
Energy-aware scheduling for
asymmetric distributed systems

Mosse: HetCMP+energy

Non-homogeneous systems

• Emerging and attractive alternative to
homogeneous systems
o improved performance and energy efficiency benefits

• Different server types (large/small) are used to
o run each request on a server type that is best suited for it
o satisfy time-varying demands (e.g., compute-intensive or

memory-intensive) of a range of threads

• Different hardware capabilities
o Cache size
o Frequency
o Architecture
o ….

Mosse: HetCMP+energy

Challenges of Distributed Systems

• Assignment: match threads and core/memory
• Dynamic vs static scheduling
• Real-time vs general purpose
• Global vs partitioned scheduling
• Cache partition vs cache sharing
• Inclusive vs exclusive cache
• Bus bandwidth partitioning vs sharing
• Memory allocation
• Memory bank distribution
• …

Mosse: HetCMP+energy

Typical datacenter workload

* Meisner et al. Power management of online data-intensive services.
ISCA 2011

Load fluctuation and power consumption of Web-search
running on Google servers *

(QPS = Queries Per
Second)

Energy consumption is not proportional to the amount of computation!

Mosse: HetCMP+energy

Typical server workload: Twitter

Source: ASPLOS 14, Delimitrou

Introduction
The opportunity

10/29/18 CS3530 - Advanced Topics in
Distributed and Real-time

Deadlines are pessimistic and based on worst-case execution time.

Phase 1 Phase 2 Phase 3

Deadline

Frames over time

X264 Video Encoding on 4 big cores

big LITTLE big

Opportunity to
save energy!!!

Mosse: HetCMP+energy

Big brawny cores achieve lower latency at all load levels

tail latency: meet QoS of 90% of requests…
Web-search running on Intel QuickIA

Performance: latency

But small wimpy cores still meet the QoS at low load using much less power!

Mosse: HetCMP+energy

Insight: Exploit load fluctuation to improve energy
efficiency and meet QoS

Scheduling HetCMP

• Low load: Wimpy cores to reduce
power with satisfactory QoS

Mosse: HetCMP+energy

Scheduling HetCMP

• High load: Brawny cores
to guarantee QoS

Introduction
The opportunity

10/29/18 CS3530 - Advanced Topics in
Distributed and Real-time

Deadlines are pessimistic and based on worst-case execution time.

Phase 1 Phase 2 Phase 3

Deadline

Frames over time

X264 Video Encoding on 4 big cores

big LITTLE big

Opportunity to
save energy!!!

Mosse: HetCMP+energy

• Tension between responsiveness and stability

o Responsiveness

§ short task migration interval quickly reacts, capturing time-
varying workload fluctuations

o Stability

§ Avoid over-reaction to load fluctuations; it can cause
oscillatory behavior

§ Consider system settling time (observe the effects of task
migrations)

Challenges

Responsiveness and stability

Slow reaction… QoS violations!

Fast
reaction!

QoS violations!Over-reaction!!!

Mosse: HetCMP+energy

1) PID control system
opros: well-known control methodology

ocons: parameter tuning via extensive offline app profiling

2) Deadzone-based control system
opros: simple online scheme based on QoS thresholds

ocons: sensitive to threshold parameter selection

Two Designs

• Can either effectively provide high QoS while maximizing
energy efficiency?

• Responsiveness and Stability

Mosse: HetCMP+energy

Design 1: PID control system

monitored
QoS

QoS target
(e.g., 90%-tile
latency)

GOAL: To keep the controlled system running as
close as possible to its specified QoS target

LUCIANO BERTINI – FeBID 2007 – Munich, Germany, May 25th, 2007

QoS Metric / Control Variable

[] pxtardiness =≤Pr

x→ p-quantile

LUCIANO BERTINI – FeBID 2007 – Munich, Germany, May 25th, 2007

QoS Metric / Control Variable

[] pxtardiness =≤Pr

x→ p-quantile

Mosse: HetCMP+energy

PID Control Mapping
• Task-to-core mapping

o Mapping from the continuous PID output to a discrete task-core mapping

• Parameter selection/tuning

o Classical control system method, root locus (Hellerstein et al. 2004), is
used to determine Kp, Ki, Kd parameter

§ Responsiveness and stability

Mosse: HetCMP+energy

Violations

PID control: web-search

QoS

Core
Mapping

Throughput

Design 2: Deadzone State
Machine

QoS alert: QoS variable > QoS target * UP_THR
QoS safe: QoS variable < QoS target * DOWN_THR

The	deadzone	 thresholds	 impact	the	stability	of	the	mapping	algorithm!

