
The Process

1



 Disclaimer: This lecture slide set was initially developed for Operating System course in 

Computer Science Dept. at Hanyang University.

2Youjip Won



How to provide the illusion of many CPUs?

 CPU virtualizing

 The OS can promote the illusion that many virtual CPUs exist.

 Time sharing: Running one process, then stopping it and running another

 The potential cost is performance.

3Youjip Won



A Process

 Comprising of a process:

 Memory (address space)

 Instructions

 Data section

 Registers

 Program counter

 Stack pointer

4Youjip Won

A process is a running program.



Process API

 These APIs are available on any modern OS.

 Create

 Create a new process to run a program

 Destroy

 Halt a runaway process

 Wait

 Wait for a process to stop running

 Miscellaneous Control

 Some kind of method to suspend a process and then resume it

 Status

 Get some status info about a process

5Youjip Won



Process Creation

1. Load a program code into memory, into the address space of the 

process.

 Programs initially reside on disk in executable format.

 OS perform the loading process lazily.

 Loading pieces of code or data only as they are needed during program 

execution.

2. The program’s run-time stack is allocated.

 Use the stack for local variables, function parameters, and return address.

 Initialize the stack with arguments  argc and the argv array of main() 

function

6Youjip Won



Process Creation (Cont.)

3. The program’s heap is created.

 Used for explicitly requested dynamically allocated data.

 Program request such space by calling malloc() and free it by calling 

free().

4. The OS does some other initialization tasks.

 input/output (I/O) setup

 Each process by default has three open file descriptors.

 Standard input, output and error

5. Start the program running at the entry point, namely main().

 The OS transfers control of the CPU to the newly-created process.

7Youjip Won



Loading: From Program To Process

8Youjip Won

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Disk

Loading:
Takes on-disk program
and reads it into the 

address space of 
process

CPU



Process States

 A process can be one of three states.

 Running

 A process is running on a processor.

 Ready

 A process is ready to run but for some reason the OS has chosen not to run it 

at this given moment.

 Blocked

 A process has performed some kind of operation.

 When a process initiates an I/O request to a disk, it becomes blocked and thus 

some other process can use the processor.

9Youjip Won



Process State Transition

10Youjip Won

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate



Data structures

 The OS has some key data structures that track various relevant pieces 

of information.

 Process list

 Ready processes

 Blocked processes

 Current running process

 Register context

 PCB(Process Control Block)

 A C-structure that contains information about each process.

11Youjip Won



Example) The xv6 kernel Proc Structure

12Youjip Won

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register

int ecx; // Called the counter register

int edx; // Called the data register

int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };



Example) The xv6 kernel Proc Structure (Cont.)

13Youjip Won

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};


