases

phase→ <c−vector, p−matrix>

c−vector → ε|<w0, w1, ..., wm−1>

p−matrix→ ε|deterministic p−matrix|symbolic p−matrix

Fig. 3. The grammar for communication pattern representations.

and point-to-point communications, respectively, in that
phase. A phase may also be a loop of a sequence of
phases that repeat in any execution instance of an appli-
cation, represented by square brackets in the grammar.

De nition A c−vector corresponds to a c-enumeration.
Each element of the vector represents the weight of
the corresponding collective communication in the c-
enumeration.

De nition A p−matrix is a N×N matrix that describes
a set of point-to-point communications. The entry in
position i, j describes the weight of communication from
processor i to j.

De nition δ represents any unknown values, variable,
vector, or matrix.

In the above de nitions of p−matrices and c−vectors
we do not enforce a speci c meaning for the communica-
tion weight. However, some options include (1) a single
bit value to indicate if point-to-point communications
from the source processor to the destination processor
exist (2) the message volume or (3) message count.
In the case that the compiler cannot construct even a
symbolic expression for a point-to-point communication
the δ symbol is used in the symbolic expression for that
matrix entry.
A p−matrix is deterministic if the total number of

processorsN is known and each entry of the p−matrix is
a constant. A deterministic p−matrix is used to represent
static communications. When the size N of a p−matrix
is a symbolic constant and/or any entry can only be
described by a symbolic expression instead of a con-
stant, it is a symbolic p−matrix. A symbolic p−matrix
can always be described by a formula list. Persistent
communications can usually be described by symbolic
p−matrices.
Example 2: As shown in Figure 4, PM A and PM B are a
formula list and a deterministic p−matrix, respectively.
PM A describes a communication pattern in which each
processor rank sends to rank +x and rank−x if rank−
x > 0 where x is determined at run-time and N is the
total number of processors. In the case x = 1 and N = 4,
a deterministic p−matrix PM B is inferred from PM A.
Example 3: The communication pattern of IS (integer
sorting) program from NAS parallel benchmark suite
[28] is shown in Table I and the deterministic p−matrix
in phase 2 is shown in Figure 5.
The communication pattern representation scheme can

be used to represent both compile-time identi ed com-
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„
(rank + x) mod N

rank>x : (rank − x) mod N
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Fig. 4. A p−matrix PM A described by a formula list and the
corresponding deterministic p−matrix PM B.

TABLE I
THE COMMUNICATION PATTERN OF IS.

c−enumeration {AR,AA,AV,RD}
Phases c−vector p−matrix
phase 0 <1, 1, 1, 0> NULL
phase 1 <1, 1, 1, 0> NULL
phase 2 <0, 0, 0, 1> PM IS

munication patterns and the communication patterns
identi ed from execution traces. The main advantage of
our pattern representation scheme is that it captures the
time evolving, or phased, property of communication pat-
terns. The concept of phases suggests the need to manip-
ulate the communication patterns from different phases
and to schedule the communications in the pattern at
different granularities according to the parameters of the
target system.

D. Manipulating Communication Patterns

If the interconnection network capacity is insuf cient
to establish all the circuits required by an application,
then it is necessary to divide the program execution
into phases. A communication phase can more precisely
represent an active connection working set. The intercon-
nection network will be recon gured at the beginning
of each phase to establish the circuits most frequently
used in that phase. Clearly, two con icting criteria
guide phase identi cation. Namely, phases should be
small enough to allow the interconnection network to
accommodate the communication requirements within
the phase, but should be large enough to avoid the
overhead of recon guring the network. In general, the
goal of the phase formation should be to determine the
largest communication working set that can t within
the capacity of the circuit switching network and that
requires the least recon guration during execution.
One strategy to determine the communication phases

in the program is to assume that each loop in the appli-
cation is a phase and to manipulate these initial phase
decisions to group the communications into new phases
that are best suited to the capacity of the network. For
instance, we may want to combine two adjacent phases
if the network capacity is large enough to realize both of
them; we may want to remove some infrequently used
connections if the newly combined phase is slightly be-
yond the capacity of the network. Communications over
these removed connections will be delivered through the
packet switching network.
Given a speci c communication pattern, the determi-

nation of whether or not that pattern ts in a given
interconnection network depends on the network itself.

0
BBBBBBBBB@

1
1

1
1

1
1

1

1
CCCCCCCCCA

Fig. 5. p−matrix PM IS (with 8 processors).

For example, a non-blocking network, such as a crossbar,
can realize any pattern that is a permutation, while
network-speci c algorithms have to be applied to deter-
mine if a pattern ts into a blocking network [33]. In our
system, we assumed that the interconnection network is
composed of a number, k, of parallel crossbars, and thus
can realize k permutations simultaneously. In general, if
the communication pattern is represented by a determin-
istic p −matrix, then determining if the pattern ts in
the network is straight forward. However, for patterns
determined by symbolic expressions, that determination
depends on the complexity of the expression, and in
some cases may not be possible unless the expressions
are evaluated.
We de ne three core operations required to deal with

different communication phases. Merge combines the
p−matrices and c − vectors of two adjacent phases of
a communication pattern into a new phase. If binary
communication weights are used, this is equivalent to
an OR operation. Filter removes connections below a
threshold from a phase of a communication pattern.
Unwrap is the equivalent to completely unrolling the
loop and merging all of the resulting phases into a single
phase. This is particularly useful to deal with nested
loops or adjacent loops that logically should be in the
same phase.

De nition Merge(phasei, phasej) :
Parameters: phasei = <c−vectori, p−matrixi>,
phasej = <c−vectorj , p−matrixj>.
phasei and phasej are adjacent phases.
Semantics: phasei and phasej are merged into a
new phase phasenew = <c−vectornew , p−matrixnew>
where c−vectornew = c−vectori + c−vectorj and
p−matrixnew = p−matrixi + p−matrixj . The +
operation depends on the de nition of the weights in
the c−vector and p−matrix. For example, if the weights
are binary bits in a deterministic p−matrix, the +
operation is equivalent to an OR operation.

De nition Filter(phase, T ) :
Parameters: phase = <c−vector, p−matrix>, T is a
threshold.
Semantics: This operation replaces phase in the commu-
nication pattern by a new phase in which any entry with
value less than T in c−vector or p−matrix will be set to
0.

