
11/21/2016

1

Cloud Computing

MAPREDUCE

Dr. Taieb Znati

Computer Science Department

University of Pittsburgh

CS 2510 – COMPUTER OPERATING

SYSTEMS

MAPREDUCE Programming
Model

 Scaling Data Intensive Application

 MapReduce Framework
 Map Reduce Data Flow

 MapReduce Execution Model
 MapReduce Jobtrackers and Tasktrackers
 Input Data – Splits
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners

11/21/2016

2

Scaling Data Intensive
Application – Example

Word Count

And 1
Because 1
But 1
Can 4
Do 4
Everything 2
I 5
Not 3
Refuse 1
Something 2
Still 1
To 1
Will 1

I can not do
everything, but

still I can do
something; and

because I cannot
do everything, I
will not refuse to
do something I

can do

WordCount Program – I
 Define WordCount as Multiset;
 For Each Document in DocumentSet {
 T = tokenize(document);
 For Each Token in T {
 WordCount[token]++;
 }
 }

 Display(WordCount);

Program Does NOT Scale for Large Number of
Documents

11/21/2016

3

WordCount Program – II
 A two-phased program can be used to speed up

execution by distributing the work over several
machines and combining the outcome from each
machine into the final word count

 Phase I – Document Processing
 Each machine will process a fraction of the document

set

 Phase II – Count Aggregation
 Partial word counts from individual machines are

combined into the final word count

WordCount Program – II
Phase I Phase II
 Define WordCount as

Multiset;

 For Each Document in
DocumentSubset {
 T = tokenize(document);
 For Each Token in T {
 WordCount[token]++;

 }

 } SendToSecondPhase(
wordCount);

 Define TotalWordCount
as Multiset;

 For each WordCount
Received from Phase I
{
 MultisetAdd

(TotalWordCount,
WordCount);

 }

11/21/2016

4

WordCount Program II – Limitations
 The program does not take into consideration the

location of the documents
 Storage server can become a bottleneck, if enough

bandwidth is not available
 Distribution of documents across multiple machines removes the

central server bottleneck

 Storing WordCount and TotalWordCount in the
memory is a flaw
 When processing large document sets, the number of

unique words can exceed the RAM capacity

 In Phase II, the aggregation machine becomes the
bottleneck

WordCount Program – Solution
 The aggregation phase must execute in a distributed

fashion on a cluster of machines that can run
independently

 To achieve this, functionalities must be added
 Store files over a cluster of processing machines.
 Design a disk-based hash table permitting processing

without being limited by RAM capacity.
 Partition intermediate data across multiple machines
 Shuffle the partitions to the appropriate machines

11/21/2016

5

How to Scale Up?

Divide and Conquer

Work

R1 R2 R3

Final Output

Partition

Combine

WorkerWorker “Worker

W2 W3W1

11/21/2016

6

Parallelization Challenges
 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers fail?

Parallelization Challenges
 Parallelization problems arise from in several

ways
 Communication between workers, asynchronously
 Workers need to exchange information about their

states
 Concurrent access to shared resources, while preserving

“state” consistency
 Workers need to manipulate data, concurrently

 Cooperation requires synchronization and
interprocess communication mechanisms

11/21/2016

7

Distributed Workers Coordination
 Coordinating a large number of workers in

a distributed environment is challenging
 The order in which workers run may be

unknown
 The order in which workers interrupt each other

may be unknown
 The order in which workers access shared data

may be unknown
 Failures further compound the problem!

Classic Models
 Computational Models
 Master and Slaves
 Producers and Consumers
 Readers and Writers

 IPC Models
 Shared Memory –

Threads
 Message Passing

 To ensure correct execution several mechanisms are needed
 Semaphores (lock, unlock), Conditional variables (wait,

notify, broadcast), Barriers, …
 Address deadlock, livelock, race conditions, ...
 Makes it difficult to debug parallel execution on clusters

of distribute processors

11/21/2016

8

MapReduce – Data-Intensive
Programming Model
 MapReduce is a programming model for processing

large sets

 Users specify the computation in terms of a map()
and a reduce() function,
 Underlying runtime system automatically parallelizes

the computation across large-scale clusters of machines,
and

 Underlying system also handles machine failures,
efficient communications, and performance issues.