Mosse: HetCMP+energy

Stability: deadzone parameters
Web-search execution with UP thr=0.8, DOWN thr=0.3

QoS

Core
Mapping

Throughput

High QoS violations occur due to oscillatory behavior!

Mosse: HetCMP+energy

Another challenge!

Power-efficient cores
(e.g., Intel Atom)

High performance
core (e.g., Intel
Core2 / Xeon)

Shared resource =>
Contention /
bottleneck

Mosse: HetCMP+energy

Benchmark thread characterization

Some observations:
(1) Both MIPS and LLCM can be increased, such as milc (64M LLCM, 2K MIPS)
when compared to mcf (18M LLCM, 0.4K MIPS)

(2) Very similar MIPS can lead to very different LLCM, such as lbm (48M LLCM,
2.4K MIPS) and cactusADM (8M LLCM, 2.3K MIPS)

Mosse: HetCMP+energy

Schedule!

• Having characterized the thread…
• SCHEDULE IT!! No, schedule THEM!!!

• However, there is a problem…

phases….

Mosse: HetCMP+energy

Thread performance demands

Mosse: HetCMP+energy

Schedule!

• NOW I understand the problem AND I have
the better characterization, therefore

• Schedule it! Schedule them!!!
• Bias Scheduling:

o Use memory intensity (LLC miss rate) as a bias to
guide thread scheduling

o highest (lowest) bias threads scheduled on small
(big) cores

Mosse: HetCMP+energy

energy efficiency (SPEC 2006)

Performance-asymmetric multi-core processor:
Quad-core x86_64 processor: big core (3.2Ghz) and small core (0.8Ghz)

Avg. power consumption ("Web Search Using Mobile Cores" ISCA’10):
Big core (Intel Xeon): 15.63 W
Small core (Intel Atom): 1.6 W

Mosse: HetCMP+energy

energy efficiency (SPEC 2006)

bias (LLCM) ~= 13K bias (LLCM) ~= 14K

Very similar bias measures but each thread should run
energy efficiently on different core types

Mosse: HetCMP+energy

energy efficiency (SPEC 2006)

bias (LLCM) ~= 29K

Despite being high memory-intensive (small core bias), bwaves
could run on a big core type for improved energy efficiency

Mosse: HetCMP+energy

Schedule differently!

• NOW I understand the problem AND I have
the better characterization AND bias against
memory intensity doesn’t work, therefore

• Schedule it! Schedule them!!!
• IPC-based Scheduling:

o Use CPU intensity (measured IPC) to guide thread
scheduling

o threads with highest (lowest) IPC scheduled on big
(small) cores

è Different heuristic, different day

Mosse: HetCMP+energy

Trouble in paradise

• single metric cannot clearly characterize
some threads and schedule them to the right
core type

• unawareness of core power usage may
allow suboptimal energy-efficient decisions

• inherently unfair thread scheduling may
cause performance loss (big core monopoly)

Mosse: HetCMP+energy

Return to challenges
• Assignment: match threads and core/memory
• How to characterize threads
§ How to choose counters
§ How many counters
§ Which counters?

• Dynamic vs static scheduling
• Global vs partitioned scheduling
• Cache partition vs cache sharing
• Inclusive vs exclusive cache
• Bus bandwidth partitioning vs sharing
• Memory allocation
• Memory bank distribution

Mosse: HetCMP+energy

Optimization+Control Approach

thread
characte
rization

MODELINGsolution

Prediction
!!!!

Mosse: HetCMP+energy

Integer programming formulation

Mosse: HetCMP+energy

Integer programming formulation

The objective function aims to minimize (in fact, maximize the inverse)
of the energy delay product per instruction, given by Watt / IPS^2;
that is, minimize both the energy and the amount of time required to
execute thread instructions

Mosse: HetCMP+energy

Integer programming formulation

Computational and
memory capacity
constraints

Mosse: HetCMP+energy

Integer programming formulation

Each thread is
assigned to a
given core type

Mosse: HetCMP+energy

Schedule differently!

• NOW I REALLY understand the problem
AND I have the better characterization AND
bias against memory intensity doesn’t work,
therefore I know I have to take into account
both types of counters.

Mosse: HetCMP+energy

Application performance prediction
Oops, forgot something: the performance of a thread

currently running on a given server type when
assigned to run on a different server type?

one approach:
1. collect performance data from a representative set of workloads,

running each thread individually on each core type
2. establish and solve a linear regression model
IPSbig = w1 * IPSsmall + w2 * MPSsmall + w3

IPSsmall = w4 * IPSbig + w5 * MPSbig + w6

other approaches: Machine Learning, statistics, tarot…

Such a performance characterization needs to be done once at design stage.