De nition Unwrap(phase) :
Parameters: phase = [<c−vector, p−matrix>].
Assume the loop body of phase has been merged into a
single phase “<c−vector, p−matrix>” as above.
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Semantics: This operation unwraps the loop in-
dicators of phase. If the communication weights
are de ned as single bit values, this operation
uses one “<c−vector, p−matrix>” to replace a loop
of “<c−vector, p−matrix>”. If the weights are de-
ned as message volume or message counts, the
weights in the resulting phases are multiplied by the
loop iteration number compared to the weights in
“<c−vector, p−matrix>”

E. Phase Partitioning Algorithm

The communication phases within an application typ-
ically become apparent at run-time. However, the struc-
ture of the source code can often provide enough direc-
tion to determine reasonable phase lengths and bound-
aries. Loops play a key role in the determination of
phases in the application [34] and work similarly for
communication phases. Thus, we use loops and the
code blocks between loops as the starting point to build
phases. Adjacent phases whose joined communication
pattern do not violate the capability of the network can
be merged together to form larger phases.
The control structures arising from branch structures

create dif culties in merging adjacent phases. We break
down branches into two categories, rank-dependent and
data-dependent. Rank-dependent branches are the most
dif cult structures to handle as some processors execute
each branch, concurrently. Thus, our solution in this case
is to merge all phases contained into a single phase
and to lter out lowest-bandwidth connections until the
resulting pattern can t into the network. However, in
some cases it may be possible to determine optimized
patterns for each branch depending on static knowledge
of the condition. This is discussed in Section IV.
In data-dependent branches, all processors will take

either one direction or the other. This condition holds
because only branches containing communication op-
erations are considered. If data dependent conditions
allowed different processors to follow different branches
containing communication operations, it would be prob-
lematic to have matching sends and receives. Thus, for
these branches, communication patterns can be merged
within branches and individual branches, but need not
necessarily be merged across branches as is necessary
with rank-dependent conditionals.
For the algorithm we describe several different basic

operations used in addition the core operations from
Section III-D:
Adjacent(Pj, Pk) returns true if Pj and Pk are two di-
rectly adjacent phases and they are not separated by loop
or conditional boundaries and returns false otherwise.
FilterUntilFit(P,NET) removes the lowest weight con-
nections from the communication pattern of phase P
until P ts in network NET.
CanBeMerged(Pj, Pk, T, NET) returns true if the two
phases, Pj and Pk can be merged and t into the network
NET without violating the user speci ed parameter T. T

is a threshold on the maximum weight of a connection
that can be ltered.
The algorithm is presented in Figure 6. The code

starting with line 1 constructs the initial phases of
the application by merging the adjacent basic-phases
that t into the network. Starting in line 7, all phases
in the rank-dependent branch structures are merged
and the communication pattern is ltered until it ts
into the network, regardless of the values of T or
TM. Starting in line 13 and continuing through the
end of the pseudocode, the algorithm revisits merging
phases within loops. First, loops that contain a single
phase are unwrapped at line 14. Starting in line 15,
when possible, data-dependent branch structures are
attened into single phases. Finally, at line 18 adjacent
phases are re-examined in case newly unrolled loops or
merged branch structures have created phases that can
be merged. This continues until the phases reach a steady
state creating the nal phase partition of the application.
Communication instructions can now be placed into the
code prior to the execution of each phase.

1 Create a basic phase for each MPI communication function call

2 do
3 foreach phase P do
4 foreach phase Q such that Adjacent(P, Q)==1 do
5 if CanBeMerged(P, Q, T, NET) then Merge(P, Q)
6 while(phases can be merged)
7 foreach rank-dependent branch structure BS do
8 foreach branch Bi of branch structure BS do
9 foreach phase P in Bi do
10 foreach phase Q in Bi such that Adjacent(P, Q)==1 then
Merge(P, Q) into Pi

11 for any two branches Bi, Bj in BS containing phases Pi, Pj ,
respectively, Merge(Pi, Pj ) into PBS

12 FilterUntilFit(PBS , NET)
13 do
14 foreach loop L if L contains a single phase PL then
Unwrap(PL)
15 foreach data-dependent branch structure BS do
16 for any two branches Bi, Bj in BS such that each contains
a single phase, Pi, Pj , respectively do
17 if CanBeMerged(Pi, Pj , T, NET) then Merge(Pi, Pj)
18 foreach phase P do
19 foreach phase Q such that Adjacent(P, Q)==1 do
20 if CanBeMerged(P, Q, T, NET) then Merge(P, Q)
21 while (phases can be merged)

Fig. 6. Pseudocode for the phase partitioning algorithm.

IV. IMPLEMENTATION OF AN EXPERIMENTAL
COMPILER

An experimental compiler has been developed to im-
plement the compilation framework described in Sec-
tion III for MPI applications written in C or Fortran 77.

A. Compiler Techniques

Certain traditional and new compiler techniques are
needed for building a compiler that supports compiled
communication. These techniques need to accomplish
the following main tasks.
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Determination of static communication patterns: The
compiler techniques needed to determine the commu-
nication pattern are different from traditional compiler
analysis and optimization techniques in many aspects.
For instance, optimizing compilers employ constant
propagation and folding in an effort to reduce and
remove unnecessary instructions. In the context of com-
piled communication, constant propagation and folding
is important for detecting the actual value of source, des-
tination, and message volume variables in communica-
tion operations. Thus, expressions that contain variables
related to the processor id and system size (e.g. number
of processors), while not constant at compile-time, are
considered constant because they are resolved prior to
program execution. For example, the two send opera-
tions in the code from Figure 7(a) contain the expres-
sions (myrank+k)%nprocs, (myrank+2*k)%nprocs,
(myrank-k)%nprocs, and (myrank-2*k)%nprocs).
Because myrank and nprocs are actually the processor
id and number of processors in the system, respectively,
we consider these operations to be static if k is a
constant. We call this symbolic expression propagation.
These communication patterns can be resolved into ac-
tual numeric values at load-time when the number of
processors are known.
Addressing SPMD style: MPI programs are written

