
H-WSNMS: A Web-Based Heterogeneous Wireless Sensor Networks Management
System Architecture

Wei Zhao, Yao Liang, Qun Yu, and Yan Sui
Department of Computer and Information Science

Indiana University - Purdue University Indianapolis
yliang@cs.iupui.edu, {zhao9, qunyu, yansui}@iupui.edu

Abstract―As heterogeneous wireless sensor networks (WSNs) are
being widely deployed for various applications, we are faced with
a new challenge of network management for heterogeneous WSNs.
On one hand, current available WSN management tools are either
application specific, or platform specific, thus suffering from the
lack of reusability in heterogeneous WSNs management
environment. On the other hand, to develop a new WSN
management system for heterogeneous WSNs from scratch is time
consuming and may not be feasible. In this paper, motivated by
such a challenge, we propose a novel WSN management system
architecture targeted for heterogeneous WSNs (H-WSNMS). By
introducing the concept of Virtual Command Set, H-WSNMS
decouples management functions for specific WSN applications
from the individual WSN platforms. Therefore, H-WSNMS
facilitates the reuse of each individual WSN’s preliminary
management command service as much as possible, and at the
same time, presents to users a unified management interface across
multiple WSNs. We demonstrate H-WSNMS architecture though
design and implementation of a prototype system.

Keywords: management system; heterogeneous WSN;
 component

 I. INTRODUCTION
As wireless sensor network (WSN) technology is

maturing, it has become an increasingly important and
irreplaceable approach for data collection and processing of
wide range applications, including spatial and geographical
surveillance, environmental monitoring, machinery
performance and malfunction monitoring, habitat
monitoring, medical care and battle field surveillance.
Usually battery-powered, sensor nodes are inherently power
constrained and error prone, especially in harsh and
dynamic environments. It is a challenge to make sure that
sensor nodes perform correctly, and for some advance
applications, work cooperatively with balanced workloads.
Moreover, the job of WSN’s daily operation, maintenance
and the changes of application tasks should also be
conducted easily and efficiently. Thus, it is necessary and
important to have an effective WSN management system in
deployment to address the above issues. Currently, some

WSN management systems are available with some
commercial WSN products, such as MoteView [1] for
TinyOS [2] based motes. However, the functionality of such
WSN management products is quite limited, and may not be
adequate for given applications. For richer functionality,
researchers usually choose to develop their own application-
specific management systems, like [3], [4], [5] dedicated for
power management and [6], [7], [8], [9] for faulty
detection, or management system implemented on specific
system software, like SenOS [10], RMTool [11], designed
for SenOS and RNTOS, respectively. While this approach
can meet the users own application-specific management
requirements, the management system’s development is
time consuming and not cost-effective. Moreover, WSN
applications are becoming more diverse, and accordingly,
management functions are also getting increasingly complex
in order to meet different requirements of diverse WSN
applications. To address those problems, in this paper, we
propose a web-based Heterogeneous Wireless Sensor
Networks Management System architecture (H-WSNMS).
Our H-WSNMS is a systematic framework of WSN
management aimed at the following goals: (1) decoupling
WSN management functions from WSN’s applications, so
that existing WSN management systems (e.g., MoteView)
can be used and extended seamlessly to adapt various and
dynamic application requirements with minimal effort and
to hide those extension details from end-users; and (2)
facilitating future heterogeneous WSNs environment with a
unified management system for users where each individual
WSN may adopt different platforms, network protocols, and
gateway technologies. With H-WSNMS, it would be
basically unnecessary to develop a new management system
for a given specific WSN application from scratch, if one
can apply some available WSN management system,
combined with necessary extension through H-WSNMS
architecture.

Currently, as the development of WSN management
systems is not standardized, their functionality is usually
limited and specific to given applications. For example,
SNMS [12] provides support for collection of network

2009 International Conference on Network-Based Information Systems

978-0-7695-3767-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NBiS.2009.81

155

information, but lacks on-line reconfiguration function;
TinyCubus [13] includes a configuration engine and data
management but no network monitoring; [14] provides data
acquisition with support of a local database, but without
reconfiguration. Moreover, none of the above WSN
management systems supports heterogeneous WSNs, in
which individual sensor networks use different operating
systems (for example, TinyOS and MANTIS [15]), network
protocols and gateway technologies. Due to its flexible and
component-based structure, H-WSNMS can directly support
network management for heterogeneous WSNs, and provide
rich (or tailored) functionality ranging from Sensor Network
Monitoring and Reconfiguration, to Data Query, each
working as an independent component. In the following
sections, we present the architecture of H-WSNMS in
Section II. We present a WSN management design example
to demonstrate the proposed H-WSNMS in Section III. We
present the Data Query component of H-WSNMS in Section
IV. Finally, conclusions and future work are given in
Section V.