 MapReduce is inspired by the map() and fold()
functions commonly used in functional programming

Typical Large-Data Problem
 At a high-level of abstraction, MapReduce codifies a

generic “recipe” for processing large data set
 Iterate over a large number of records
 Extract something of interest from each
 Shuffle and sort intermediate results
 Aggregate intermediate results
 Generate final output

Basic Tenet of MapReduce is Enabling a Functional
Abstraction for the Map() and Reduce() operations

(Dean and Ghemawat, OSDI 2004)

Map

Reduce

11/21/2016

9

Functional Programming
Paradigm

MAPREDUCE

Imperative Languages and
Functional Languages
 The design of the imperative languages is based

directly on the von Neumann architecture
 Efficiency is the primary concern, rather than the

suitability of the language for software development

 The design of the functional languages is based on
mathematical functions
 A solid theoretical basis that is also closer to the user,

but relatively unconcerned with the architecture of the
machines on which programs will run

11/21/2016

10

Fundamentals of Functional
Programming Languages
 The basic process of computation is fundamentally

different in a FPL than in an imperative language
 In an imperative language, operations are done and

the results are stored in variables for later use
 Management of variables is a constant concern and

source of complexity for imperative programming

 FPL takes a mathematical approach to the concept
of a variable
 Variables are bound to values, not memory locations
 A variable’s value cannot change, which eliminates

assignment as a possible operation

Characteristics of Pure FPLs
 Pure FP languages tend to
 Have no side-effects
 Have no assignment statements
 Often have no variables!
 Be built on a small, concise framework
 Have a simple, uniform syntax
 Be implemented via interpreters rather than compilers
 Be mathematically easier to handle

11/21/2016

11

Importance of FP
 FPLs encourage thinking at higher levels of

abstraction
 It enables programmers to work in units larger

than statements of conventional languages
 FPLs provide a paradigm for parallel computing
 Absence of assignment provide basis for

independence of evaluation order
 Ability to operate on entire data structures

FPL and IPL – Example
 Summing the integers 1 to 10 in IPL – The

computation method is variable assignment

 Summing the integers 1 to 10 in FPL – The
computation method is function application

total = 0;

for (i = 1; i  10; ++i)

total = total+i;

.

22

sum [1..10]

11/21/2016

12

Lambda Calculus
 The lambda calculus is a formal mathematical system

to investigate functions, function application and
recursion.

 A lambda expression specifies the parameter(s) and
the mapping of a function in the following form
 λ x . x * x * x – for the function cube (x) = x * x * x

 Lambda expressions describe nameless functions

 Lambda expressions are applied to parameter(s) by
placing the parameter(s) after the expression
 (λ x . x * x * x) 3 => 3*3*3 => 27
 (λ x,y . (x-y)*(y-x)) (3,5) => (3-5)*(5-3) => -4

Functional
Programming

MAPREDUCE

11/21/2016

13

FPL Map and Fold
 “map” and “fold” – FPL higher-order

functions

 (map f list1 [list2 list3 …])
 (map square (1 2 3 4))  (1 4 9 16)

 (fold f list […])
 (fold + (1 4 9 16))  30

 (fold + (map square (map – list1 list2))))

g g g g g

f f f f fMap

Fold

Roots in Functional Programming

11/21/2016

14

What is MapReduce?
 Programming model for expressing

distributed computations at a massive scale

 Execution framework for organizing and
performing such computations

 Open-source implementation called
Hadoop

Mappers And Reducers
 A mapper is a function that takes as input one ordered

(key; value) pair of binary strings.
 As output the mapper produces a finite multiset of new

(key, value) pairs.
 Mappers operates on ONE (key; value) pair at a time

 A reducer is a function that takes as input a binary string
k which is the key, and a sequence of values v1, v2, …, vn,
which are also binary strings.
 As output, the reducer produces a multiset of pairs of

binary strings (k,vk,1), (k,vk,2), (k,vk,3), … (k,vk,n)

 Key in output tuples is identical to the key in input tuple.
 Consequence – Mappers can manipulate keys arbitrarily, but Reducers

cannot change the keys at all

11/21/2016

15

MapReduce Framework
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values, v’, with the same key are sent to the same

reducer

 The execution framework supports a computational
runtime environment to handle all issues related to
coordinating the parallel execution of a data-intensive
computation in a large-scale environment
 Breaking up the problem into smaller tasks, coordinating

workers executions, aggregating intermediate results,
dealing with failures and softeare errors, …

MapReduce “Runtime” Basic
Functions
 Handles scheduling
 Assigns workers to map and reduce tasks

 Handles “data distribution”
 Moves processes to data, not data to processes

 Handles synchronization among workers
 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults, dynamically
 Detects worker failures and restarts