in SPMD style. Each processor independently executes
the same program on its private data. Nevertheless,
often different processors take different execution paths
as occurs with rank-dependent branch structures. Hence
the compiler may use control and data ow analysis
to segregate communication in the same communication
matrix with decision points (DPs) that correlate to these
branch structures. For static communication, DPs can
be used to reduce the size of communication matrices.
For persistent communication, DPs are used as predicate
conditions for communication represented by symbolic
expressions. For example, a naive approach to building
a communication matrix based on the code from Fig-
ure 7(a), where k=1 is shown in Figure 7(b). This is built
from including the send operation for the then and else
part of the code for each possible processor id. However,
the variable guarding the branching statement may be
static. For example, in Figure 7(a) the condition myrank
< nprocs/2 is entirely based on constants or variables
related to the processor id and system size. Thus, this
expression is static. As a result, only two send operations
are required to be added to the matrix for each processor
id resulting in the matrix shown in Figure 7(c). Hence,
careful analysis of the branching statement is required in
order to accurately identify the communication patterns.
As all phases in rank-dependent branches are merged in
line 7 of Figure 6, this can help keep useful connections
from being ltered out of the network.
Inter-procedural Analysis: An additional considera-

tion of our compiler is the inclusion of inter-procedural
analysis. Such a cross-boundary analysis requires sophis-
ticated control ow techniques and again is different

void p(int k) {
int i;
reconfigNetwork(config1);
for(i=0; i<1000; i++) {
if (myrank < nprocs/2) {
MPI Send(buf,1, MPI INT TYPE,
(myrank+k)%nprocs,1000,COMM);

MPI Send(buf2, 1, MPI INT TYPE,
(myrank+2*k)%nprocs,1000,COMM);

} else {
MPI Send(buf,1,MPI INT TYPE,
(myrank-k)%nprocs,1000,COMM);

MPI Send(buf2, 1, MPI INT TYPE,
(myrank-2*k)%nprocs,1000,COMM);

} } }
(a) Decision point (DP) code.
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(b) Conservative matrix.
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(c) Matrix with DP analysis.

Fig. 7. Example of a communication matrix.

from the traditional inter-procedural passes as its goal is
to examine variables at the point of communication. For
example, consider the procedure p(k) from Figure 7(a),
which contains an instruction to send a message to
myrank+k or myrank-k, and p is called from two
different locations, L1 and L2, with parameters A and B,
respectively. If A is known at L1, while B is not known
at L2, then the communication within p is static when p
is invoked from L1, while it is not if p is invoked from
L2.
Network con guration instructions: The example

shown in Figure 8 demonstrates a sample of network
con gurations for the code in Figure 7(a). Each con-
guration le is a list of connections, each of which
is scheduled to a particular circuit switching network
prior to execution. Each connection description in the
le contains 3 elds: net id source destination,
referring to the switch number, source, and destina-
tion processor. Figure 8(a) shows the network con g-
uration for a single circuit switch and Figure 8(b) ex-
tends the con guration for a second circuit switch. The
switch con guration is passed to the network using the
reconfigNetwork(config1) function highlighted in
Figure 7(a).
In this example, when only a single switch is available

the connections speci ed in Figure 8(b) would actually
be ltered out and satis ed in the packet switch as
described in Figure 6. The con gurations assume the
matrix from Figure 7(c). If the conservative matrix was
constructed from the compiler (Figure 7(b)), the system
would require four switch planes, or the compiler would
lter out additional connections, possibly retaining un-
used connections.

B. Compiler Implementation

We have developed an experimental compiler which
implements the framework shown in Figure 9. It is
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config1:
0 0 1
0 1 2
0 2 3
0 3 4
0 4 3
0 5 4
0 6 5
0 7 6

(a) One switch.

Same as (a) appending
1 0 2
1 1 3
1 2 4
1 3 5
1 4 2
1 5 3
1 6 4
1 7 5

(b) Two switches.

Fig. 8. Example of network con gurations for Figure 7(a).

based on the SUIF compiler infrastructure [35] for de-
tecting communication patterns from source code of
certain applications and enhancing them with compiled
communications. The SUIF compiler infrastructure is an
open source, source to source compiler research toolkit
supporting both the C and Fortran 77 languages. The
front end of the SUIF compiler compiles parallel ap-
plications to SUIF intermediate format. A tool, porky,
from the SUIF compiler system is used to perform basic
transformations, such as copy propagation and constant
propagation in order to discover more details about
the characteristics of different communication(e.g. static,
dynamic, or persistent). The compiler contains four key
compilation passes described in the next several sections:
1) Communication Detection Pass: In this pass, all the

MPI communication calls and parameters are located in
the SUIF intermediate code. Based on MPI standards,
we can explicitly enumerate all possible MPI operations.
With this list, we can easily identify, within the compiler,
all the MPI operations that occur in the code. This pass
collects information about these communication oper-
ations’ parameters. For instance, this pass can identify
that me is the parameter variable holding the rank value
and nprocs is the parameter variable holding the total
number of nodes from the following source code.
call mpi comm rank(mpi comm world, me, ierr)

call mpi comm size(mpi comm world, nprocs,

ierr)

Communication 
Detection

Communication 
Amalysis

Communication 
Compiling

Application
C+MPI Code

Trace 
GenerationCommunication 

Pattern

Network 
Spei cations

Communication 
Instruction 

Enhanced Code

Trace Generation 
Instruction 

Enhanced Code

Experirmental 
Compiler

Application
F77+MPI Code

SUIF Front End 
scc

Control and 
Data Flow 
Analysis

Code Generation
s2c, s2f

Fig. 9. The experimental compiler.

2) Communication Analysis Pass: During communica-
tion analysis, the MPI operations and parameters used
in the MPI functions identi ed during communication
detection are used to identify and represent communica-
tion patterns. Control and data ow analysis and inter-
procedural analysis are used to determine the location
at which communication operations are resolved in the
code. If the source, destination, and message volume
of a communication operation can be resolved as con-
stants, the communication is static. If communication
operations are discovered to be persistent as described
in Figure 1(b), they are further examined as to whether
they are static. We extend inter and intra-procedural
constant propagation into symbolic expression propagation
to determine whether communications are static. For
example, it is necessary to recognize and consider the
processor ID, number of processors, problem size, and
various other parameters as static to ensure that the
topology can be determined statically. As previously
described, we use loops as basic phase delimiters, and
then merge contiguous phases to form larger phases
when it is possible. To obtain proper communication
phases within the code, we use the information dis-
covered in CDFG analysis and communication detection
pass. The proper determination of phases is based on
factors such as phase length, amount of static and/or
persistent communication present, and communication
to computation ratio. We use the algorithm from Figure 6
to determine the communication phases.
3) Communication Compiling Pass: The communication

compiling pass further optimizes the communication
pattern identi ed during analysis, compiles the pattern
and inserts network con guration directives into the
application to assist in con guring the interconnections.
The communication compiling pass exposes static and
persistent communications to circuit switching intercon-
nection networks with the goal of reducing the com-
munication overhead. For example, this compiler can
insert instructions to preload network con gurations for
the switches proposed in [23]. Currently, two types of
network con guration instructions are considered in our
experimental compiler.
Network con guration setup instructions are used

