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MAPREDUCE Programming 
Model

 Scaling Data Intensive Application

 MapReduce Framework 
 Map Reduce Data Flow 

 MapReduce Execution Model
 MapReduce Jobtrackers and Tasktrackers 
 Input Data – Splits 
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners



11/21/2016

2

Scaling Data Intensive 
Application – Example 

Word Count

And 1
Because 1
But 1
Can 4
Do 4
Everything 2
I 5
Not 3
Refuse 1
Something 2
Still 1
To 1
Will 1

I can not do 
everything, but 

still I can do 
something; and 

because I cannot 
do everything, I 
will not refuse to 
do something I 

can do

WordCount Program – I
 Define WordCount as Multiset; 
 For Each Document in DocumentSet { 
 T = tokenize(document); 
 For Each Token in T { 
 WordCount[token]++; 
 } 
 } 

 Display(WordCount); 

Program Does NOT Scale for Large Number of 
Documents
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WordCount Program – II
 A two-phased program can be used to speed up 

execution by distributing the work over several 
machines and combining the outcome from each 
machine into the final word count

 Phase I – Document Processing
 Each machine will process a fraction of the document 

set

 Phase II – Count Aggregation
 Partial word counts from individual machines are 

combined into the final word count 

WordCount Program – II
Phase I Phase II
 Define WordCount as 

Multiset; 

 For Each Document in 
DocumentSubset { 
 T = tokenize(document); 
 For Each Token in T { 
 WordCount[token]++; 

 } 

 } SendToSecondPhase( 
wordCount); 

 Define TotalWordCount 
as Multiset; 

 For each WordCount 
Received from Phase I
{ 
 MultisetAdd 

(TotalWordCount, 
WordCount); 

 }
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WordCount Program II – Limitations 
 The program does not take into consideration the 

location of the documents
 Storage server can become a bottleneck, if enough 

bandwidth is not available
 Distribution of documents across multiple machines removes the 

central server bottleneck

 Storing WordCount and TotalWordCount in the 
memory is a flaw
 When processing large document sets, the number of 

unique words can exceed the RAM capacity

 In Phase II, the aggregation machine becomes the 
bottleneck

WordCount Program – Solution
 The aggregation phase must execute in a distributed 

fashion on a cluster of machines that can run 
independently

 To achieve this, functionalities must be added
 Store files over a cluster of processing machines. 
 Design a disk-based hash table permitting processing 

without being limited by RAM capacity. 
 Partition intermediate data across multiple machines 
 Shuffle the partitions to the appropriate machines
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How to Scale Up?

Divide and Conquer

Work

R1 R2 R3

Final Output

Partition

Combine

WorkerWorker “Worker

W2 W3W1
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Parallelization Challenges
 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers fail?

Parallelization Challenges
 Parallelization problems arise from in several 

ways
 Communication between workers, asynchronously
 Workers need to exchange information about  their 

states
 Concurrent access to shared resources,  while preserving 

“state” consistency
 Workers need to manipulate data, concurrently

 Cooperation requires synchronization and 
interprocess communication mechanisms
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Distributed Workers Coordination
 Coordinating a large number of workers in 

a distributed environment is challenging
 The order in which workers run may be 

unknown
 The order in which workers interrupt each other 

may be unknown
 The order in which workers access shared data 

may be unknown
 Failures further compound the problem! 

Classic Models
 Computational Models
 Master and Slaves
 Producers and Consumers
 Readers and Writers

 IPC Models
 Shared Memory –

Threads
 Message Passing 

 To ensure correct execution several mechanisms are needed 
 Semaphores (lock, unlock), Conditional variables (wait, 

notify, broadcast), Barriers, … 
 Address deadlock, livelock, race conditions, ...
 Makes it difficult to debug parallel execution on clusters 

of distribute processors
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MapReduce – Data-Intensive 
Programming Model
 MapReduce is a programming model for processing 

large sets 

 Users specify the computation in terms of a map()
and a reduce() function, 
 Underlying runtime system automatically parallelizes 

the computation across large-scale clusters of machines, 
and

 Underlying system also handles machine failures, 
efficient communications, and performance issues.