11/21/2016

16

mapmap map map

Shuffle and Sort: aggregate values by keys

Reduce Reduce Reduce

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

V1K1 V2 V3 V4
V5 V6

K2 K3
K4 K5 K6

MapReduce Data Flow

k1 v1

k2 v2

k1 v3

k2 v4

k1 v5

k1 v1

k1 v3

k1 v5

k2 v2

k2 v4

Output
Records

Input
Records

Split

Split

k1 v1

k1 v3

k2 v2

Local QSort

k1 v5

k2 v4

11/21/2016

17

MapReduce
 Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
 All values with the same key are reduced together

 The execution framework handles everything else!
 Not quite …

partition (k’, number of partitions) → partition for k’
 Often a simple hash of the key, e.g., hash(k’) mod N
 Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
 Mini-reducers that run in memory after the map phase
 Used as an optimization to reduce network traffic

Usually, programmers also specify:

MapReduce Design Issues
 Barrier between map and reduce phases
 To enhance performance the process of copying

intermediate data can start early

 Keys arrive at each reducer in sorted order
 No enforced ordering across reducers

11/21/2016

18

MapReduce Implementations
 Google has a proprietary implementation in C++
 Bindings in Java, Python

 Hadoop is an open-source implementation in Java
 Development led by Yahoo, used in production
 Now an Apache project
 Rapidly expanding software ecosystem

 Lots of custom research implementations
 For GPUs, cell processors, etc.

Distributed Execution Overview
User

Program

Worker

Worker

Master

Worker

Worker

Worker

Fork Fork Fork

Assign
Map

Assign
Reduce

Read
Local
Write

Remote
Read,
Sort

Output
File 0

Output
File 1

Write

Split 0

Split 1

Split 2

Input data

11/21/2016

19

“Hello World”: Word Count

Map-Reduce Framework for Word
Count

Input: a
collection
of keys
and their
values

User-
Written

Map
Function

Each input
(k,v) mapped
to set of
intermediate
key-value
pairs

Sort All
Key-value
Pairs By

Key

One list of
intermediate
values for
each key:
(k, [v1,…,vn])

Each list
of values
is reduced
to a single
value for
that key

User-
Written
Reduce
Function

11/21/2016

20

WordCount PseudoCode
Map Reduce

 map(String filename,
String document) {
List<String> T =
tokenize(document);

 for each token in T {
emit ((String)token,
(Integer) 1); }

 }

 reduce(String token,
List<Integer> values) {
Integer sum = 0;

 for each value in values
{

 sum = sum + value;

 }

 emit ((String)token,
(Integer) sum);

 }

Implementation of WordCount()
 A program forks a master process and many worker

processes.

 Input is partitioned into some number of splits.
 Worker processes are assigned either to perform Map

on a split or Reduce for some set of intermediate
keys.

11/21/2016

21

Execution of WordCount

One
Chunk
of Docs

One Map
Process (w,1), (x,1), (w,1), (y,1),…

Distribute
By Word

One
Reduce
Process

From Other
Map Processes

(w,1), (w,1),…

(w,1), (w,1),…

(w,200),…
Note: typically one
Reduce will handle
many words.

Responsibility of the Master
1. Assign Map and Reduce tasks to Workers.

2. Check that no Worker has died (because its
processor failed).

3. Communicate results of Map to the Reduce tasks.

11/21/2016

22

Communication from Map to
Reduce

 Select a number R of reduce tasks.

 Divide the intermediate keys into R groups,
 Use an efficient hashing function

 Each Map task creates, at its own processor, R files of
intermediate key-value pairs, one for each Reduce
task.

MAP REDUCE

Execution Framework

Dr. Taieb Znati

Computer Science Department

University of Pittsburgh

11/21/2016

23

MAPREDUCE Execution
Framework

 MapReduce Execution Model
 MapReduce Jobtrackers and Tasktrackers
 Input Data – Splits
 MapReduce Execution Issues
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners

MapReduce Data Flow
 A MapReduce job is a unit of work to be performed

 Job consists of the MapReduce Program, the Input data and
the Configuration Information

 The MapReduce job is divided it into two types of tasks – map
tasks and reduce tasks
 It is not uncommon for MapReduce jobs to have thousands of

individual tasks to be assigned to cluster nodes

 The Input data is divided into fixed-size pieces called splits
 One map task is created for each split

 The user-defined map function is run on each split

 Configuration information indicates where the input lies, and
the output is stored