to pre-establish network connections. These instructions
can reduce the setup overhead of connections and over-
lap network control with computation.
Network con guration ush instructions are used to
ush the current network con guration or a subset of
circuits from the current con guration. Such instructions
can be used to remove the expired circuits. It also
provides potential to speedup the parallel applications
as it reduces contention for the circuits.
For static communication patterns, the content of the

communication pattern derived during analysis is in-
serted into the code using the reconfigNetwork()
system call as shown in Figure 7(a) designed to pre-
con gure the network at the beginning of each com-
munication phase. For persistent communication pat-
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terns, the communication analysis component provides
communication pattern information as a function of
variables that will not be known until run-time. Values
for calculating these symbolic expressions are passed
to the reconfigNetwork() function as parameters.
The scope and value availabilities of variables in the
symbolic expressions, in addition to the location of
the communication operations, put constraints on the
locations where these network con guration instructions
may be inserted.
4) Trace Generation Pass: The experimental compiler

also has the capability to automatically add trace gen-
eration instructions (e.g. print statements) within MPI
applications. This pass relies on the information dis-
covered in the communication detection pass and the
communication analysis because it generates traces for
both MPI functions and related code structures such as
if s, loops and procedure boundaries. The resulting anno-
tated code can be compiled and executed on the parallel
architecture normally just like the original code. The only
difference is that the newly included print instructions
will record traces. These traces are primarily used to
study communication patterns of an execution instance
and/or verify that the communication patterns detected
by the compiler are accurate. This pass provides a useful
tool for automating trace generation for MPI applications
and relieve researchers from the trouble of generating
traces manually.

V. RESULTS
Our compiled communication techniques can provide

certain information about MPI parallel applications be-
yond the current approaches in the literature. In Sec-
tion V-A we examine the impact of considering persis-
tent communications in addition to static and dynamic
communications. This knowledge can be leveraged in
the compiler to determine the communication patterns
for these benchmark applications, as shown in Section V-
B. Simulation-based performance analysis is presented
in Section V-C to demonstrate the bene ts of using our
compiler techniques for achieving ef cient communica-
tions in multiprocessor systems.

A. Classi cation of communications of NAS Parallel Bench-
marks

We used our experimental compiler to pro le the com-
munication statistics of the NAS Parallel Benchmarks
v2.4.1. The percentage of static, persistent, and dynamic
communications are shown for point-to-point operations
in Table II and for collective operations in Table III. In all
cases the compiler accurately detected the classi cation
compared to an ideal static analysis.
For the point-to-point operations, Integer Sort (IS),

Conjugate Gradient (CG) and Lower-Upper Symmetric
Gauss-Seidel (LU) contain only static communications.
Multigrid (MG), Block-Tridiagonal (BT), and Scalar-
Pentadiagonal (SP) contain only persistent communica-
tions. For BT and SP, the destination set for each node

TABLE II
THE PERCENTAGES OF DIFFERENT POINT-TO-POINT

COMMUNICATIONS IN NAS BENCHMARKS.

Benchmark Static Persistent Dynamic
IS 100% 0% 0%
CG 100% 0% 0%
MG 0% 100% 0%
BT 0% 100% 0%
SP 0% 100% 0%
LU 100% 0% 0%

TABLE III
THE PERCENTAGES OF DIFFERENT COLLECTIVE COMMUNICATIONS IN

NAS BENCHMARKS.

Benchmark Static Persistent Dynamic
IS 0.4% 0% 99.6%
CG 100% 0% 0%
MG 100% 0% 0%
EP 100% 0% 0%
FT 0.1% 99.9% 0%
BT 100% 0% 0%
SP 100% 0% 0%
LU 100% 0% 0%

is calculated prior to all point-to-point communications
and are used through application completion. For MG,
there are two communication stages. In each stage, the
destination set for each node is calculated prior to the
communications and is retained until each stage com-
pletes. These two stages contains multiple outermost
loops.
The data in Table III were acquired through compile-

time analysis with the exception of IS and FT for which
the percentage of dynamic communications were ob-
tained from a class B execution trace on 128 processors.
The reason is that IS and FT consist of more than one
class of collective operations and this leads to different
results with different execution con gurations—problem
size and number of processors. For FT, while the number
of total nodes increases, persistent all-to-all communica-
tions dominate the message volume and the percentage
of static communications is extremely low.

B. Identifying Communication Patterns

To show the capability of our compiler to identify
communication patterns, we consider the IS, LU, MG
and CG benchmark programs from the NAS parallel
benchmark suite and one application LBMHD (Lattice
Boltzmann model of magneto-hydrodynamics [36], [37]).
For all of these benchmarks as well as the COMOPS
and synthetic applications described in Section V-C.2,
the compiler was able to discover all of the static and
persistent communication operations. This was veri ed
through a comparison with manual analysis of the ap-
plication. While compiling the NAS parallel benchmarks,
the total number of processors, referred to asN , has to be
set as a build parameter so that it is known at compile-
time.
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IS: The compiler identi ed communication pattern
for IS has been shown in Table I and Figure 5. The
weights in c−vectors and p−matrices are binary values.
In phases 0 and 1, collective operations AR, AA, and
AV are executed with no point-to-point communication.
Phase 2 combines the RD collective operation with the
point-to-point matrix shown in Figure 5. By using Merge
and Unwrap operations, phase 0 and 1 can be combined.
LU: The LU benchmark is demonstrated as another ex-

ample. When identifying the communication patterns for
LU, we set the threshold such that the Filter operation
removed all the collective communications from all the
phases. Initially the compiler identi ed 11 phases. Ten of
them contain only a small number of connections. Using
the Merge operation the p−matrix shown in Figure 10
is obtained. From this matrix we can see that the number
of destinations varies from 2 to 4 yielding a reasonably
sized working set.
CG: The compiler initially identi ed two communica-

tion phases from the source code. It turns out that each
of these phases are identical and can be merged. The
p−matrix for the compiler predicted communication
pattern is shown in Figure 11.
MG: When analyzing MG, the compiler discovered

that the communication destinations depend on run-
time input data. However, after the topologies are de-
termined, they are used for an extended period of time.
Hence the communication pattern is persistent. There-
fore, it is only possible to construct symbolic p−matrices
or formula lists from the source code. These p−matrices
are resolved at runtime to populate the network.
We show the resolved 12 p−matrices for the de-

fault input le supplied with the benchmark shown
in Figure 12. p−matrices 0, 1, 6-10 correspond to Fig-
ure 12(a), p−matrices 2 and 11 correspond to Fig-
ure 12(b), p−matrix 3 corresponds to Figure 12(c), and
p−matrix 4 corresponds to Figure 12(d). p−matrix 5 is
empty because the branches containing zero point-to-
point communications were taken in the decision points
for the parameters speci ed in this case.
Lattice Boltzmann method to model magneto-

hydrodynamics (LBMHD): The communication pattern
of application LBMHD is shown in Figure 13 and Fig-
ure 14. Our compiler identi ed a single communication
phase. Because the number of processors N and the

Fig. 10. Single bit p−matrix
PM LU (N = 16).