 II. OVERALL ARCHITECTURE OF H-WSNMS
 SYSTEM

A key concept introduced in H-WSNMS is its Virtual
Commands Set (VCS). By VCS, each management function
is deemed to be realized by a Virtual Command or a
sequence of Virtual Commands from the VCS. On the other
hand, each individual Virtual Command could be either
partially or completely mapped to a combination of some
existing Command Services under the given WSN gateway
(with its preliminary management Command Services), as
shown by Fig. 1.

In Fig.1, each plane presents a concrete WSN gateway
Command Service, to which H-WSNMS maps some Virtual
Commands, indicated by black nodes. The grey circles
drawn inside the VCS represent those commands without
counter parts available in the given WSN gateway system.
Therefore, the WSN gateway Command Services need to be
extended, which will be discussed in Section IV. To realize
the mapping from a subset of Virtual Command Set to a
concrete WSN gateway Command Service, H-WSNMS
adopts a client-server architecture with three tiers (see
Fig.1). The top/client tier is the composition of different
WSN management components, each of which is tailored
for application requirements and independently performs
some specific functions that clients define. The
bottom/gateway tier consists of, in general, multiple
heterogeneous WSN gateways associated with their
preliminary management Command Services. The
middle/agent tier is the core of our proposed H-WSNMS
architecture that is responsible for interpreting and mapping
each Virtual Command from VCS into a concrete WSN
gateway Command Service(s). The agent tier contains a

group of Agent Servers, each of them provides a
communication channel between a management component
at the client tier and a WSN gateway at the gateway tier. At
the same time, each Agent Server is a command interpreter
for a subset of VCS. This way, the agent tier in our
proposed H-WSNMS architecture works as an extensible
interface between management components and concrete
WSN gateway(s), and thus decouples network application-
specific management functionalities residing at the client
tier from concrete WSN gateways residing at the gateway
tier, as shown in Fig. 1. Through this agent tier and its VCS,
H-WSNMS can make management components more
reusable across heterogeneous WSN platforms and also
easier to develop, because developers can create
management components based on predefined VCS and be
free from handling the details early on with the variety of
WSN platforms.

 After a Virtual Command is analyzed by an Agent
Server and received by the client tier, an appropriate
command mapping will be established for the selected
underlying WSN gateway with third-part Command
Services or some command extensions. With such three-tier
architecture, the client tier and gateway tier are independent
of each other based on the agent tier, and thus achieve the
scalability from both client and gateway tiers point of view.
To illustrate the H-WSNMS architecture, in the next two
sections, we will present a design example of one WSN
gateway instantiation using Crossbow’s TinyOS based
WSN Xserve [16] gateway. Also, note that because the
functionality of the Data Query in the H-WSNMS system
has its relatively independent structure, we will present the
Data Query separately in Section V.

Figure 1. VCS mapping to multiple existing Command.

156

 III. A WSN MANAGEMENT DESIGN EXAMPLE
 USING H-WSNMS

In this design example, Crossbow’s Xserve is used as
the WSN gateway technology at the gateway tier in the H-
WSNMS architecture as shown in Fig. 2. We demonstrate
the design idea through developing two management
components in the client tier: Monitoring and
Reconfiguration. From the client tier point of view, those
two management components are executed by a subset of
VCS and the execution details are hidden from users. In
general, partial functionality of commands required by
Monitoring and Reconfiguration can be mapped to the
Command Service already provided by Xserve and the rest
functionality has to be implemented through the Xserve
command extension. We will focus on the management
functions that are able be mapped to Xserve first in section
III. A, and present the implementation of Xserve command
extension in Section III. B. The general control and status
information flow in H-WSNMS system is illustrated, in
principle, in Fig. 3 for both Monitoring and
Reconfiguration.

