The World Wide Web

2. Server fetches

Client machine Server machine document from
local file
Browser Web server / @
A A
0SS
.. 3. Response

. J

1. Get document request

Overall organization of the Web.

Web
server

Server Clusters (1)

Web
server

S

Web
server

v

Front
end

Request T ¥ Response

Web
server

LAN

Front end handles
all incoming requests
and outgoing responses

The principle of using a cluster of workstations to implement a Web service.

Server Clusters (2)

Logically a
single TCP
connection

Response

Request

Client

Front
end

(@)

Web
server

&
Request

(handed off) *

Web
server

(a) The principle of TCP handoff.

Server Clusters (3)

6. Server responses

5. Forward

Web
server

ﬁrﬁ
{ messageS/

Distributor

Other messages
Client Switch 4. Inform
Setup request \ switch

1. Pass setup request

Distributor

to a distributor

(b)

Web
server

3. Hand off
TCP connection

Dis-
patcher

2. Dispatcher selects
server

(b) A scalable content-aware cluster of Web servers.

Web (Proxy) Caching

Web
server

3. Forward request
to Web server

1. Look in
local cache

Web 2. Ask neighboring proxy caches Web

/ Client| [Client| |Client
Web

S
HTTP Get request proxy

Client| |Client| |Client

Client| |Client| |Client

The principle of cooperative caching;
not only caching locally but also at neighborhood

Server Replication

da. Get embedded documents
from local cache or server
(if not already cached)

& |
server x
3. GGet bedded
et embedde 5. Embedded 4b. Embedded

documents
documents documents \

1. Get base document
» Original

senver

2. Document with refs to
embedded documents

In a CDN (content distribution network), parts of a document
can come from different sources. Sources are chosen based
on load, location, latency, cost, etc.

Server Replication (2)

—_—— e e e —

L : Server i
List with servers : |
in cluster 3. Request i :
4 i i
‘Client E 2. Least-loaded i Server | Cluster with
server : | three servers
1. Ask for a i i
server Server |

—_—_— e e — —— -

Request handling in a cluster of Domino servers.

Replication Schemes

Scheme Description
A replicator task pulls updates in from a target server, and pushes
Pull-push :
its own updates to that target as well
Pull-pull A replicator task pulls in updates from a target server, and responds
P to update fetch requests from that target
A replicator task only pushes its own updates to a target server, but
Push-only .
does not pull in any updates from the target
pull-only A replicator only pulls in updates from a target server, but does not

give any of its own updates to that target

Publish/subscribe system

Publ. on A Subs. to A Subs. to A Subs. to A Subs. to B
Publ. on B Subs. to B
Subj: A Subj. B
: A A E A A A
RV lib RV lib RV lib | ' RV lib " RV lib
RV RV RV i I RV ' RV
daemon daemon daemon . daemon | daemon
N y Y | | J |
al . |
- mmmmmoooomoooooe ’ Network
Multicast message /
on A to subscribers Multicast message on B to subscribers

RV = Rendezvous, or consistentcy/synchronization primitives

Events (1)

User-supplied
callback functions

Listener | [Listener T ¥ Fefelrlincek
event A) | eventB B O callbac
Subscription _/j

a5

checker Create and queue
event object

Incoming message

User-created Event| mg_}- v o
listener events queue L—./] = i , \

Processing listener events for
subscriptions in TIB/Rendezvous.

User application

TIB/Rendezvous
middleware

Local operating
system

Events (2)

Create listener event Destroy listener event
1/ Subscription period ’/
|Invoke callback Return from callback
Event object queued Invoking callback i
! T Invoke r::allback
Event object qu%eued Invokihg callback .

Event object queued

x

i Eventis discarded

1
i

!

L
!
|
1
|
|
|
|
!

"t

Message arrives

Processing incoming messages in TIB/Rendezvous.

Processes

Queue group

! Decreasing priority level \\ﬁ
| > | —

et | Subject Subject Subjects Other (B8

ven ! A&B C onl D&E bject !

queue iy ——— oy e |
(A c1) G| | C1
;) i o
| (A2 |
ll fl F

_—
o)
Sty
—
(o]
o

a) Priority scheduling of events through a queue group.

b) A semantically equivalent queue for the queue group with the
specific event objects from (a).

Processes (2)

|
' |
| i
\.___ Ed

B broadcasts template
to these machines

HI A broadcasts
' tuple to these

machines

Partial broadcasting
of tuples and
template tuples

Achieved through
multicasting or
unicasting

Reliable Multicasting

Sender

4

Multicast

/ tree

] Only one
Dﬁ NACK is

?F PGM forwarded
router

Receivers missed Send NACK Retransmission only to
message complaining receivers

(@) (b) (c)

The principle of PGM (Pragmatic General Multicast)

a) A message is sent along a multicast tree (n nodes, n-1 links: efficient)
b) Arouter will pass only a single NACK for each message

c) A message is retransmitted only to receivers that have asked for it.