Fig. 11. The p−matrix of CG
(N = 128).

(a) p−matrices 0,1,6-10. (b) p−matrices 2,11.

(c) p−matrix 3. (d) p−matrix 4.

Fig. 12. The p−matrices of MG (N = 128).

processor rank rank are determined at run-time and
not known at compile-time, we generate a formula list
in Figure 13 to describe the p−matrix. Each proces-
sor has a set of four other processors with which it
communicates. Since N and rank are the only symbols
in the expression, this matrix is considered statically
known as it may be entirely resolved at load-time.
Thus it is possible to entirely con gure the network for
LBMHD based on compiler analysis prior to execution.
Figure 14 shows the pattern for a run on 64 processors.

0
B@

((�rank/Ny�+ 1) mod Nx + (rank − �rank/Ny� ∗Ny)
((�rank/Ny� − 1) mod Nx + (rank − �rank/Ny� ∗Ny)

�rank/Ny� ∗Ny + ((rank − �rank/Ny� ∗Ny) + 1) mod Ny

�rank/Ny� ∗Ny + ((rank − �rank/Ny� ∗Ny)− 1) mod Ny

1
CA

Fig. 13. LBMHD p−matrix described by a formula list where N =
Nx ∗Ny .

Fig. 14. LBMHD
p−matrix (N =
64).

The above compiler-predicted com-
munication patterns have been veri-
ed by comparison to their counter-
parts extracted from traces. We run
the applications to which trace gener-
ation instructions have been inserted
by our compiler to collect traces.
The communication patterns identi-
ed from the corresponding traces are
identical to what the compiler has
identi ed from the source code.

C. Performance Analysis

To analyze the ef ciency of applying compiled com-
munication techniques to static and persistent commu-
nications in MPI applications, it is necessary to examine
performance data. Thus, we describe our simulation
testbed used to run performance experiments.
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1) Multiprocessor System Simulator: We developed an
event-driven multiprocessor system simulator using
C++ with CSIM. The simulated system containing N -
processors implements the communication model from
Figure 2. The diagram of the simulated system is shown
in Figure 15. In the system each processor reads com-
munication instructions from an input trace le, which
is either a real trace from an application execution or a
synthetic stream of simulation instructions, and emulates
the corresponding communication operations. In the
trace les communication instructions can be separated
by computation instructions “COMP t”, each of which
emulates a serial of computation over time t.
Each processor has a circuit switching NIC connected

to a number of circuit switching networks and a packet
switching NIC connected to a number of packet switch-
ing networks. Hence, the simulated system may have
multiple circuit switches and multiple packet switches.
Each packet switch is a 2-stage FAT tree network built
using fast buffered crossbar switches [38], [39]. Each
circuit switch is a N×N crossbar and can be con gured
to realize any permutation at any time. A centralized
scheduler is responsible for setting up and tearing down
connections in all the circuit switches. To avoid the
long connection establishment delay, a processor sends
a message to the circuit switching NIC only when
there is a connection available in any of the circuit
switches. Otherwise, the message is dispatched to the
packet switches. Hence there must be at least one packet
switching network in the system.
When dealing with the phase boundaries consisting

of patterns consisting of point to point communication
operations, several processors may have proceeded to
the next communication phase while others remain in
the original phase. In our simulator, when a processor
leaves a communication phase, it releases the circuits
from that phase and requests the circuits from the new
phase. In some cases these circuits might not be immedi-
ately available due to resources held by processors in the
previous phase. In that case messages proceed through
the packet switch until the circuits are released. A similar
process would be possible for collective communications

Fig. 15. Simulation system overview..

that use a relaxed blocking concept as described in [40].
When simulating many packet switches, we assume

that a NIC has independent buffers for each packet
switching network. The messages in each buffer are han-
dled sequentially, however, the NIC can handle different
buffers simultaneously. Each incoming message from the
processor to the NIC is assigned a buffer randomly. We
assume that all packets of that message may only be
delivered through the corresponding packet switching
network.
The simulator allows the speci cation of many system

parameters. In our experiments we used 256 processors
at 10GHz with 5000 cycles of overhead for MPI send
and receive. We also used link bandwidth of 4Gb/s for
the FP network and the circuit switch while 400Mb/s
is used for the supplemental slower packet switching
network. We use a circuit establishment delay of 3ms for
the OCS and 20 μs for the fast circuit switch. We assume
that the packet switch is a two-level FAT tree with link
propagation delay varying between 130 and 400 ns.
The simulator was extensively tested to verify its

correctness. For example, we explicitly tested single
source single destination non-blocking message sending
tests with and without saturation of the network to
ensure back-pressure occurred when the throughput was
exceeded. We ran similar tests with multiple source and
destination arti cial traf c for both an under-loaded and
saturated network achieving expected results according
to theory. We ran similar experiments for blocking sends.
We also examined contention at the destination from sin-
gle source and multiple sources with the same amount
of traf c to see the improvement in latency while the
completion time remains constant.
2) Simulations: Packet switching networks with buffer-

ing at cross-points [38], [39] can achieve very high per-
formance. Unfortunately, the cost of this type of switch
is very high making it impractical. However, it can be
considered a best case scenario for comparison of what
a fast packet switch can achieve. The simulation results
show that we can achieve the same level, or even better
level of performance than buffered crosspoint switches
using much less expensive circuit switches when the
communication patterns are known. We simulated two
different types of systems to demonstrate this: 1) systems
with only fast packet switching networks, referred to
as “Fast Packet switching” or FP and 2) systems with
multiple circuit switches to which as many connections
as possible are preloaded and pined during execution,
referred to as “Preload pined” or PP.
For each system, we run the simulation with dif-

