The World Wide Web
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Server Clusters (1)
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The principle of using a cluster of workstations to implement a Web service.



Server Clusters (2)
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(a) The principle of TCP handoff.



Server Clusters (3)
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(b) A scalable content-aware cluster of Web servers.



Web (Proxy) Caching
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The principle of cooperative caching;
not only caching locally but also at neighborhood



Server Replication
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In a CDN (content distribution network), parts of a document
can come from different sources. Sources are chosen based
on load, location, latency, cost, etc.



Server Replication (2)
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Request handling in a cluster of Domino servers.



Replication Schemes

Scheme Description
A replicator task pulls updates in from a target server, and pushes
Pull-push :
its own updates to that target as well
Pull-pull A replicator task pulls in updates from a target server, and responds
P to update fetch requests from that target
A replicator task only pushes its own updates to a target server, but
Push-only .
does not pull in any updates from the target
pull-only A replicator only pulls in updates from a target server, but does not

give any of its own updates to that target




Publish/subscribe system
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RV = Rendezvous, or consistentcy/synchronization primitives



Events (1)
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Processing listener events for
subscriptions in TIB/Rendezvous.
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Local operating
system



Events (2)
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Processing incoming messages in TIB/Rendezvous.



Processes
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a) Priority scheduling of events through a queue group.

b) A semantically equivalent queue for the queue group with the
specific event objects from (a).



Processes (2)
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Achieved through
multicasting or
unicasting



Reliable Multicasting
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?F PGM forwarded
router

Receivers missed Send NACK Retransmission only to
message complaining receivers

(@) (b) (c)

The principle of PGM (Pragmatic General Multicast)

a) A message is sent along a multicast tree (n nodes, n-1 links: efficient)
b)  Arouter will pass only a single NACK for each message

c) A message is retransmitted only to receivers that have asked for it.



Synchronization (1)
Interesting info: not in exam
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The organization of transactional messaging
as a separate layer in TIB/Rendezvous.



Synchronization (2)
Interesting info: not in exam
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The organization of a transaction in TIB/Rendezvous.



Caching and Replication

Application Application Application

P )
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The position of PAM with respect to security services.



Client Caching (1)

Memory ) Client NFS server
cache application

1
! !

Client-side caching in NFS.



Client Caching (2)

1. Client asks for file

Client Server
~ 2. Server delegates file

Local copy

3. Server recalls delegation

| Updated file

4. Client sends returns file

Using the NFS version 4 callback mechanism to recall file delegation.



Remote Procedure Call (PRC) Failures
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Three situations for handling retransmissions.
The request is still in progress
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Client Caching

Session S 4 Session S,
Client A —— T T
Close
Invalidate
(callback break) File f
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Close
Client B e I Time —»
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The use of local copies when opening a session in Coda.



Client

Cache Invalidation

Clent  _
Invalidate Reply
Server
Invalidate Reply
Clent N/
Time — ™
(a) (b)

a) Sending an invalidation message one at a time.
b) Sending invalidation messages in parallel.



Server Replication

Client
B

Broken
hetwork

Client
A
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Two clients with different copies of the same replicated file.
Network partitions may cause problems and solutions



Disconnected Operation
(network partitions on purpose)

( HOARDING |

Disconnection | | Reintegration
Disconnection completed

g EMULATION)\_}EINTEGRATIO@

Reconnection

The state-transition diagram of a disconnected client
Hoarding = gathering data; emulation = doing operations



Case study: NFS
(network file system) (1)

1. File moved to client

Client Server Client / Server
—
«—— . ¥ ———foufie
I § ? T“* New file
Requests from \ /
clientto access  File stays 2. Accesses are 3 When client is done
remote file on server done on client ' '

file is returned to
server

a) The remote access model.
b) The upload/download model



NFS Architecture (2)
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The basic NFS architecture for UNIX systems.




Communication

Client Server Client Server
LOOKUP
OPEN
LOOKUP READ
I I D
' Lookup name + Lookup hame
«— ¢ e
+ Open file
—READ  Read file data
_ i Read file data e
Time < Time
v v

(@) (b)

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.



Semantics of File Sharing (1)

a) Onasingle processor, when a

read follows a write, the value Client machine #1
returned by the read is the value T
JUSt ertten Prog\ess \ ‘\
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(@) (b)



Semantics of File Sharing (2)

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

Four ways of dealing with the shared files in a distributed system.




File Locking in NFS (1)

Interesting info : not In exam

Operation Description
Lock Creates a lock for a range of bytes
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes
Renew Renew the lease on a specified lock

NFS version 4 operations related to file locking.




File Locking In NFS (2)

Interesting info: not In exam

Current file denial state

NONE READ WRITE BOTH
Request READ Succeed Fail Succeed Succeed
access WRITE Succeed Succeed Fail Succeed
BOTH Succeed Succeed Succeed Fail
(a)
Requested file denial state
NONE READ WRITE BOTH
Current -
ACCESS READ Succeed Fail Succeed Succeed
state WRITE Succeed Succeed Fail Succeed
BOTH Succeed Succeed Succeed Fail

(b)

The result of an open operation with share reservations in NFS.
a)  When the client requests shared access given the current denial state.
b)  When the client requests a denial state given the current file access state.