A. WSN gateway mapping

 In the current H-WSNMS system, we map/implement all
the Monitoring functions through Xserve. The collected
status information includes basic information, for example
the node ID, neighbor information, voltage values, and so
on. To tailor the application to maximize the performance
according to practical requirements, users may need to
configure some parameters such as sampling rate, sensor id
or working mode of mote sensors. For example, we may
need to adjust the workload according to their current
remaining power levels, or, in another case, may need to
reset some nodes sending outragous measurements.
Supported by Xserve, there are mainly two types of
commands available: Mote Configuration and Network
Power Management.

Table 1 lists the Virtual Commands implemented.
Partial functionality of our required reconfiguration
commands is not supported by Xserve and thus indicated
with grey color. In, Fig.4, the snapshot of Reconfiguration
UI, the extended commands are indicated with red
rectangular. As illustrated in Fig.3, each command responds
back with an acknowledgement to confirm the correct
acceptance of a command. The only exceptions are
actuation commands. They do not send an
acknowledgement response.

For most real-world WSN applications, retasking is
necessary and thus sensor nodes should be remotely
reprogramming over a wireless multi-hop network after
being deployed in the field. This ability will be an important
function for management systems since sensor networks

Category VCS XCommand Function

Reconfiguration

H_SpRate SET_RATE Set new
Sampling Rate

H_NID SET_NODEID Assign Node ID
H_GID

SET_GROUP

Assign a Node
to new group

 …….

H_CRate Unavailable Set collection rate

H_ECollect Unavailable

Immediately
perform a data

collection from

WSN and store it
to DB

 Power
Management

H_RESET RESET

H_SLEEP SLEEP

H_WAKEUP WAKEUP

 TABLE I. Configuration Commands of VCS

Figure 3. General control and status information flow for
 Monitoring and Reconfiguration .

 Figure 2. Three-tier architecture instantiated by
 Crossbow’s Xserve WSN gateway.

157

may be deployed in inaccessible areas and may scale to
thousands of nodes so that there is no need for on-field
sensor reprogramming, which sometimes is impossible.

B. WSN gateway extensions

In Section III. A, we have presented the functions
implemented by Xserve, which are relatively
straightforward by deploying corresponding mapping Agent
Servers. In this section, we will present the command
extensions for those functions that are not directly supported
by existing Command Service of Xserve. As we have
discussed above, taking advantage of the three-tier structure
of H-WSNMS and its unified interface, we can achieve
more flexibility and reduce dramatically the amount of work
during the development of new function components
required by WSN applications. In the following, we first
briefly review NesC and TinyOS for our implementation of
command extensions, and then present our approach of
command extensions in detail.

1) Introduction to NesC& TinyOS

NesC is a new language for programming structured
component-based applications [17]. The nesC language has
a C-like syntax, but provides some new features, like
concurrency model support, component concept including
its naming and linking mechanisms and event driven
structure. TinyOS is an open-source operating system
programmed in nesC by U.C. Berkeley for embedded
platform. Benefitting from its component-based and event-
driven structure, TinyOS is designed to cope with very
limited on-chip resource, for example, in a WSN
application. To further understand TinyOS and nesC, there
are some important concepts we need to be clarified.
Component: NesC applications are built out of
components. Based on the difference of functionality, there
are two types of components:

- Modules: Implement the application behavior
- Configurations: Wires components together

Interface: Interfaces attached to each component can be
considered as bidirectional “gates”, the only way of
communication between components. To insure runtime
efficiency, components are statically wired together through
their interfaces. Components use and provide interfaces.
Events: Events are time critical, running in response to a
hardware interrupt or signaled by a component. Events can
preempt one another and follow last-in first-out semantics.
Tasks: Tasks are typically posted in response to an event to
handle long background processing jobs. Unlike events,
they are atomic with respect to other tasks (single threaded).
Command: Interfaces consist of commands and events.
Those commands are called by the user of the interface and
implemented by the provider of the interface.

2) Command Extensions

Let us consider how the two new functions, not
originally supported by Xserve, could be added to the H-
WSNMS management system. The key point to illustrate in
this section is that, with H-WSNMS system, such function
extension is not visible from the client tier.

