

The 31st IEEE Conference on Virtual-Reality and 3D User Interfaces

EndovasculAR: Utility of Mixed Reality to Segment Large Displays in Surgical Settings

Motivation

Figure 1: Angiography Monitor

- Endovascular surgeries require surgeons to consult many different information streams at once from a single monitor
- Shortcomings: split-attention due to fixed form factor and limited interaction due to sterility constraints
- Proposed solution: segment the large monitor as holographic windows

Works in Progress

LEGO Study

Figure 2: LEGO Study System display modalities

- ❖ 3 modalities: Large display, tablet, mixed reality
- High cognitive load lego building task
- Task performance, NASA-TLX, and SART
- ❖ Semi-structured interviews➤ Preferences

Surgical Ergonomics Study

- Replay surgery
- Surgeons watch the video of the large monitor captured during surgery with the ability to segment and spatially position the segments around a simulated surgical field
- Semi-structured interviews:
 - > General experience
 - > Workflow impact

Design Challenges

- Hands-Free Interaction: Physician hands are occupied and sterile
- Virtual Monitor Occlusion: OR is heavily occupied, occlusion of virtual windows may be common

Conclusion

- Mixed reality may provide better information management in the OR
- Understanding user behavior using the technology will inform design decisions and may improve patient outcomes

ID: 1206