Synchronization (1)
Interesting info: not in exam

Transaction Rendezvous
library library

Client machine J Client machine] Transaction manager

Appli- Appli- Appli-

cation cation cation

TX
TX lib TX lib TXlib ~"" | daemon
RV lib RV lib RY lib /—f—\
- Rendez- ———— | Rendez- Ej Rendez-
Q’ VOUS T VOUS VOUS

daemon daemon daemon

Network

The organization of transactional messaging
as a separate layer in TIB/Rendezvous.

Synchronization (2)
Interesting info: not in exam

Process P

y

1. Send A Subscribe to C

Transactional \ BEGIN_TRANSACTION

, Transactional Transactional
messaging E’Ub“s_h on A messaging messaging
manager for A Receive” msg <« manager for B manager for C

Publish on B

END_TRANSACTION

t"‘ 2. Send B 3. Commit j
Publish C

A

Network

4 Publish A 4. Publish B

The organization of a transaction in TIB/Rendezvous.

Caching and Replication

Application Application Application

P)

‘ Pluggable Authentication Module

/ \

thUh’jc'lX " Kerberos
authentication authentication
service

The position of PAM with respect to security services.

Client Caching (1)

Memory) Client NFS server
cache application

1
! !

Client-side caching in NFS.

Client Caching (2)

1. Client asks for file

Client Server
~ 2. Server delegates file

Local copy

3. Server recalls delegation

| Updated file

4. Client sends returns file

Using the NFS version 4 callback mechanism to recall file delegation.

Remote Procedure Call (PRC) Failures

Client

Time

XID =1234

XID = 1234

reply

/4

(a)

Three situations for handling retransmissions.
The request is still in progress
The reply has just been returned
The reply was done earlier, but was lost.

a)
b)

c)

Server

kS
| process
| request

‘r.'f
" Cache

=

Client

Time

XID=1234

XID =1234

P=———)

(b)

Server

|
s

% Cache

Client

Time

XID = 1234

reply is lost
N

XID = 1234

P

D=2 |

(©)

Server

f;gache

Client Caching

Session S 4 Session S,
Client A —— T T
Close
Invalidate
(callback break) File f
File QK (no file transfer)
Close
Client B e I Time —»
Session Sp Session SE

The use of local copies when opening a session in Coda.

Client

Cache Invalidation

Clent _
Invalidate Reply
Server
Invalidate Reply
Clent N/
Time — ™
(a) (b)

a) Sending an invalidation message one at a time.
b) Sending invalidation messages in parallel.

Server Replication

Client
B

Broken
hetwork

Client
A

-

Two clients with different copies of the same replicated file.
Network partitions may cause problems and solutions

Disconnected Operation
(network partitions on purpose)

(HOARDING |

Disconnection | | Reintegration
Disconnection completed

g EMULATION)_}EINTEGRATIO@

Reconnection

The state-transition diagram of a disconnected client
Hoarding = gathering data; emulation = doing operations

Case study: NFS
(network file system) (1)

1. File moved to client

Client Server Client / Server
—
«—— . ¥ ———foufie
I § ? T“* New file
Requests from \ /
clientto access File stays 2. Accesses are 3 When client is done
remote file on server done on client ' '

file is returned to
server

a) The remote access model.
b) The upload/download model

NFS Architecture (2)

Client

System call layer

v

Virtual file system
(VFS) layer

v v

Server

Local file _
system interface NFS client

System call layer

v

Virtual file system
(VFS) layer

0 v

Local file
system interface

NFS server

RPC client
stub

RPC server
stub

N

)

Network

The basic NFS architecture for UNIX systems.

Communication

Client Server Client Server
LOOKUP
OPEN
LOOKUP READ
I I D
' Lookup name + Lookup hame
«— ¢ e
+ Open file
—READ Read file data
_ i Read file data e
Time < Time
v v

(@) (b)

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.

Semantics of File Sharing (1)

a) Onasingle processor, when a

read follows a write, the value Client machine #1
returned by the read is the value T
JUSt ertten Prog\ess \ ‘\
b) Inadistributed system with /
caching, obsolete values may be 2 Wiite"c" 1. Readat’
retu rned File server
' Original file
Single machine J
‘ alb

Process
A \“ n 3. Read gets "ab"
a C
‘/ Client machine #2

Process \ ‘a b |4
B
Process
C B

1. White "c¢" 2. Read gets "abc"

(@) (b)

Semantics of File Sharing (2)

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

Four ways of dealing with the shared files in a distributed system.

File Locking in NFS (1)

Interesting info : not In exam

Operation Description
Lock Creates a lock for a range of bytes
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes
Renew Renew the lease on a specified lock

NFS version 4 operations related to file locking.

File Locking In NFS (2)

Interesting info: not In exam

Current file denial state

NONE READ WRITE BOTH
Request READ Succeed Fail Succeed Succeed
access WRITE Succeed Succeed Fail Succeed
BOTH Succeed Succeed Succeed Fail
(a)
Requested file denial state
NONE READ WRITE BOTH
Current -
ACCESS READ Succeed Fail Succeed Succeed
state WRITE Succeed Succeed Fail Succeed
BOTH Succeed Succeed Succeed Fail

(b)

The result of an open operation with share reservations in NFS.
a) When the client requests shared access given the current denial state.
b) When the client requests a denial state given the current file access state.

