Squeezed Convolutional Variational AutoEncoder

Presenter: Keren Ye

Background - Anomaly detection

No labels for defects and malfunctions

A diagnosis of the behavior pattern of processes

- Assumed that an abnormal behavior pattern means an anomaly
Background - Edge computing

Cloud-based approach

- Central server to process data

Edge-based approach

- Receiving more attention
- Real time inference on edge devices
- Low costs in communication compared to cloud-based
- Reduces the burden on communication and computer infrastructure
- Neural networks (NN): compute and memory intensive, yet NN performs well
Contribution - SCVAE

Unsupervised

• labeled data is not required

Time series sensor data

• a practical case of Industrial Internet of Things (IIoT)

Anomaly detection

• Proposed to use a specific NN model to handle the problem
Contribution - SCVAE

Edge computing

- Propose ways to reduce model size and inference time on edge devices

Evaluation

- Match-General metric for unlabeled data
Related work - DL based anomaly detection

Variational AutoEncoder (VAE)

- Model the data distribution, then try to reconstruct the data
- Outliers that cannot be reconstructed are anomalous

Generative Adversarial Networks (GAN)

- G model: generate data to fool D model
- D model: determine if the data is generated by G or from the dataset

Related work - DL based anomaly detection

Variational AutoEncoder (VAE)

- The label is the same as the input
- Outliers cannot be reconstructed

Image credit (left): Introduction to Principal Component Analysis (PCA)
https://docs.opencv.org/3.1.0/d1/dee/tutorial_introduction_to_pca.html

Image credit (right): Keras Tutorial: Content Based Image Retrieval Using a Convolutional Denoising Autoencoder
Related work - Time series data

Fault Detection and Classification Convolutional Neural Networks

- CNN’s receptive field was matched to the multivariate sensor signal
- The CNN filter was moved along the time axis to extract meaningful features from the sensor data

CNN demo: [LINK]

Note: the kernel is learnable

Related work - Time series data

Benefits of using CNN

- 1D conv filter along the time axis can fill out missing value using historical information
- 1D conv filter along the sensors axis can fill out missing value using data from other sensors
- 2D convolutional filter utilizes both information

Autoregression is a special case of CNN

- 1D conv filter, kernel size equals the input size

Related work - Edge computing

Reduce both the size and inference time

- Pruning and weight quantization (Deep compression)
- Modified CNN structure (SqueezeNet, MobileNet)

SqueezeNet (MobileNet is similar)

- Fire module: decompose a conv layer to a squeeze layer and an expand layer

Method - CNN-Variational Autoencoder

Input data - expressed in the form of 2D image data

- # of features
- Time windows
Method - CNN-Variational Autoencoder

Network architecture

\[\text{Anomaly Score} = 1 - E_{q_\theta(z|x_i)}[p_\phi(x_i|z)] \]

Explanation (Inference)

- Use input x to generate latent factor z
- Use z to reconstruct the distribution of x
- If x is not (a pre-defined threshold) from the distribution, it means x is an outlier
- During training, the label is x itself
Method - Squeezed Architecture

Substitute conv layer to Fire modules used in SqueezeNet

- Squeeze layer: 1x1 conv filter
- Extend layer: 1x1 conv filter, 3x3 conv filter

For example, 100x100x3 2D image

- Squeeze layer: 1x1 conv filter may map the image to gray scale, output=100x100x1 (but you could use multiple such filters, e.g. 64)
- Extend layer: 1x1 conv filter do a one-on-one mapping, while 3x3 conv filter may have smooth effect (smooth operation on the gray scale image)
Experiment

Performance compared to baseline (IF, LOF, OCSVM, EE) on labeled data

Performance for unlabeled real world Computer Numerical Control (CNC) data

Model size and inference time
Experiment - labeled data

Dataset

- Ozone, Occupancy

Label

- Ozone: normal / ozone day
- Occupancy: someone in the office room or not

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Samples</th>
<th># of Features</th>
<th>Anomaly Ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ozone</td>
<td>2536</td>
<td>73</td>
<td>2.87</td>
</tr>
<tr>
<td>occupancy</td>
<td>8143</td>
<td>6</td>
<td>21.23</td>
</tr>
</tbody>
</table>

TABLE III. TIMESERIES LABELED DATASET

Experiment - labeled data

Dataset

- Ozone, Occupancy

Evaluation

- Metric: Area under the precision-recall curve (PRAUC)
- Anomaly labels are included in these dataset, yet not used during training

<table>
<thead>
<tr>
<th>Dataset (Time Window)</th>
<th>IF</th>
<th>LOF</th>
<th>OCSVM</th>
<th>EE</th>
<th>SCVAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ozone(4)</td>
<td>85.71</td>
<td>88.72</td>
<td>88.18</td>
<td>86.21</td>
<td>95.35</td>
</tr>
<tr>
<td>ozone(8)</td>
<td>83.02</td>
<td>83.27</td>
<td>80.06</td>
<td>81.99</td>
<td>96.89</td>
</tr>
<tr>
<td>ozone(16)</td>
<td>68.05</td>
<td>68.83</td>
<td>64.70</td>
<td>69.26</td>
<td>81.78</td>
</tr>
<tr>
<td>occupancy(4)</td>
<td>95.93</td>
<td>74.07</td>
<td>80.99</td>
<td>99.17</td>
<td>98.54</td>
</tr>
<tr>
<td>occupancy(8)</td>
<td>96.81</td>
<td>74.89</td>
<td>81.19</td>
<td>98.76</td>
<td>99.10</td>
</tr>
<tr>
<td>occupancy(16)</td>
<td>96.62</td>
<td>75.57</td>
<td>78.39</td>
<td>99.21</td>
<td>99.23</td>
</tr>
</tbody>
</table>