ferent number of networks. All links in both the fast
packet switching networks and the circuit switches have
the same bandwidth of 4G bps. We model the cir-
cuit switches as optical micro-electro-mechanical system
(MEMS)-based switches whose connection setup over-
head is set to 3ms [6], [21], [22]. For each PP system,
a relatively slow packet switching network with band-
width of 400M bps is included. In what follows, we
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report the average message delay as the performance
metric. Simulation results of 256-node traces of 4 NAS
benchmarks are shown in Figure 16.
The communication degrees of MG256, CG256, SP256

and BT256 are 13, 5, 6 and 6, respectively. The com-
munication is typically evenly distributed across each
node pairing with the exception MG256 whose dominant
communication is evenly distributed among only 6 of
the 13 pairs. Hence, as we increase the number of circuit
switching networks, we see a near linear reduction in
the average message delays for the 4 NAS benchmarks.
For instance, we can reduce the message delay of SP256
with 6 circuit switches to as low as 37.2% of what FP can
achieve. This trend is maintained for all the applications
we have investigated. Simulation results in Figure 16
show that we can reduce message delay using 6 circuit
switches (by 37.2% to 62.8%) compared to FP for all the
investigated applications.
Our technique typically works well for highly static

and persistent communication. Table II shows that all
the 4 NAS benchmarks demonstrated here contain either
completely static or persistent communication patterns
leading to this linear delay reduction per switch plane.
Interestingly, adding additional fast packet switches did
not improve the communication delay for two main
reasons: (1) the NAS benchmarks produce messages
infrequently enough that the majority of messages have
left the buffer in the outgoing NIC prior to the arrival
of the next message and (2) we assume that individual
messages cannot be broken up and sent across separate
network planes due to problems like out of order arrival
of packets. Supporting out of order arrival of messages
could potentially improve the performance of multiple
packet switch con gurations [41] but leads to signi cant
additional complexity in the system and potentially de-
grades performance of in order messages [42]. Given that
many parallel application are dominated by static and
persistent communication and it is dif cult to achieve a
signi cant bene t with multiple packet switch networks
and that these fast packet switching networks are of such
high complexity and cost, our approach using circuit
switching is very promising.
All the applications discussed above either have a

single phase or have a dominant phase in which com-
munication volume is much larger than other phases.
In order to demonstrate the bene t of recon guring
the network at phase boundaries, we simulate systems
with multiple circuit switches to which connections are
loaded at the beginning of each phase and pined during
the phase, referred to as Phased Preload Pined—PPP.
We also consider a circuit switch with a faster circuit
establishment delay for the PPP case called PPP-Fast.
PPP can achieve higher performance than PP in certain

circumstances. For example, given a communication pat-
tern, in which the ith phase has a communication degree
ni and the global communication pattern has a degreem,
it is reasonable to expect that m > max{ni}. It is obvious
that PPP can obtain the same performance using only

 (u
s)

(a) Message delay of MG256.

 (u
s)

(b) Message delay of CG256.

 (u
s)

(c) Message delay of SP256.

(u
s)

(d) Message delay of BT256.

Fig. 16. Message delay of MG256, CG256, SP256, and BT256.
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max{ni} circuit switches as what PP can obtain with m
circuit switches if the network recon guration delay is
small or can be overlapped with computation. We use a
synthetic program SYN256 (Figure 17(a)) and the ASCI
COMOPS benchmark [43] (Figure 17(b)) to demonstrate
the impact of changing the network con guration be-
tween phases.
SYN256 has 3 phases, each phase performs 2-D mesh

communications along 2 dimensions on a 3-D mesh and
has a communication degree 4 while the communication
degree of the entire program is 6. For the COMOPS256
benchmark the point-to-point communication consist of
three phases: ping-pong, 2-D ghost cell update, and
3-D ghost cell update. Here the topology of the 2-
D communication is not embedded in the topology
of the 3-D communication. Simulations show that for
both programs the message delay of PPP is lower than
PP when using the same number of circuit switching
networks and it decreases much faster than PP when
we increase the number of circuit switching networks.
PPP-Fast does provide an advantage over PPP in some
cases as expected, however, in most cases the connection
establishment can be suf ciently amortized to make PPP
and PPP-Fast equivalent.
The communication degrees of parallel applications

are typically small [6], [44]. Although the maximum
communication degree of some parallel applications can
be very large, the dominant communication degree may
still be small and the low bandwidth connections can
be ltered out with minimal performance loss using a
circuit switch approach [6]. Therefore, we can expect
that 10 or fewer circuit switches are suf cient to serve a
parallel application in most cases.
As previously mentioned, we have primarily reported

message delay as this demonstrates the advantage of
our approach even when the benchmark is not commu-
nication bound, as is the case with many of the NAS
benchmarks. Figure 18 shows the application completion
time with various network con gurations for COMOPS
on 256 processors (Figure 18(a)), which is communi-
cation bound and an example from NAS, SP on 256
processors (Figure 18(b)), which is computation bound.
For the communication bound application, COMOPS,
the improvement in execution time mirrors the improve-
ment in message delay. For the computation bound
application, SP, the completion time improves slightly to
re ect the improvement of the communication, however,
the overall improvement is relatively small. We do not
report PPP for SP as it contains only a single dominant
communication phase.

VI. CONCLUSIONS

In this paper we explore compiler techniques to ob-
tain ef cient communications for MPI applications on
circuit switching networks. A compilation framework
integrating fairly sophisticated analysis is described. In
the framework, communication patterns are identi ed
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Fig. 17. Message delay of COMOPS256, SYN256.

and compiled into network con gurations. This allows
signi cant performance bene ts when connections can
be established in the network prior to the actual commu-
nication operation with relatively few circuit switches.
The framework includes a exible and powerful commu-
nication pattern representation scheme that can capture
the property of communication patterns and allow ma-
nipulation of these patterns. In this way, communication
phases can be detected and logically formulated within
the application. This scheme also provides the power
to easily manipulate the granularity of communication
phases using a set of proposed operations on the pat-
terns. However, we present a speci c phase partitioning
algorithm used to maximize phase duration and mini-
mize connections that cannot be satis ed in the circuit
switch network.
Additionally, we extend the classi cation of static

and dynamic communication patterns and operations
to include persistent communications. Persistent com-
munications cannot be determined statically, however,
they remain unchanged for large segments of the ap-
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Fig. 18. Completion time examples with various network con gura-
tions.

plication execution. An experimental compiler has been
developed to implement this framework using the SUIF
compiler infrastructure.
Applying our experimental compiler on the NAS par-

allel benchmark suite, we found that a large portion
of communications which were previously classi ed as
dynamic [8] are actually persistent. This provides oppor-
tunities for pre-con guring the network to reduce com-
munication overhead. Simulation results show that com-
petitive performance can be achieved through combina-
tion of compiled communication and circuit switching
interconnection networks for multiprocessor systems. In
particular, message delay using compiled communica-
tion and circuit switching can reduce message delay by
37% to 63% using no more than 6 circuit switches when
compared to an idealistic buffered crossbar based packet
switch network.
Finally, we note that the compiled communication con-

cept can be expanded to include non-message-passing
parallel programming models such as distributed shared
memory models that give the appearance of shared
memory but require actual messages to traverse the

network.

