
Recitation – Week 4

PRANUT JAIN

CS 1550

Introduction to Operating Systems

Plan for today

• Threads discussion

• Scheduling introduction

Disclaimer

• Slides originally by Andrea for Professor Remzi H.

Arpaci-Dusseau, UNIVERSITY of WISCONSIN-

MADISON

Review: Easy Piece 1

Virtualization

CPU

Memory

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel

Swapping

Allocation

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

Motivation for

Concurrency

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

Motivation

CPU Trend: Same speed, but multiple cores

Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes

• Example: Chrome (process per tab)

• Communicate via pipe() or similar

Pros?

• Don’t need new abstractions; good for security

Cons?

• Cumbersome programming

• High communication overheads

• Expensive context switching (why expensive?)

CONCURRENCY:

Option 2

New abstraction: thread

Threads are like processes, except:
multiple threads of same process share an address space

Divide large task across several cooperative threads

Communicate through shared address space

Common

Programming Models

Multi-threaded programs tend to be structured as:

• Producer/consumer

Multiple producer threads create data (or work) that

is handled by one of the multiple consumer threads

• Pipeline

Task is divided into series of subtasks, each of

which is handled in series by a different thread

• Defer work with background thread

One thread performs non-critical work in the

background (when CPU idle)

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

What state do threads share?

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…

What threads share page directories?

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

IP IP

Do threads share Instruction Pointer?

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP …
Virt Mem

(PageDir A)

IP IP

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP …
Virt Mem

(PageDir A)

IP IP

Share code, but each thread may be executing

different code at the same time

 Different Instruction Pointers

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP …
Virt Mem

(PageDir A)

IP IP

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP …
Virt Mem

(PageDir A)

IP IPSP SP

Do threads share stack pointer?

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

CPU 1 CPU 2

running

thread 1

running

thread 2

RAM

PageDir A

PageDir B

…PTBRPTBR

CODE HEAP
Virt Mem

(PageDir A)

IP IPSP SP

STACK 1 STACK 2

threads executing different functions need different stacks

THREAD VS. Process

Multiple threads within a single process share:

• Process ID (PID)

• Address space

• Code (instructions)

• Most data (heap)

• Open file descriptors

• Current working directory

• User and group id

Each thread has its own

• Thread ID (TID)

• Set of registers, including Program counter and Stack pointer

• Stack for local variables and return addresses
(in same address space)

THREAD API

Variety of thread systems exist

• POSIX Pthreads

Common thread operations

• Create

• Exit

• Join (instead of wait() for processes)

OS Support:

Approach 1

User-level threads: Many-to-one thread mapping

• Implemented by user-level runtime libraries

• Create, schedule, synchronize threads at user-level

• OS is not aware of user-level threads

• OS thinks each process contains only a single thread of control

Advantages

• Does not require OS support; Portable

• Can tune scheduling policy to meet application demands

• Lower overhead thread operations since no system call

Disadvantages?

• Cannot leverage multiprocessors

• Entire process blocks when one thread blocks

OS Support:

Approach 2
Kernel-level threads: One-to-one thread mapping

• OS provides each user-level thread with a kernel thread

• Each kernel thread scheduled independently

• Thread operations (creation, scheduling, synchronization)
performed by OS

Advantages

• Each kernel-level thread can run in parallel on a multiprocessor

• When one thread blocks, other threads from process can be
scheduled

Disadvantages

• Higher overhead for thread operations

• OS must scale well with increasing number of threads

Demo: basic threads

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?

%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process

control

blocks:

T1

%eax: ?

%rip: 0x195

balance = balance + 1; balance at 0x9cd4

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process

control

blocks:

T1

%eax: ?

%rip: 0x195

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process

control

blocks:

T1

%eax: ?

%rip: 0x195

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T1

%eax: ?

%rip: 0x195

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T1

%eax: ?

%rip: 0x195

%eax: ?

%rip: 0x195

Thread Context Switch

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: ?
%rip = 0x195

process

control

blocks:

T2

%eax: 101

%rip: 0x1a2

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 101
%rip = 0x19a

process

control

blocks:

T2

%eax: 101

%rip: 0x1a2

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 101
%eax: 102
%rip = 0x19d

process

control

blocks:

T2

%eax: 101

%rip: 0x1a2

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

process

control

blocks:

T2

%eax: 101

%rip: 0x1a2

%eax: ?

%rip: 0x195

Thread SchedulE #1

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2
State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

process

control

blocks:

T2

%eax: 101

%rip: 0x1a2

%eax: ?

%rip: 0x195

Desired Result!

Another schedule

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: ?

%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process

control

blocks:

T1

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: ?

%rip: 0x195

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process

control

blocks:

T1

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: ?

%rip: 0x195

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process

control

blocks:

T1

%eax: ?

%rip: 0x195

Thread Context Switch

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process

control

blocks:

T2

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process

control

blocks:

T2

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process

control

blocks:

T2

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T2

%eax: ?

%rip: 0x195

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T2

%eax: ?

%rip: 0x195

Thread Context Switch

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x19d

process

control

blocks:

T1

%eax: 101

%rip: 0x1a2

Thread Context Switch

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x19d

process

control

blocks:

T1

%eax: 101

%rip: 0x1a2

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T1

%eax: 101

%rip: 0x1a2

Thread SchedulE #2

• 0x195 mov 0x9cd4, %eax

• 0x19a add $0x1, %eax

• 0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: 101

%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process

control

blocks:

T1

%eax: 101

%rip: 0x1a2

WRONG Result! Final value of balance is 101

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

How much is added to shared variable? 3: correct!

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

add %0x1, %eax

mov 0x123, %eax

mov %eax, 0x123

add %0x2, %eax

mov %eax, 0x123

How much is added? 2: incorrect!

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

mov 0x123, %eax

add %0x2, %eax

add %0x1, %eax

mov %eax, 0x123

mov %eax, 0x123

How much is added? 1: incorrect!

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

How much is added? 3: correct!

Timeline View

Thread 1 Thread 2

mov 0x123, %eax

add %0x2, %eax

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!

Non-Determinism

Concurrency leads to non-deterministic results

• Not deterministic result: different results even with same inputs

• race conditions

Whether bug manifests depends on CPU schedule!

Passing tests means little

How to program: imagine scheduler is malicious

Assume scheduler will pick bad ordering at some point…

What do we want?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123
critical section

More general:
Need mutual exclusion for critical sections
• if process A is in critical section C, process B can’t

(okay if other processes do unrelated work)

Synchronization

Build higher-level synchronization primitives in OS

• Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

Monitors Semaphores

Condition Variables
Locks

Loads
Stores Test&Set

Disable Interrupts

Locks

Goal: Provide mutual exclusion (mutex)

Three common operations:

• Allocate and Initialize
• Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

• Acquire
• Acquire exclusion access to lock;

• Wait if lock is not available (some other process in critical section)

• Spin or block (relinquish CPU) while waiting

• Pthread_mutex_lock(&mylock);

• Release
• Release exclusive access to lock; let another process enter critical section

• Pthread_mutex_unlock(&mylock);

Conclusions

Concurrency is needed to obtain high performance by

utilizing multiple cores

Threads are multiple execution streams within a single

process or address space (share PID and address space, own

registers and stack)

Context switches within a critical section can lead to non-

deterministic bugs (race conditions)

Use locks to provide mutual exclusion