 MapReduce is inspired by the map() and fold() 
functions commonly used in functional programming

Typical Large-Data Problem
 At a high-level of abstraction, MapReduce codifies a 

generic “recipe” for processing large data set
 Iterate over a large number of records
 Extract something of interest from each
 Shuffle and sort intermediate results
 Aggregate intermediate results
 Generate final output

Basic Tenet of MapReduce is Enabling a Functional 
Abstraction for the Map() and Reduce() operations

(Dean and Ghemawat, OSDI 2004)

Map

Reduce
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Functional Programming 
Paradigm

MAPREDUCE

Imperative Languages and 
Functional Languages
 The design of the imperative languages is based 

directly on the von Neumann architecture
 Efficiency is the primary concern, rather than the 

suitability of the language for software development

 The design of the functional languages is based on 
mathematical functions
 A solid theoretical basis that is also closer to the user, 

but relatively unconcerned with the architecture of the 
machines on which programs will run
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Fundamentals of Functional 
Programming Languages
 The basic process of computation is fundamentally 

different in a FPL than in an imperative language
 In an imperative language, operations are done and 

the results are stored in variables for later use
 Management of variables is a constant concern and 

source of complexity for imperative programming

 FPL takes a mathematical approach to the concept 
of a variable 
 Variables are bound to values, not memory locations
 A variable’s value cannot change, which eliminates 

assignment as a possible operation

Characteristics of Pure FPLs
 Pure FP languages tend to
 Have no side-effects
 Have no assignment statements
 Often have no variables!
 Be built on a small, concise framework
 Have a simple, uniform syntax
 Be implemented via interpreters rather than compilers
 Be mathematically easier to handle
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Importance of FP
 FPLs encourage thinking at higher levels of 

abstraction
 It enables programmers to work in units larger 

than statements of conventional languages
 FPLs provide a paradigm for parallel computing
 Absence of assignment provide basis for 

independence of evaluation order
 Ability to operate on entire data structures

FPL and IPL – Example
 Summing the integers 1 to 10 in IPL – The 

computation method is variable assignment

 Summing the integers 1 to 10 in FPL – The 
computation method is function application

total = 0;

for (i = 1; i  10; ++i)

total = total+i;

. 

22

sum [1..10]
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Lambda Calculus
 The lambda calculus is a formal mathematical system 

to investigate functions, function application and 
recursion. 

 A lambda expression specifies the parameter(s) and 
the mapping of a function in the following form
 λ x  . x * x * x – for the function cube (x) = x * x * x 

 Lambda expressions describe nameless functions

 Lambda expressions are applied to parameter(s) by 
placing the parameter(s) after the expression
 (λ x . x * x * x) 3 => 3*3*3 => 27
 (λ x,y . (x-y)*(y-x)) (3,5) => (3-5)*(5-3) =>  -4

Functional 
Programming

MAPREDUCE
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FPL Map and Fold
 “map” and “fold” – FPL higher-order 

functions

 (map f list1 [list2 list3 …])
 (map square (1 2 3 4))  (1 4 9 16)

 (fold f list […])
 (fold + (1 4 9 16))  30

 (fold + (map square (map – list1 list2))))

g g g g g

f f f f fMap

Fold

Roots in Functional Programming
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What is MapReduce?
 Programming model for expressing 

distributed computations at a massive scale

 Execution framework for organizing and 
performing such computations

 Open-source implementation called 
Hadoop

Mappers And Reducers
 A mapper is a function that takes as input one ordered 

(key; value) pair of binary strings. 
 As output the mapper produces a finite multiset of new 

(key, value) pairs.
 Mappers operates on ONE (key; value) pair at a time

 A reducer is a function that takes as input a binary string 
k which is the key, and a sequence of values v1, v2, …, vn,  
which are also binary strings. 
 As output, the reducer produces a multiset of pairs of 

binary strings (k,vk,1), (k,vk,2), (k,vk,3), … (k,vk,n)

 Key in output tuples is identical to the key in input tuple.
 Consequence – Mappers can manipulate keys arbitrarily, but Reducers 

cannot change the keys at all
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MapReduce Framework
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values, v’, with the same key are sent to the same 

reducer

 The execution framework supports a computational 
runtime environment to handle all issues related to 
coordinating the parallel execution of a data-intensive 
computation in a large-scale environment
 Breaking up the problem into smaller tasks, coordinating 

workers executions, aggregating intermediate results, 
dealing with failures and softeare errors, …

MapReduce “Runtime” Basic 
Functions
 Handles scheduling
 Assigns workers to map and reduce tasks