 XServe provides the only entry (i.e., port 9003) for
XCommand inputs. After a command is wrapped in a packet
and injected to wireless mesh network (Xmesh), it will
follow the flow shown in Fig.5. In Fig. 5 there are mainly
two parts of localization information for a XCommand
packet to arrive at the correct mote and the command
handler program branch to executed properly: the first part
is to address information including which group the target
node belongs to and its node address; the second part is the
program entry information for a local application to find the
correct program entry in the existing table. Group ID is an 8
bit value specified in <tos>/apps/Makelocal, which actually
creates a virtual sensor network. The node address is a 16-

 Figure 4. SnapShot of Reconfiguration UI.

158

 Figure 5. XCommand flow illustration.

bit value specified by the make command “make install
<address> micaz” [18]. There are usually three kinds of
node addresses:

 Reserved addresses:
• 0x007E-UART (TOS_UART_ADDR)
• 0xFFFF-Broadcast (TOS_BCAST_ADDR)

 Local address: TOS_LOCAL_ADDRESS

There are two parts of information as payload of the
XCommand packets: the corresponding entry number of the
command and the parameter inputs (for Fig. 5, it is the
sampling rate designated by the user). In our design
example, there exist two command tables based on such two
parts of delivered information on each sensing mote. When
the XCommand packet arrives at its destination, the first
part of the information, the entry number of the
XCommand, will be extracted and used to locally search
against the XCommand table on the mote, for example 0x20
for “XCOMMAND_SET_RATE”. In the next step, the
local application will run an additional check on the
parameter inputs, the second part of the information from
the XCommand packet, such as to locate the correct entry of
second command table. As shown in Fig.5, the command
for configuring sampling rate will be finally executed and
the acknowledge packet will be sent back to base station. In
our application, except for periodic data collection on each
mote, the following functions are needed from the client
side with XCommand:

 Set Collection Rate: push sampled data to a queue
structure and collect all sampled data at the end of each
automatic collection period;

 Enforced Collection: send back all existing data samples
in the queue.

The first function is obviously practical to adapt to
different sensing environment or sensing tasks for a mote or
a group of motes. After a data item is sampled, it is wise for
a deployed WSN to first store it in mote locally than just to
send it back to the data sink immediately to improve power
savings for each mote. We applied a circle queue as
temporal storage space for collected data. Once the queue is
full or its size reaches some threshold based on the pre-
configured collection period, the mote will send all the data
samples currently in that queue back to data sink. In some
cases, a user may need an up-to-date sampling data, so as
there is a need to manually collect all the data in the queue
back in an enforced manner even though the queue is not
full. As we know, TinyOS applies event driven structure,
and thus each function to complete needs to be triggered by
some event as shown below:

 Time.fired->sample
 Sensor.dataready->push
 next; Send.sendDone->pop next
 XCommand.received-> entry searching

In Fig.5, to configure the sampling rate of the sensor
mote (group125, node1458), a corresponding command,
“XCommand_Set_Rate” is injected to Xmesh through
XServe. According to the entry sequent number extracted
from the command packet, a correct program entry is found
from the table and then the component TIMER will be set to
new rate.

 timer = opcode->param.newrate;
 call Timer.stop();
 call Timer.start(TIMER_REPEAT,timer);

159

In this design example, the sequent number space for
Xserve’s XCommand is refined so that we can extend the
two newly added operations, Set Collection Rate and
Enforced Collection, under the same entry as the existing
“XCommand_Set_Rate”. For these two newly added
commands, they will follow the exactly same flow as shown
in Fig. 5. When a new sample is collected, a “data-ready”
event for the corresponding sensor board will occur, and
then the queue will execute a “push” operation. Similarly,
during pop-out period, any time a “sendDone” event occurs,
sampled data is popped out.

event result_t Send.sendDone(TOS_MsgPtr msg, result_t
success) {
 call Leds.greenToggle();
 atomic sending_packet = FALSE;
 atomic counter--;
 dequeue_next++;
dequeue_next %= MESSAGE_QUEUE_SIZE;
 atomic post QueueServiceTask();
 return SUCCESS;
 }

After a command packet arrives at a destination mote, an
“XCommand.received” event occurs, then the entry
searching process will begin.

