ting Systems

RECITATION — WEEK 4

PRANUT JAIN

PLAN FOR TODAY

e Threads discussion

* Scheduling introduction

DISCLAIMER

» Slides originally by Andrea for Professor Remzi H.
Arpaci-Dusseau, UNIVERSITY of WISCONSIN-
MADISON

REVIEW: EASY PIECE |

Context Switch

CPU
Schedulers
Virtualization Allocation
, TLBs
i Segmentation
emory | Multilevel
Paging

Swapping

MOTIVATION FOR

CONCURRENCY

10000

3162

1000

316

MHz

100

32

= Intel «IBM « Sun
Clock Frequency vs. Time « AMD - DEC -« Other

e . wm e W wm wm wm ®m w e ms e owm owm e w e e w wm owm msim m ®m wm wm owm wm w e e ® e w wm w 2w e ® = wm wm em wmswm wm e w e ow wm ®m 2w ® weaswm w w =
e - o leye e eor e le o eve e or el e o o -0 o eorr‘ea o lieve el e e =@ ve''® esel e er e e
el T R I I R R

T

http://cacm.acm.org/magazines/2012/4/147359-cpu-db-recording-microprocessor-history/fulltext

MOTIVATION

CPU Trend: Same speed, but multiple cores

Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
Example: Chrome (process per tab)

Communicate via pipe() or similar

Pros?

Don’t need new abstractions; good for security

Cons?

Cumbersome programming
High communication overheads
Expensive context switching (why expensive?)

CONCURRENCY:

OPTION 2

New abstraction: thread

Threads are like processes, except:
multiple threads of same process share an address space

Divide large task across several cooperative threads

Communicate through shared address space

COMMON

PROGRAMMING MODELS

Multi-threaded programs tend to be structured as:

Producer/consumer

Multiple producer threads create data (or work) that
1s handled by one of the multiple consumer threads
Pipeline

Task 1s divided 1nto series of subtasks, each of
which 1s handled 1n series by a different thread

Defer work with background thread

One thread performs non-critical work 1n the
background (when CPU idle)

running running
thread 1 thread 2

What state do threads share?

CPU 1 CPU 2

running running PageDir A
thread 1 thread 2 PageDir B

What threads share page directories?

running running
thread 1 thread 2

CPU 1 CPU 2 RAM

running running PageDir A
thread 1 thread 2 :
_Pa eDir B
PTBR PTBR 2

CPU 1 CPU 2 RAM

running running PageDir A
thread 1 thread 2 :
_Pa eDir B
PTBR PTBR £

Do threads share Instruction Pointer?

CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 :
_Pa eDir B
PTBR PTBR =

S i e 7 I I e

seeir o) OB AT
(PageDir A)

CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 .
_Pa eDir B
PTBR PTBR S

B i e 8 W, g e B v

oeDir) LCODEY AN
(PageDir A)
Share code, but each thread may be executing
different code at the same time

—> Different Instruction Pointers

CPU 1 CPU 2 RAM

running running PageDir A
thread 1 thread 2 || PageDir B
|

ez W

Virt Mem
(PageDir A)

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

'

Virt Mem
(PageDir A)

Do threads share stack pointer?

CPU 1 CPU 2 RAM

running running PageDir A
thread 1 thread 2 || PageDir B
—I

SP
|

Virt Mem
(PageDir A)

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

'

SP

Virt Mem
(PageDir A)

threads executing different functions need different stacks

THREAD VS. PROCESS

Multiple threads within a single process share:
Process ID (PID)

Address space
* Code (1nstructions)
* Most data (heap)

Open file descriptors
Current working directory
User and group 1d

Each thread has its own
Thread ID (TID)

Set of registers, including Program counter and Stack pointer

Stack for local variables and return addresses
(in same address space)

THREAD API

Variety of thread systems exist
POSIX Pthreads

Common thread operations
Create
Exit
Join (1nstead of wait() for processes)

OS SUPPORT:

APPROACH |

User-level threads: Many-to-one thread mapping
Implemented by user-level runtime libraries

» C(Create, schedule, synchronize threads at user-level

OS is not aware of user-level threads
e OS thinks each process contains only a single thread of control

Advantages
Does not require OS support; Portable
Can tune scheduling policy to meet application demands
Lower overhead thread operations since no system call