Prediction	analysis

astar SPEC benchmark bwaves SPEC benchmark

Performance data collected from a small core to predict
the performance on a big core

Mosse: HetCMP+energy

What else????

• Non-volatile memories (PCM? STT-RAM?)
o Hybrid memory architecture
o Migration of pages during runtime
o Smart allocation of pages, cache sizes, bandwidth

• Implementation in the OS scheduler
o Currently we’re using affinity provided by linux
o Modification of the lottery scheduling algorithm
o Ticket inflation based on performance

• Re-inforcement learning scheduler

Mosse: HetCMP+energy

Past work: Proportional Share
Scheduling

• Adapt Lottery Scheduling
o More tickets for more ED gains

• Results/reality: threads can migrate too often
between cores of different types
o threads’ cache affinity is decreased
o excessive migrations may cause performance loss

• Ticket inflation:
o threads that are already running on a big core will

get additional tickets
o help preserve cache affinity

Adding Reinforcement Learning

Project started as a graduateclass project
• “Leveraging reinforcement learning for energy-efficient dynamic thread

assignment in heterogeneous multi-core systems”

What was changed
• Core assignment decided

by the Reinforcement
Learning module

• Any sequence of core
assignments can be
done

Octopusman

App-Monitor

Application

Latency App Statistics

New Core Assignment

User

Hardware

Energy

Deadline

RL

Delay
Core Assignment
Energy

Past Work: Octopus-Man
Reinforcement Learning Module

Reward Function 𝑅 𝑑𝑒𝑙𝑎𝑦, 𝑝𝑜𝑤𝑒𝑟 = 	

𝑣1, 𝐶𝑎𝑠𝑒	1
𝑣2, 𝐶𝑎𝑠𝑒	2
𝑣3, 𝐶𝑎𝑠𝑒	3
𝑣4, 𝐶𝑎𝑠𝑒	4

Case 1: Delay > deadline, but using 4 big cores
𝑣1 = 1

Case 2: Delay > deadline, but reduced tardiness

𝑣2 =	
𝑐𝑢𝑟𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠
𝑝𝑟𝑒𝑣𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠

Case 3: Delay > deadline, no “but”

𝑣3 = −𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠	 ∗	
𝑐𝑢𝑟𝑃𝑜𝑤𝑒𝑟
𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟

Case 4: Delay < deadline

𝑣4 = 1	 −
𝑐𝑢𝑟𝑃𝑜𝑤𝑒𝑟
𝑚𝑎𝑥𝑃𝑜𝑤𝑒𝑟

Mosse: HetCMP+energy

Re-inforcement Learning Scheduler

• Learn how to map actions to situations
o Learning while interacting with the environment
o Maximizing the long term cumulative reward signal
o Appropriate for control loop

• Take more variables/counters into account
o Overhead, selection of counters

• Migration Decision: migrate thread if:
o Long-term reward is good
o Account for response time, fairness, overhead

• Hard to choose good reward function!

Results
Looking at the metrics

10/29/18 CS3530 - Advanced Topics in
Distributed and Real-time

blackscholes bodytrack dijkstra sha x264 Average
POET 52.9562982 0 61.07178969 13.76518219 0 25.55865401
Octopus+RL 5.398457584 0 8.39231547 1.214574899 3.193612774 3.639792145

0
2
4
6
8

10
12
14
16
18
20

Vi
ol

at
io

ns
 (%

)

Percentage of Violations (Baseline and Linux: 0 violations)

POET
Octopus+RL

Results
Looking at the metrics

10/29/18 CS3530 - Advanced Topics in
Distributed and Real-time

0

0.2

0.4

0.6

0.8

1

1.2

En
er

gy
 (

W
)

Total Energy (Normalized to 4 big cores)

POET
Linux
Octopus+RL

Mosse: HetCMP+energy

Return to challenges
• Implementation in real or emulated systems
• Hybrid memories (DRAM+NVM) help/disturb?
• Heuristics derived from optimizations?
• User-level thread migration?

• Old challenges: (1) Assignment: match threads and core/memory;
(2) How to characterize threads; (3) Dynamic vs static scheduling;
(4) Global vs partitioned scheduling; (5) Cache partition vs cache
sharing; (6) Inclusive vs exclusive cache; (7) Bus bandwidth
partitioning vs sharing; (8) Memory allocation; (9) Memory bank
distribution

Mosse: HetCMP+energy

More challenges

• Online thread performance prediction when
running on different core types

• Efficient and specialized heuristics for the
thread assignment problem

• Implementation of our scheme on Linux
o multi-core heterogeneity emulated via frequency

scaling
o management of thread-to-core affinity at user-level