REFERENCES
[1] G. Broomell and J. R. Heath, “Classi cation categories and histori-

cal development of circuit switching topologies,” ACM Computing
Surveys (CSUR), vol. 15, no. 2, pp. 95–133, 1983.

[2] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An
Engineering Approach. Margan Kaufmann, 2003.

[3] F. Cappello and C. Germain, “Toward high communication
performance through compiled communications on a circuit
switched interconnection network,” in Proc. of the Int. Symp. on
High Performance Computer Architecture (HPCA), 1995, pp. 44–53.

[4] X. Yuan, R. Melhem, and R. Gupta, “Compiled communication
for all-optical TDM networks,” in Proc. of SC, 1996.

[5] T. Gross, “Communication in iwarp systems,” in Proc. of SC89.
ACM/IEEE, 1989, pp. 436–445.

[6] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. J.
Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao,
C. Stunkel, and P. A. Walker, “On the feasibility of optical circuit
switching for high performance computing systems,” in Proc. of
SC, 2005.

[7] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale
application communication requirements for a recon gurable hy-
bird interconnect,” in Proc. of SC, 2005.

[8] A. Faraj and X. Yuan, “Communication characteristics in the
NAS parallel benchmarks,” in Proc. of the Parallel and Distributed
Computing and Systems Conf. (PDCS), 2002.

[9] J. Vetter and F. Mueller, “Communication characteristics of large-
scale scienti c applications for contemporary cluster architec-
tures,” Journal of Parallel and Distributed Computing, vol. 63, no. 9,
pp. 853–865, September 2003.

[10] N. R. Adiga et al., “An overview of the bluegene/l supercom-
puter,” in Proc. of Supercomputing (SC), 2002.

[11] S. L. Scott, “Synchronization and communication in the t3e mul-
tiprocessor,” in Proc. of ASPLOS-VII, 1996.

[12] S. Habata, K. Umezawa, M. Yokokawa, and S. Kitawaki, “Hard-
ware system of the earth simulator,” Parallel Computing, vol. 30,
no. 12, pp. 1287–1313, 2004.

[13] V. Gupta and E. Schenfeld, “Combining message switching with
circuit switching in the interconnection cached multiprocessor
network,” in Proc. IEEE Int. Symposium on Parallel Architectures,
Algorithms and Networks, 1994.

[14] ——, “Task graph partitioning and mapping in a recon gurable
parallel architecture,” Parallel Processing Letters, vol. 5, no. 4, pp.
563–574, 1995.

[15] D. Chiarulli, S. Levitan, R. Melhem, J. Taza, and G. Graven-
streter, “Partitioned optical passive star (pops) multiprocessor
interconnection networks with distributed control,” IEEE Journal
of Lightwave Technology, vol. 14, no. 7, pp. 1601–1612, 1996.

[16] G. Gravenstreter and R. Melhem, “Realizing common commu-
nication patterns in partitioned optical passive stars (pops) net-
works,” IEEE Transactions on Computers, vol. 47, no. 9, pp. 998–
1013, 1998.

[17] P. Dowd et al., “Lightning network and system architecture,”
Journal of Lightwave Technology, vol. 14, pp. 1371–1387, 1996.

[18] A. K. Kodi and A. Louri, “Rapid: Recon gurable and scalable all-
photonic interconnect for distributed shared memory multipro-
cessors,” IEEE/OSA Journal of Lightwave Technology, vol. 22, no. 9,
pp. 2101–2110, 2004.

[19] ——, “Design of a high-speed optical interconnect for scalable
shared memory multiprocessors,” IEEE Micro, vol. 25, no. 1, pp.
41–49, 2005.

[20] ——, “A new technique for dynamic bandwidth re-allocation in
optically interconnected high-performance computing systems,”
in IEEE Symposium on High-Performance Interconnects, 2006.

[21] P. C. et al, “Design and nonlinear servo control of mems mirrors
and their performance in a large port-count optical switch,”
Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 261–
273, April 2005.

[22] T. Yamamoto, J. Yamaguch, R. Sawada, and Y. Uenishi, “Devel-
opment of a large-scale 3d mems optical switch module,” NTT
Technical Review, vol. 1, no. 7, pp. 37–42, October 2003.

[23] Z. Ding, R. Hoare, A. Jones, D. Li, S. Shao, S. Tung, J. Zheng,
and R. Melhem, “Switch design to enable predictive multiplexed
switching in multiprocessor networks,” in Proc. of the Int. Parallel
and Distributed Procssing Symp. (IPDPS), 2005.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON 16

[24] S. Shao, A. K. Jones, and R. Melhem, “A compiler-based commu-
nication analysis approach for multiprocessor systems,” in Proc.
of the Int. Parallel and Distributed Procssing Symp. (IPDPS), 2006.

[25] D. Shires, L. Pollock, and S. Sprenkle, “Program ow graph
construction for static analysis of mpi programs,” in Proc. of
Int. Conf. on Parallel and Distributed Processing Techniques and
Applications(PDPTA), June 1999.

[26] S.-Y. Ho and N.-W. Lin, “Static analysis of communication
structures in parallel programs,” in Proc. of the Int. Computer
Symp.(ICS), 2002, pp. 215–221.

[27] MPI: A Message-Passing Interface Standard, Message Passing Inter-
face Forum, June 1995.

[28] D. Bailey, T. Harris, W. Sahpir, and R. van der Wijingaart, “The
NAS parallel benchmarks 2.0,” Numerical Aerodynamic Simula-
tion Facility, NASA Ames Research Center, Tech. Rep. NAS-95-
020, December 1995.