 IV. DATA QUERY IN H-WSNMS SYSTEM

The data query component in the H-WSNMS collects
and stores all sensed data from multiple heterogeneous
WSNs, and supports data query and retrieval using unified
H-WSNMS Web interface in a real-time fashion. While it is
convenient to store all sensed data in H-WSNMS system’s
central database, referred to as H-WSNMS database, it is
also possible that the sensed data collected from each
individual WSN is stored into its own local database,
referred to as remote WSN database in this paper. For this
reason, H-WSNMS also supports distributed data query and
access from multiple remote WSN databases.

In order to do so, each remote WSN database is
abstracted as a data source. We use a metadata-driven
approach. An XML-based metadata wrapper is created for
each individual data source to describe the data source’s
various aspects including its access method, specific query
form and interface, and format. Moreover, TSA-Data Node
tree, a data integration model for heterogeneous data sources
developed in [19], is adopted to improve the performance of
data query and retrieval and support the scalability of H-
WSNMS when the number of heterogeneous WSNs
increases. In the following, we briefly describe query engine
and access engine of the data query component of the H-
WSNMS.

• Query Engine

This module handles the query evaluations in the TSA-
DataNode tree. Based on the query posed by the user, the
engine determines appropriate TSA-DataNodes with the
help of the search engine and performs the query on the
TSA-DataNode.

• Access Engine

Access Engine acts as a point of contact for data sources
to the H-WSNMMS system. It creates, and maintains
network connections with data sources and retrieves
datasets. The necessary information to define an access
point is clearly defined in our metadata standards.

The process of data query in the H-WSNMS is
illustrated in Fig. 6. When an end-user issues WSN data
query, two scenarios need to be considered: (1) all data
requested are already collected and stored in H-WSNMS
database or a remote database, and (2) all or part of the data
requested still reside at motes. In the first case, it is just a
database access. However, in the second case, we need to
use our extended ‘XCommand’ Enforced Collection
described in Section III. B.

 V. CONCLUSIONS AND FUTURE WORK

To cope with the heterogeneous WSNs and facilitate
command extension over existing command services, we
have proposed a web-based management system architectur-

TD: The time difference between the latest sensor data collection
and the rightmost point of time segment specified by Data Query

 Figure 6. Data query process in H-WSNMS.

160

e, H-WSNMS. The underlying idea of H-WSNMS is to
decouple the development of application-specific
management functions from deployed heterogeneous WSN
platforms and gateway technologies including their
associated preliminary management command services.
This is achieved by introducing a critical “middle/agent” tier
characterized by VCS, in the client-server structure of three
tiers in the H-WSNMS. H-WSNMS architecture not only
directly supports network management for heterogeneous
WSNs, but also facilitates the reuse of each individual
WSN’s preliminary management tool as much as possible,
and at the same time, presents to users a unified interface
across multiple WSNs. This unified management and data
interface would be able to greatly simplify heterogeneous
WSNs’ daily operations and their data access. We illustrated
the H-WSNMS using Xserve mote network through
mapping H-WSNMS’ Virtual Commands to both the
existing Xserve Command Service and the newly extended
Xserve Command Service to realize the full VCS of the H-
WSNMS. Based on those discussions, we can see that the
Agent Servers embedded responsible for mapping of VCS
would enable the logical independence between the client
tier WSN applications, and individual concrete WSN
platforms and technologies made by different venders
and/or research communities. With the extensible VCS
mapping, we can first select a basic set of Virtual
Commands based on one available WSN management tool
and gradually extend the VCS under the same structure and
interface as more WSNs are deployed. From the perspective
of end-users, the management system works as one unified
entity and hides all the WSN platform heterogeneity details
and the implementation of mapping and dynamic command
extensions. H-WSNMS also provides distributed data query
functionality with a unified data portal across all
heterogeneous participating WSNs through its Data Query
component. Our current H-WSNMS prototype is developed
in Java. We plan to extend our prototype system to include
two different WSN platforms and gateway technologies at
the gateway tier to further study and verify our proposed
new H-WSNMS architecture. We also plan to create more
sophisticated management functionality at the client tier by
the composition of a sequence of Virtual Commands.

 ACKNOWLEDGMENT
This work is supported in part by National Science
Foundation under grant CNS-0758372.

REFERENCES

[1] M.Turon, “Mote-View: A Sensor Network Monitoring and

Management Tool,” in Proc. of IEEE EMNET-II Workshop,
May 2005, pp.11-18.