 Handles “data distribution”
 Moves processes to data, not data to processes

 Handles synchronization among workers
 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults, dynamically
 Detects worker failures and restarts
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mapmap map map

Shuffle and Sort: aggregate values by keys

Reduce Reduce Reduce

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

V1K1 V2 V3 V4
V5 V6

K2 K3
K4 K5 K6

MapReduce Data Flow

k1 v1

k2 v2

k1 v3

k2 v4

k1 v5

k1 v1

k1 v3

k1 v5

k2 v2

k2 v4

Output
Records

Input
Records

Split

Split

k1 v1

k1 v3

k2 v2

Local QSort

k1 v5

k2 v4
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MapReduce
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values with the same key are reduced together

 The execution framework handles everything else!
 Not quite … 

partition (k’, number of partitions) → partition for k’
 Often a simple hash of the key, e.g., hash(k’) mod N
 Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
 Mini-reducers that run in memory after the map phase
 Used as an optimization to reduce network traffic

Usually, programmers also specify:

MapReduce Design Issues
 Barrier between map and reduce phases
 To enhance performance the process of copying 

intermediate data can start early

 Keys arrive at each reducer in sorted order
 No enforced ordering across reducers
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MapReduce Implementations
 Google has a proprietary implementation in C++
 Bindings in Java, Python

 Hadoop is an open-source implementation in Java
 Development led by Yahoo, used in production
 Now an Apache project
 Rapidly expanding software ecosystem

 Lots of custom research implementations
 For GPUs, cell processors, etc.

Distributed Execution Overview 
User

Program

Worker

Worker

Master

Worker

Worker

Worker

Fork Fork Fork

Assign
Map

Assign
Reduce

Read
Local
Write

Remote
Read,
Sort

Output
File 0

Output
File 1

Write

Split 0

Split 1

Split 2

Input data
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“Hello World”: Word Count

Map-Reduce Framework for Word 
Count

Input: a
collection
of keys
and their
values

User-
Written

Map
Function

Each input
(k,v) mapped
to set of
intermediate
key-value
pairs

Sort All
Key-value
Pairs By

Key

One list of
intermediate
values for
each key:
(k, [v1,…,vn])

Each list
of values
is reduced
to a single
value for
that key

User-
Written
Reduce
Function
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WordCount PseudoCode
Map Reduce

 map(String filename, 
String document) { 
List<String> T = 
tokenize(document); 

 for each token in T { 
emit ((String)token, 
(Integer) 1); } 

 } 

 reduce(String token, 
List<Integer> values) { 
Integer sum = 0;

 for each value in values 
{ 

 sum = sum + value; 

 } 

 emit ((String)token, 
(Integer) sum); 

 } 

Implementation of WordCount()
 A program forks a master process and many worker

processes.

 Input is partitioned into some number of splits.
 Worker processes are assigned either to perform Map 

on a split or Reduce for some set of intermediate 
keys.
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Execution of WordCount

One
Chunk
of Docs

One Map
Process (w,1), (x,1), (w,1), (y,1),…

Distribute
By Word

One
Reduce
Process

From Other
Map Processes

(w,1), (w,1),…

(w,1), (w,1),…

(w,200),…
Note: typically one
Reduce will handle
many words.

Responsibility of the Master
1. Assign Map and Reduce tasks to Workers.

2. Check that no Worker has died (because its 
processor failed).

3. Communicate results of Map to the Reduce tasks.
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Communication from Map to 
Reduce

 Select a number R of reduce tasks.

 Divide the intermediate keys into R groups,
 Use an efficient hashing function

 Each Map task creates, at its own processor, R files of 
intermediate key-value pairs, one for each Reduce 
task.