11/21/2016

24

Lifecycle of a MapReduce Job

Map function

Reduce function

Job Execution

Jobtrackers and Takstrackers
 Two types of nodes control the job execution process
─ Jobtraccker and Tasktrackers

 A jobtracker coordinates all the jobs run on the
system by scheduling tasks to run on Tasktrackers

 Tasktrackers run tasks and send progress reports to
the jobtracker

 Jobtracker keeps a record of the overall progress of
each job
 If a task fails, the jobtracker can reschedule it on a

different Tasktracker

11/21/2016

25

Scheduling and
Synchronization

Jobtracker – Scheduling and
Coordination
 In large jobs, the total number of tasks may exceed

the number of tasks that can be run on the cluster
concurrently,
 The Jobtracker must maintain a task queue and assign

nodes to waiting tasks as the nodes become available.

 Another aspect of Jobtracker’s responsibiliies involves
coordination among tasks belonging to different jobs
 Jobs from different users, for example

 Designing a large-scale, shared resource to support
several users simultaneously in a predictable,
transparent and policy-driven fashion is challening!

11/21/2016

26

MapReduce Stragglers
 The speed of a MapReduce job is sensitive to the

stragglers’ performance – tasks that take an usually long
time to complete
 The map phase of a job is only as fast as the slowest map

task.

 The running time of the slowest reduce task determines the
completion time of a job

 Stragglers may result from unreliable hardware
 A machine recovering from frequent hardware errors may

become significantly slower

 The barrier between the map and reduce tasks further
compounds the problem

MapReduce – Speculative
Execution
 Speculative execution is an optimization

technique to improve job running times, in the
presence of stragglers
 Base on speculative execution, an identical copy of

the same task is executed on a different machine,
 The result of the task that finishes first is used

 Google has reported that speculative execution
can achieve 44% performance improvement

11/21/2016

27

MapReduce – Speculative
Execution
 Both map and reduce tasks can be speculatively

executed, but the technique is better suited to map tasks
than reduce tasks
 This is due to the fact that each copy of the reduce task

needs to pull data over the network.

 Speculative execution cannot adequately address cases
where stragglers are caused by a skew in the distribution
of values associated with intermediate keys
 In these cases, tasks responsible for processing the most

frequent elements run much longer than the typical task
 More efficient local aggregation may be required

MapReduce – Synchronization
 In MapReduce, synchronization is needed when

mappers and reduces exchange intermediate
output and state information
 Intermediate key-value pairs must be grouped by

key, which requires the execution a distributed sort
process involving all the nodes that executed map
tasks and all the nodes that will execute reduce
tasks
 The “shuffle and sort” process involves copying

intermediate data over the network

11/21/2016

28

MapReduce – Synchronization
 A MapReduce job with M mappers and R reducers may

involves up to M•R distinct copy operations
 Each mapper intermediate output goes to every reducer

 No reducer can start until all the mappers have finished
emitting key-value pairs and all intermediate key-value
pairs have been shuffled and sorted
 Necessary to guarantee that all values associated with the same

key have been gathered.

 This is an important departure from functional programming,
where aggregation can begin as soon as values are available.

 For improvement start copying intermediate key-value
pairs over the network to the nodes running the reducers
as soon as each mapper finishes

Data Locality
Optimization

11/21/2016

29

Input Division – Split Size
 Fine-grained splits increase parallelism and improves

fault-tolerance
 Small splits reduce the processing time of each split and

allows faster machines to process proportionally more splits
over the course of the job than slower machines

 Load-balancing can be achieved more efficiently with small
splits

 The impact of failure, when combined with load-balancing,
can be reduced significantly with fine-grained splits

 Too small splits increases the overhead of managing
splits
 Map task creation dominates the total job execution time.

Data Locality – Input Data
 Data locality Optimization
 The map task should be run on a node where the input

data resides
 The optimal split size is the same as the largest size

of input that can be guaranteed to be stored on a
single node.

 If the split is larger than what one node can store,
data transfer on across the network to the node
running the map task is required
 May result in significant communication overhead,

and reduces efficiency

11/21/2016

30

Data Locality – Map Output
 Output produced by map tasks should be stored

locally, NOT at a distributed storage
 Map output is intermediate – Processed by

reduce tasks to produce the final output
 Map output is no needed upon completion of the job

 Map output should NOT be replicated to
overcome failure
 It is more efficient to restart the map task upon

failure than replicating the output produced by
map tasks

Data Locality – Reduce Tasks
 Reduce tasks cannot typically take advantage of

data locality
 Input to a single reduce task is normally the

output from all mappers.

