
Real-time	system	(RTS)	notes	
	
parameters:		

• release	time	(when	the	task	may	start	executing)	
• deadline	(when	the	task	must	finish	executing)	
• period	(the	minimum	time	between	release	times	of	the	same	task)	
• worst	case	execution	time	(how	long	does	it	take,	at	most,	to	finish	a	task	in	a	specific	hardware,	if	

executing	by	itself,	ie,	no	interference)	
• job	or	instance:	an	invocation	of	a	task,	typically	corresponding	to	a	period	
• utilization	=	wcet/period	(loosely	interpreted	as	percentage	of	CPU	a	task	uses)	

	
Hard-real-time	(MUST)	and	soft-real-time	(should)	finish	by	their	respective	task	deadlines	
	
Metrics/criteria	for	RTSs	
	
Define	tardiness	=	deadline	–	finish	time	
HRT:	complete	all	tasks	before	deadline	(ie,	tardiness	<=	0)	
SRT:	minimize	“tardiness”	over	all	tasks	(eg,	average	tardiness,	maximum	tardiness)	
	
In	a	preemptive	single-core	system	with	n	independent	tasks,	Earliest	Deadline	First	scheduling	
guarantees	that	all	tasks	will	meet	deadlines	iff	(if	and	only	if)	the	sum	of	utilizations	<=	1.	
	
For	k	cores,	Global	EDF	(all	tasks	are	considered	at	every	preemption	point,	and	k	tasks	dispatched)	may
be very inefficient. Assume task set where N-1 tasks have wcet = 2e and period = 1-e, where e is a very small
constant, and one task has wcet = 1-e and period 1. under EDF, what happens if there are N-1 cores/cpus to
execute this task set? What is the utilization of this task set? If N grows very large, what happens to
utilization? If there are N cores/cpus, all tasks will finish by their deadlines.
Partitioned EDF (tasks are assigned to cores/processors upon arrival and each runs EDF) does as well as bin-
packing algorithms.
What if all tasks have the same period, what can be said?

For	tasks	with	dependency	in	a	preemptive	single-core	system,	that	is,	can	only	start	task	2	when	
finished	task	1,	if	there	is	a	dependency	between	1	and	2	(like	a	pipeline	or	a	DAG).		ONE	algorithm	to	
transform	this	DAG	into	a	set	of	independent	tasks	is	to	assign	deadlines	to	each	node/task	so	that	they	
execute	in	the	order	required.		So,	if	1-2	is	a	dependency,	task1	must	have	a	deadline	shorter	than	task2	
(so	that	EDF	will	pick	1	before	2).	
What	if	there	are	2	branches		(1-2,	1-3),	does	it	matter	which	task	gets	the	smaller	deadline?		Can	they	get	
the	same	deadline?	
	
For	tasks	with	dependency	in	a	preemptive	multi-core	or	multi-processor	system,	taking	into	
account	the	transmission	of	data	from	task	to	subsequent	task	is	a	concern.		If	tasks	are	in	different	
cores/processors/nodes,	there	are	different	communication	costs.		Also,	if	cores/processors/nodes	have	
different	architectures/capabilities,	the	wcet	of	a	task	will	be	different	depending	on	where	the	task	will	
run.		One	transformation	that	can	be	done	is	to	consider	a	link	between	tasks	as	a	“task”,	so	that	the	
mapping	can	be	done	more	uniformly.				
One	approach	for	determining	allocation	of	tasks	to	processors	is	brute	force,	which	is	not	feasible.		
Therefore	heuristics	are	developed	to	allocate	tasks	to	different	processors.	
	
Communication	issues	when	tasks	are	distributed	abound,	since	there	is	a	requirement	to	deliver	the	
messages	by	a	specific	deadline.			A	common	way	to	schedule	messages	in	a	shared	medium	(like	
wireless)	is	to	use	TDMA,	which	reserves	slots	for	tasks	to	transmit	(and	tasks	only	transmit	in	their	

reserved	slot).			For	single	hop	transmissions,	the	system	can	determine	when	the	message	is	received	
(same	slot	as	it	is	sent)	with	TDMA.		For	multi-hop	transmissions,	to	be	able	to	guarantee	delivery	by	the	
deadline,	the	system	needs	to	know	the	route	and	needs	to	take	into	account	how	to	schedule	slots	for	
every	link	in	the	route.		Typically,	in	TDMA,	the	slots	are	a	little	larger	than	needed	to	accommodate	clock	
skew	and	synchronization.	
An	alternative	scheme	is	to	use	a	token,	whereby	only	the	node	that	has	the	token	can	transmit.		
	
Enforcement: recall that all the schemes above are collaborative. That is, tasks do not violate their
assumptions (eg, amount of data to transmit, wcet). Therefore, it is a good strategy to create mechanisms for
enforcing the assumptions (e.g., the OS interrupts the task after the wcet) or mechanisms of fault tolerance if
enforcement is not possible (not possible for a node to restrict the wireless transmission of another node), such
as using extra resources (e.g,, a different channel).

Other requirements exist, such as SWEPT: size, weight, energy, power, time. The last one is about RTSs, but
all requirements need to be to taken into account in a embedded system, in a cyber-physical system, in a mobile
IOT (internet of things) system. Some of these do not have strict requirements and therefore can use SRT
principles, or even non-real-time (eg, if tasks do not finish before deadlines, it’s inconvenient, but not a big
deal)