TABLE IV. PRAUC COMPARISON ON TIMESERIES LABELED DATASET

Experiment - unlabeled CNC data

Metric - Match-general

- common labels are created and evaluated as actual labels.
- Anomaly in common labels are labeled as anomaly if the 3 or more of the 6 models identify the label as anomaly.
- The higher the better

CNC Dataset

<table>
<thead>
<tr>
<th>CNC</th>
<th># of Samples</th>
<th># of Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>258697</td>
<td>31</td>
</tr>
<tr>
<td>B</td>
<td>310174</td>
<td>43</td>
</tr>
<tr>
<td>C</td>
<td>111770</td>
<td>43</td>
</tr>
<tr>
<td>D</td>
<td>602075</td>
<td>37</td>
</tr>
</tbody>
</table>

TABLE V. CNC Dataset
Experiment - unlabeled CNC data

<table>
<thead>
<tr>
<th>CNC</th>
<th>IF</th>
<th>LOF</th>
<th>OCSVM</th>
<th>EE</th>
<th>CNNVAE</th>
<th>SCVAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(4)</td>
<td>0.9435</td>
<td>0.9565</td>
<td>0.4806</td>
<td>0.9532</td>
<td>0.9435</td>
<td>0.9371</td>
</tr>
<tr>
<td>A(8)</td>
<td>0.9677</td>
<td>0.9323</td>
<td>0.6484</td>
<td>0.9645</td>
<td>0.9290</td>
<td>0.9355</td>
</tr>
<tr>
<td>A(16)</td>
<td>0.9516</td>
<td>0.9516</td>
<td>0.4532</td>
<td>0.9548</td>
<td>0.9355</td>
<td>0.9387</td>
</tr>
<tr>
<td>B(4)</td>
<td>0.9413</td>
<td>0.9329</td>
<td>0.3208</td>
<td>0.9329</td>
<td>0.9665</td>
<td>0.9665</td>
</tr>
<tr>
<td>B(8)</td>
<td>0.9266</td>
<td>0.9350</td>
<td>0.2180</td>
<td>0.9392</td>
<td>0.9686</td>
<td>0.9602</td>
</tr>
<tr>
<td>B(16)</td>
<td>0.9476</td>
<td>0.9476</td>
<td>0.3585</td>
<td>0.9434</td>
<td>0.9560</td>
<td>0.9560</td>
</tr>
<tr>
<td>C(4)</td>
<td>0.9686</td>
<td>0.9507</td>
<td>0.5695</td>
<td>0.9327</td>
<td>0.9507</td>
<td>0.9327</td>
</tr>
<tr>
<td>C(8)</td>
<td>0.9552</td>
<td>0.9462</td>
<td>0.8565</td>
<td>0.9462</td>
<td>0.9372</td>
<td>0.9552</td>
</tr>
<tr>
<td>C(16)</td>
<td>0.9507</td>
<td>0.9507</td>
<td>0.4215</td>
<td>0.9417</td>
<td>0.9507</td>
<td>0.9596</td>
</tr>
<tr>
<td>D(4)</td>
<td>0.9444</td>
<td>0.9493</td>
<td>0.6221</td>
<td>0.9493</td>
<td>0.9510</td>
<td>0.9510</td>
</tr>
<tr>
<td>D(8)</td>
<td>0.9535</td>
<td>0.9419</td>
<td>0.7467</td>
<td>0.9452</td>
<td>0.9485</td>
<td>0.9568</td>
</tr>
<tr>
<td>D(16)</td>
<td>0.9394</td>
<td>0.9277</td>
<td>0.1312</td>
<td>0.9377</td>
<td>0.9560</td>
<td>0.9626</td>
</tr>
</tbody>
</table>

TABLE VI. PERFORMANCE(MG) COMPARISON ON CNC DATASET
Experiment - model size and inference time

Baseline: CNN version v.s. SqueezeNet version

- Performance (PRAUC) is similar
- Inference time and memory usage are reduced

<table>
<thead>
<tr>
<th>Model</th>
<th>Learning Time</th>
<th>Inference Time</th>
<th>Memory(Mb)</th>
<th>PRAUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNNVAE</td>
<td>3m 8sec</td>
<td>0.0088</td>
<td>16</td>
<td>98.9</td>
</tr>
<tr>
<td>SCVAE</td>
<td>2m 1sec</td>
<td>0.0060</td>
<td>12</td>
<td>99.2</td>
</tr>
</tbody>
</table>

TABLE VII. COMPARISON BETWEEN SCVAE AND CNN-VAE ON OCCUPANCY(16) DATASET
Conclusion

Unsupervised

- labeled data is not required

Time series sensor data

- a practical case of Industrial Internet of Things (IIoT)

Anomaly detection

- Proposed to use a specific NN model to handle the problem

Edge computing

- Propose ways to reduce model size and inference time on edge devices
Thanks