Disadvantages?
Cannot leverage multiprocessors
Entire process blocks when one thread blocks

OS SUPPORT:

APPROACH 2

Kernel-level threads: One-to-one thread mapping
OS provides each user-level thread with a kernel thread
Each kernel thread scheduled independently

Thread operations (creation, scheduling, synchronization)
performed by OS

Advantages
Each kernel-level thread can run in parallel on a multiprocessor

When one thread blocks, other threads from process can be
scheduled

Disadvantages
Higher overhead for thread operations
OS must scale well with increasing number of threads

DEMO: BASIC THREADS

THREAD SCHEDULE #l

balance = balance + 1; balance at 0x9cd4

%eax:? %eax: ?
%rip: 0x195 %rip: 0x195

THREAD SCHEDULE #l

ax:
%rip: 0x195

THREAD SCHEDULE #l

o€axX: !
Yorip: 0x195

THREAD SCHEDULE #l

ax:
%rip: 0x195

THREAD SCHEDULE #l

o€axX. !
%rip: 0x195

Thread Context Switch

THREAD SCHEDULE #l

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #l

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #l

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #l

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #l

Desired Result!

ANOTHER SCHEDULE

THREAD SCHEDULE #2

o€axX. !
%rip: 0x195

THREAD SCHEDULE #2

ax:
%rip: 0x195

THREAD SCHEDULE #2

o€ax: !
Yorip: 0x195

Thread Context Switch

THREAD SCHEDULE #2

%eax: 101
%rip: 0x19d

THREAD SCHEDULE #2

%eax: 101
%rip: 0x19d

THREAD SCHEDULE #2

%eax: 101
%rip: 0x19d

THREAD SCHEDULE #2

%eax: 101
%rip: 0x19d

THREAD SCHEDULE #2

%eax: 101
%rip: 0x19d

Thread Context Switch

THREAD SCHEDULE #2

%eax: 101
Y%rip: Ox1a2

Thread Context Switch

THREAD SCHEDULE #2

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #2

%eax: 101
%rip: Ox1a2

THREAD SCHEDULE #2

101 %eax: 101 %eax: 101
%rip: Ox1a2 %rip: Ox1a2

WRONG Result! Final value of balance 1s 101

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax

mov %eax, 0x123

mov 0x123, %eax

add %0x2, Y%eax

mov %eax, 0x123

How much 1s added to shared variable?

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov 0x123, %eax

mov %eax, 0x123
add %0x2, %eax

mov %eax, 0x123

How much 1s added?

TIMELINE VIEW

Thread 1 Thread 2

mov 0x123, %eax
mov 0x123, %eax

add %0x2, %eax
add %0x1, %eax

mov %eax, 0x123

mov %eax, 0x123

How much 1s added?

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123
mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

How much 1s added?

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x2, %eax
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov %eax, 0x123

How much 1s added?

NON-DETERMINISM

Concurrency leads to non-deterministic results
Not deterministic result: different results even with same inputs
race conditions

Whether bug manifests depends on CPU schedule!

Passing tests means little

How to program: imagine scheduler 1s malicious

Assume scheduler will pick bad ordering at some point...

WHAT DO WE WAN'T?

Want 3 instructions to execute as an uninterruptable group

That 1s, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax critical section
mov %eax, 0x123

More general:

Need mutual exclusion for critical sections

» 1f process A 1s 1n critical section C, process B can’t
(okay 1f other processes do unrelated work)

SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of 1nstructions across threads

Motivation: Build them once and get them right

MonitorsLOCkS Semaphore

Condition Varnables
Test&Set

[.oads
Disable Interrupts

Stores

Goal: Provide mutual exclusion (mutex)

Three common operations:

e Allocate and Initialize
Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

e Acquire
Acquire exclusion access to lock;

Wait 1f lock is not available (some other process in critical section)
Spin or block (relinquish CPU) while waiting
Pthread mutex lock (&mylock) ;

« Release

Release exclusive access to lock; let another process enter critical section
Pthread mutex unlock (&mylock) ;

CONCLUSIONS

Concurrency 1s needed to obtain high performance by
utilizing multiple cores

Threads are multiple execution streams within a single
process or address space (share PID and address space, own
registers and stack)

Context switches within a critical section can lead to non-
deterministic bugs (race conditions)

Use locks to provide mutual exclusion