 The sorted map outputs have to be transferred
across the network to the node where the reduce
task is running
 The outputs are merged and then passed to the

user-defined reduce function

11/21/2016

31

Reduce Task Output – Replication
 Multiple replicas of the reduce output are

normally stored reliably,
 First replica is stored on the local node,
 Other replicas being stored on off-rack nodes.

 To increase efficiency, the writing of the reduce
output must reduce the amount of network
bandwidth consumed
 The replication process must be streamlined

and efficient

Partitioners and
Combiners

11/21/2016

32

Number of Reduce Tasks
 The number of map reducers is typically specified

independently
 It is not only governed by the size of the input, but also

the type of the application

 MapReduce data flow can be specified in different
ways
 No reduce tasks
 Single reduce task
 Multiple reduce tasks

Data Flow – No Reduce Tasks

Split 0 Part oMap Replication

Split 1 Part 1Map Replication

Split 2 Part 2Map Replication

Input Output

11/21/2016

33

Split 0 SortMap

Input

Data Flow – Single Reduce Task

Replication

Output

Reduce Part 0Split 1 SortMap

Split 1 SortMap

Merge

Copy

Split 0 Map

Input
Data Flow – Multiple Reduce Tasks

Replication

Output

Reduce Part 0

Split 1 Map

Split 1 Map

Merge

Sort

ReplicationReduce Part 1

Merge

Copy

11/21/2016

34

Data Flow – Multiple Reduce Tasks
 Map tasks partition their output, each creating one

partition for each reduce task
 There can be many keys and their associate values in

each partition
 The records for every key are all in a single partition

 The partition can be controlled by user-defined
partition function
 The use of a hash function typically works well

 The “Shuffle”, data flow between map and reduce, is
a complicated process whose tuning can have a big
impact on the job execution

MapReduce – Combiners
 Combiner functions can be used to minimize the data

transferred between map and reduce tasks
 Combiners are particularly useful when MapReduce jobs are

limited by the bandwidth available on the cluster

 Combiners are user-specified functions

 Combiner functions run on the map output
 The combiner’s output is then fed to the reduce function

 Since it is an optimization function, there is no guarantee
how many times combiners are called for a particular
map output record, if at all
 Calling the combiner zero, one, or many times should produce the

same output from the reducer.

11/21/2016

35

Combiner Example – Max Temperature

 Assume that the mappers produce the following
output
 Mapper 1 – (1950, 0), (1950, 20), (1950, 10)
 Mapper 2 – (1950, 25), (1950, 15)

 Reduce function is called with a list of all the values
 (1950, [0, 20, 10, 25, 15]) with output (1950, 25)

 Using a combiner for each map output results in:
 Combiner 1 – (1950, 20)
 Combiner 2 – (1950, 25)

 Reduce function is called with (1950, [20,25]) with output
(1950, 25)

Combiner Property
 The combiner function calls can be expressed as

follows:
 Max(0, 20, 10, 25, 15) = Max(Max(0, 20, 10), Max(25, 15)) =

Max(20, 25)=25
 Max() is commonly referred to as distributive

 Not all function exhibit distributive property
 Mean(0, 20, 10, 25, 15) = (0+20+10+25+15)/5=14
 Mean(Mean(0, 20, 10), Mean(25, 15)) = Mean (10, 20) = 15

 Combiners do not replace reducers
 Reducers are still needed to process recorders with the same

key from different maps

11/21/2016

36

Conclusion – Part I

 MapReduce Execution Framework
 MapReduce Jobtrackers and Tasktrackers
 Input Data – Splits
 MapReduce Execution Issues
 Scheduling and Synchronization
 Speculative Execution
 Partitioners and Combiners

Conclusion – Part II

 Scaling Data Intensive Application

 MapReduce Framework
 MapReduce Overview
 Map Reduce Data Flow
 Map Function
 Partition Function
 Compare Function
 Reduce Function

11/21/2016

37

Reference
 Data-Intensive Text Processing with

MapReduce, Jimmy Lin and Chris Dyer.

 MapReduce: Simplified Data Processing on
Large Clusters, Jeffrey Dean and Sanjay
Ghemawat,

 The Google File System, Sanjay Ghemawat,
Howard Gobioff, and Shun-TakLeung,

http://www.umiacs.umd.edu/~jimmylin/book.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