[29] H. G. Dietz and T. Mattox, “Compiler techniques for at neigh-
borhood networks,” in Proc. of 13th Int. Wrokshop on Languages and
Compilers for Parallel Computing, 2000.

[30] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture
and compiler for scalable on-chip communication,” IEEE Trans.
on Very Large Scale Integration Systems (TVLSI), vol. 12, no. 4, pp.
711–726, July 2004.

[31] D. Lahaut and C. Germain, “Static communcations in parallel
scienti c programs,” in Proc. of PARLE, 1994.

[32] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architec-
tural requirements of parallel scienti c applications with explicit
communication,” ACM Computer Architecture News, vol. 21, no. 2,
pp. 2–13, May 1993.

[33] R. R. Hoare, Z. Ding, and A. K. Jones, “Level-wise scheduling
algorithm for fat tree interconnection networks,” in Proc. of Su-
percomputing, 2006.

[34] V. Delaluz, M. Kandemir, N. Vijakrishnan, A. Sivasubramaniam,
and M. J. Irwin, “Dram energy management using software and
hardware directed power mode control,” in IEEE International
Symposium on High-Performance Computer Architecture, 2001, pp.
159–169.

[35] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarsinghe, J. M.
Anderson, S. W. K. Tjiang, S. W. Liao, C. W. Tseng, M. W.
Hall, M. S. Lam, and J. L. Hennessy, “Suif: An infrastructure
for research on parallelizing and optimizing compilers,” ACM
SIGPLAN Notices, vol. 29, no. 12, pp. 31–37, December 1994.

[36] P. Pavlo, G. Vahala, and L. Vahala, “Higher order isotropic
velocity grids in lattice methods,” Physics Review Letters, vol. 80,
p. 3960, 1998.

[37] A. MacNab, G. Vahala, P. Pavlo, L. Vahala, and M. Soe, “Lattice
boltzmann model for dissipative incompressible mhd,” in 28th
EPS Conference on Contr. Fusion and Plasma Phys, vol. 25A, June
2001, pp. 853–856.

[38] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture
of a high radix router,” in Proc. of ISCA, 2005, pp. 420–431.

[39] C. B. Stunkel, J. Herring, B. Abali, and R. Sivaram, “A new switch
chip for ibm rs/6000 sp systems,” in Proc. of SC, 1999.

[40] T. Hoe er, P. Kambadur, R. L. Graham, G. Shipman, and A. Lums-
daine, A Case for Standard Non-blocking Collective Operations, ser.
Lecture Notes in Computer Science. Springer, 2007, vol. 4757,
pp. 125–134.

[41] L. Gharai, C. Perkins, and T. Lehman, “Packet reordering, high
spped networks and transport protocol performance,” in Proc. of
the IEEE International Conference on Computer Communications and
Networks (ICCCN), 2004, pp. 73–78.

[42] P. Balaji, W. Feng, S. Bhagvat, D. K. Panda, R. Thakur, and
W. Gropp, “Analyzing the impact of supporting out-of-order
communication on in-order performance with iwarp,” in Proc. of
SuperComputing (SC), 2007.

[43] LLNL, “The asci comops benchmark code,” Lawerence Livermore
National Laboratory Website,
http://www.llnl.gov/.

[44] J. Kim and D. J. Lilja, “Characterization of communication pat-
terns in message-passing parallel scienti c application programs,”
in Proc. of the Second Int. Workshop on Network-Based Parallel
Computing: Communication, Architecture, and Applications, G. Goos,
J. Hartmanis, and J. Leeuwen, Eds., 1998, pp. 202–216.

PLACE
PHOTO
HERE

Shuyi Shao received a B.S. and a M.S. degree in
computer science from Xi’an Jiaotong Univer-
sity, China, in 1996 and 1999, respectively. He is
currently pursuing the Ph.D. degree at the Uni-
versity of Pittsburgh, PA. His research interests
include high performance computing, compiler,
and architecture. He is a student member of
IEEE.

PLACE
PHOTO
HERE

Alex K. Jones received his B.S. in 1998 in
Physics from the College of William and Mary
in Williamsburg, Virginia. He received his M.S.
and Ph.D. degrees in 2000 and 2002, respec-
tively, in Electrical and Computer Engineering
at Northwestern University. He is currently an
Assistant Professor of Electrical and Computer
Engineering and Computer Science at the Uni-
versity of Pittsburgh, Pennsylvania. He was
formerly a Research Associate in the Center
for Parallel and Distributed Computing and

Instructor of electrical and computer engineering at Northwestern Uni-
versity. He is a Walter P. Murphy Fellow of Northwestern University,
a distinction he was awarded twice. Dr. Jones research interests in-
clude compilation techniques for behavioral and low-power synthesis,
embedded systems, radio frequency identi cation (RFID), and high
performance computing. He is the author of over 50 publications
in these areas. Dr. Jones has served on several conference program
committees including the International Conference on Parallel Process-
ing, the Parallel and Distributed Computing and Systems Conference,
and the Workshop for Large Scale Parallel Processing at IPDPS. He
has served as associate editor for several journals including ACM
Transactions on Design Automation for Electronic Systems and Parallel
Processing Letters. He is currently a member of the IEEE and the ACM
and is serving on the executive committee of the ACM Special Interest
Group in Design Automation.

PLACE
PHOTO
HERE

Rami Melhem received a B.E. in Electrical
Engineering from Cairo University in 1976, an
M.A. degree in Mathematics and an M.S. de-
gree in Computer Science from the University
of Pittsburgh in 1981, and a Ph.D. degree in
Computer Science from the University of Pitts-
burgh in 1983. He was an Assistant Professor at
Purdue University prior to joining the faculty
of The University of Pittsburgh in 1986, where
he is currently a Professor of Computer Science
and Electrical Engineering and the Chair of the

Computer Science Department. His research interests include Op-
tical Networks, High Performance Computing, Real-Time and Fault-
Tolerant Systems and Parallel Computer Architectures. Dr. Melhem
served on program committees of numerous conferences and work-
shops. He was on the editorial board of the IEEE Transactions on
Computers and the IEEE Transactions on Parallel and Distributed
systems. He is serving on the advisory boards of the IEEE technical
committees on Computer Architecture. He is the editor for the Springer
Book Series in Computer Science and is on the editorial board of the
Computer Architecture Letters, The International Journal of Embedded
Systems and the Journal of Parallel and Distributed Computing. Dr.
Melhem is a fellow of IEEE and a member of the ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