[2] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler, “TinyOS: An Operating System for Wireless
Sensor Networks, ” In Ambient Intelligence, Springer-
Verlag, 2005.

[3] R. Tynan, D. Marsh, D. Okane, and G.M.P. Ohare, “Agents
for Wireless Sensor Network Power Management,” In Proc.
of IEEE ICPPW Conf., June 2005.

[4] N. Ramanathan and M. Yarvis, “A Stream-oriented Power
Management Protocol for Low Duty Cycle Sensor Network
Applications,” in Proc. IEEE EMNET-II Workshop, May
2005.

[5] A.Boulis and M.B. Srivastava, “Node-level Energy
Management for Sensor Networks in the Presence of multiple
Applications,” In Proc. IEEE PERCOM Conf., Mar. 2003.

[6] L.B. Ruiz, I.G. Siqueira, L.B. e Oliveira, H.C. Wong, J.M.S.
Nogueira, and A.A.F. Loureiro, “Fault Management in Event-
Driven Wireless Sensor Networks,” In Proc. ACM MSWIM
Conf., Oct. 2004.

[7] W. L. Lee, A. Datta, and R. Cardell-Oliver, “WinMS:
Wireless Sensor Network Management System, an Adaptive
Policy-based management for Wireless Sensor Networks,”
Tech. Rep. UWA-CSSE-06-001, The University of Western
Australia, June 2006.

[8] C. Hsin and M. Liu, “A Two-Phase Self-Monitoring
Mechanism for Wireless Sensor Networks,” Journal of
Computer Communications special issue on Sensor Networks,
vol.29, no. 4, 2006, pp. 462-476.

[9] N. Ramanathan, E. Kohler, and D. Estrin, “Towards a
Debugging System for Sensor Networks,” International
Journal for Network Management, vol.15, no. 4, 2005, pp.
223-234.

[10] T.H. Kim and S. Hong, “Sensor Network Management
Protocol for State-Driven Execution Environment,” In Proc.
ICUC Conf., Oct. 2003.

[11] H. Cha and I. Jung, “RMTool: Component-Based Network
Management System for Wireless Sensor Networks” In Proc.
4th Consumer Communications and Networking Conf., 2007,
pp.614-618.

[12] G. Tolle and D.Culler, “Design of an Application-Cooperative
Management System for Wireless Sensor Networks,” In Proc.
2th European Workshop on Wireless Sensor Networks
(EWSN), Istanbul, Turkey, January, 2005.

[13] P.J. Marrón, A. Lachenmann, D. Minder, J. Hähner, R.
Sauter, and K. Rothermel, “TinyCubus: A Flexible and
Adaptive Framework for Sensor Networks,” In Proc. 2th
Europ. Workshop on Wireless Sensor Networks, 2005,
pp.278-289.

[14] W.S. Jang, W.M. Healy, M.J. Skibniewski, “Wireless Sensor
Networks as Part of a Web-Based Building Environmental
Monitoring System,” Automation in Construction 17, 2008,
pp. 729-736.

[15] S.Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.
Shucker, C. Gruenwald, A. Torgerson, R. Han, “Mantis OS:
An Embedded Multithreaded Operating System for Wireless
Micro Sensor Platforms,” ACM/Kluwer Mobile Networks &

161

Applications Special Issue on Wireless Sensor Networks, vol.
10, no.4, Aug. 2005.

[16] Xserve User Manual, CrossBow Technology Inc., Available
online at
http://www.xbow.com/Support/Support_pdf_files/Xserve
Users Manual.pdf, accessed in March, 2009.

[17] D. Gay, P. Levis, R.V. Behren, M. Welsh, E. Brewer, D.
Culler, “The NesC Language: A Holistic Approach to
Networked Embedded Systems,” In Proc. ACM SIGPLAN
Conf. on Programming Language Design and
Implementation, June, 2003.

[18] MicaZ DataSheet, CrossBow Technology Inc., Available
online at
http://www.xbow.com/Products/Product_pdf_files/Wireless_p
df/MICAZ_Datasheet.pdf, accessed in March, 2009.

[19] N. Ravindran, Y. Liang, “HIDE – A Web-based Hydrological
Integrated Data Environment,” Proceedings of the SNPD
2007 (8th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing), Vol. 3, pp. 143 – 148, July
30 – Aug. 1, 2007.

162