MAP REDUCE

Execution Framework

Dr. Taieb Znati

Computer Science Department

University of Pittsburgh
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MAPREDUCE Execution 
Framework

 MapReduce Execution Model
 MapReduce Jobtrackers and Tasktrackers 
 Input Data – Splits 
 MapReduce Execution Issues
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners

MapReduce Data Flow
 A MapReduce job is a unit of work to be performed

 Job consists of the MapReduce Program, the Input data and 
the Configuration Information

 The MapReduce job is divided it into two types of tasks – map 
tasks and reduce tasks
 It is not uncommon for MapReduce jobs to have thousands of 

individual tasks to be assigned to cluster nodes

 The Input data is divided  into fixed-size pieces called splits
 One map task is created for each split

 The user-defined map function is run on each split 

 Configuration information indicates where the input lies, and 
the output is stored
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Lifecycle of a MapReduce Job

Map function

Reduce function

Job Execution

Jobtrackers and Takstrackers
 Two types of nodes control the job execution process 
─ Jobtraccker and Tasktrackers

 A jobtracker  coordinates all the jobs run on the 
system by scheduling tasks to run on Tasktrackers

 Tasktrackers  run tasks and send progress reports to 
the jobtracker

 Jobtracker keeps a record of the overall progress of 
each job 
 If a task fails, the jobtracker can reschedule it on a 

different Tasktracker
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Scheduling and 
Synchronization

Jobtracker – Scheduling and 
Coordination
 In large jobs, the total number of tasks may exceed 

the number of tasks that can be run on the cluster 
concurrently, 
 The Jobtracker must maintain a task queue and assign 

nodes to waiting tasks as the nodes become available.

 Another aspect of Jobtracker’s responsibiliies involves 
coordination among tasks belonging to different jobs 
 Jobs from different users, for example

 Designing a large-scale, shared resource to support 
several users simultaneously in a predictable, 
transparent and policy-driven fashion is challening!
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MapReduce Stragglers
 The speed of a MapReduce job is sensitive to the 

stragglers’ performance – tasks that take an usually long 
time to complete
 The map phase of a job is only as fast as the slowest map 

task. 

 The running time of the slowest reduce task determines the 
completion time of a job

 Stragglers may result from unreliable hardware
 A machine recovering from frequent hardware errors may 

become significantly slower 

 The barrier between the map and reduce tasks further 
compounds the problem

MapReduce – Speculative 
Execution
 Speculative execution is an optimization 

technique to improve job running times, in the 
presence of stragglers
 Base on speculative execution, an identical copy of 

the same task is executed on a different machine, 
 The result of the task that finishes first is used

 Google has reported that speculative execution 
can achieve 44% performance improvement
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MapReduce – Speculative 
Execution 
 Both map and reduce tasks can be speculatively 

executed, but the technique is better suited to map tasks 
than reduce tasks
 This is due to the fact that each copy of the reduce task 

needs to pull data over the network. 

 Speculative execution cannot adequately address cases  
where stragglers are caused by a skew in the distribution 
of values associated with intermediate keys
 In these cases, tasks responsible for processing the most 

frequent elements run much longer than the typical task
 More efficient local aggregation may be required

MapReduce – Synchronization
 In MapReduce, synchronization is needed when 

mappers and reduces exchange intermediate 
output and state information
 Intermediate key-value pairs must be grouped by 

key, which requires the execution a distributed sort 
process involving all the nodes that executed map 
tasks and all the nodes that will execute reduce 
tasks 
 The “shuffle and sort” process involves copying 

intermediate data over the network
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MapReduce – Synchronization
 A MapReduce job with M mappers and R reducers may 

involves up to M•R distinct copy operations
 Each mapper intermediate output goes to every reducer

 No reducer can start until all the mappers have finished 
emitting key-value pairs and all intermediate key-value 
pairs have been shuffled and sorted
 Necessary to guarantee that all values associated with the same 

key have been gathered. 

 This is an important departure from functional programming, 
where aggregation can begin as soon as values are available. 

 For improvement start copying intermediate key-value 
pairs over the network to the nodes running the reducers 
as soon as each mapper finishes

Data Locality 
Optimization
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Input Division – Split Size 
 Fine-grained splits increase parallelism and improves 

fault-tolerance
 Small splits reduce the processing time of each split and 

allows faster machines to process proportionally more splits 
over the course of the job than slower machines

 Load-balancing can be achieved more efficiently with small 
splits

 The impact of failure, when combined with load-balancing, 
can be reduced significantly with fine-grained splits

 Too small splits increases the overhead of managing 
splits
 Map task creation dominates the total job execution time.

Data Locality – Input Data
 Data locality Optimization 
 The map task  should be run on a node where the input 

data resides 
 The optimal split size is the same as the largest size 

of input that can be guaranteed to be stored on a 
single node. 

 If the split is larger than what one node can store, 
data transfer on across the network to the node 
running the map task is required
 May result in significant communication overhead, 

and reduces efficiency
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Data Locality – Map Output
 Output produced by map tasks should be stored 

locally, NOT at a distributed storage
 Map output is intermediate – Processed by 

reduce tasks to produce the final output
 Map output is no needed upon completion of the job

 Map output should NOT be replicated to 
overcome failure
 It is more efficient to restart the map task upon 

failure than replicating the output produced by 
map tasks

Data Locality – Reduce Tasks
 Reduce tasks cannot typically take advantage of 

data locality
 Input to a single reduce task is normally the 

output from all mappers. 

 The sorted map outputs have to be transferred 
across the network to the node where the reduce 
task is running
 The outputs are merged and then passed to the 

user-defined reduce function



11/21/2016

31

Reduce Task Output – Replication
 Multiple replicas of the reduce output are 

normally stored reliably, 
 First replica is stored on the local node, 
 Other replicas being stored on off-rack nodes. 

 To increase efficiency, the writing of the reduce 
output must reduce the amount of network 
bandwidth consumed
 The replication process must be streamlined 

and efficient

Partitioners and 
Combiners
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Number of Reduce Tasks
 The number of map reducers is typically specified 

independently
 It is not only governed by the size of the input, but also 

the type of the application

 MapReduce data flow can be specified in different 
ways
 No reduce tasks
 Single reduce task
 Multiple reduce tasks

Data Flow – No Reduce Tasks

Split 0 Part oMap Replication

Split 1 Part 1Map Replication

Split 2 Part 2Map Replication 

Input Output



11/21/2016

33

Split 0 SortMap

Input

Data Flow – Single Reduce Task

Replication

Output

Reduce Part 0Split 1 SortMap

Split 1 SortMap

Merge

Copy

Split 0 Map

Input
Data Flow – Multiple Reduce Tasks

Replication

Output

Reduce Part 0

Split 1 Map

Split 1 Map

Merge

Sort

ReplicationReduce Part 1

Merge

Copy
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Data Flow – Multiple Reduce Tasks
 Map tasks partition their output, each creating one 

partition for each reduce task
 There can be many keys and their associate values in 

each partition
 The records for every key are all in a single partition

 The partition can be controlled by user-defined 
partition function
 The use of a hash function typically works well

 The “Shuffle”, data flow between map and reduce, is 
a complicated process whose tuning can have a big 
impact on the job execution

MapReduce – Combiners
 Combiner functions can be used to minimize the data 

transferred between map and reduce tasks
 Combiners are particularly useful when MapReduce jobs are 

limited by the bandwidth available on the cluster

 Combiners are  user-specified functions

 Combiner functions run on the map output
 The combiner’s output is then fed to the reduce function

 Since it is an optimization function, there is no guarantee 
how many times combiners are called for a particular 
map output record, if at all 
 Calling the combiner zero, one, or many times should produce the 

same output from the reducer.
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Combiner Example – Max Temperature

 Assume that the mappers produce the following 
output
 Mapper 1 – (1950, 0), (1950, 20), (1950, 10)
 Mapper 2 – (1950, 25), (1950, 15)

 Reduce function is called with a list of all the values
 (1950, [0, 20, 10, 25, 15]) with output (1950, 25)

 Using a combiner for each map output results in:
 Combiner 1 – (1950, 20) 
 Combiner 2 – (1950, 25)

 Reduce function is called with (1950, [20,25]) with output 
(1950, 25)

Combiner Property
 The combiner function calls can be expressed as 

follows:
 Max(0, 20, 10, 25, 15) = Max(Max(0, 20, 10), Max(25, 15)) = 

Max(20, 25)=25
 Max() is commonly referred to as distributive

 Not all function exhibit distributive property
 Mean(0, 20, 10, 25, 15) = (0+20+10+25+15)/5=14
 Mean(Mean(0, 20, 10), Mean(25, 15)) = Mean (10, 20)   = 15

 Combiners do not replace reducers
 Reducers are still needed to process recorders with the same 

key from different maps
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Conclusion – Part I

 MapReduce Execution Framework
 MapReduce Jobtrackers and Tasktrackers 
 Input Data – Splits 
 MapReduce Execution Issues
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners

Conclusion – Part II

 Scaling Data Intensive Application

 MapReduce Framework 
 MapReduce Overview
 Map Reduce Data Flow 
 Map Function
 Partition Function
 Compare Function
 Reduce Function
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