
11/18/2014 

1 

CS2510 – Computer Operating 
Systems 

HADOOP 

Distributed File System 
 

Dr. Taieb Znati 

Computer Science Department 

University of Pittsburgh 
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HDF Design Issues 
 HDFS Application Profile 
 Block Abstraction  
 Replication 
 Namenode and Datanodes 
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Outline 

 Hadoop Data Flow 
 Read() and Write =() Operations 

 Hadoop Replication Strategy 
 Hadoop Topology and Metric 

 Hadoop Coherency Model 
 Semantics  
 Sync() Operation 
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Apache Software Foundation 
Hadoop Project  
 Hadoop is the top-level ASF project  
 A framework for the development of highly 

scalable distributed computing applications.  
 The framework handles the processing details, 

leaving developers free to focus on application 
logic 

 Hadoop holds various subprojects  
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Hadoop Project  
 Hadoop Core, provides a distributed file system (HDFS) 

and support for the MapReduce 

 Several other projects are built on Hadoop Core 
 HBase provides a scalable, distributed database. 
 Pig is a high-level data-flow language and execution 

framework for parallel computation. 
 Hive is a data warehouse infrastructure to support data 

summarization, ad-hoc querying and analysis of 
datasets.  

 ZooKeeper is a highly available and reliable 
coordination system 
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The Design of HDFS 
 HDFS is a file system designed for storing very large files 

with streaming data access patterns, running on 
clusters of commodity hardware.  
 HDFS supports files that are hundreds of megabytes, 

gigabytes, or terabytes in size.  

 HDFS’s data processing pattern is a write-once, read many-
times pattern. 

 Hadoop is designed to run on clusters of commodity 
hardware 
 HDFS is designed to tolerate failures without disruption or 

loss of data 
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HDFS Streaming Data Access 
 HDFS supports applications where dataset is 

typically generated or copied from a source, 
then various analyses are performed on that 
dataset over time.  
 Each analysis involves a large proportion, if not all, of 

the dataset 
 Time to read the whole dataset is more important 

than the latency in reading the first record of the 
set 

8 



11/18/2014 

5 

Hadoop Distributed Filesystem 

 
HDFS Design 

Disk drive structure 
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Hadoop Distributed Filesystem 

 
HDFS Design 

Hard Disk Drive Latency  
 A read request must specify several parameters 

 Cylinder #, Surface #, Sector #, Transfer Size, and Memory Address 

 Disk Latency 
 Seek time, to get to the track – it depends on # of tracks,  arm 

movement and disk seek speed 

 Rotational  delay, to get to the sector under the disk head – it 
depends on rotational speed and how far the sector is from the 
head   

 Transfer time, to get bits off the disk – it depends on data rate of 
the disk (bit density) and the size of access request 

 Disk Latency = Seek Time + Rotation Time + 
Transfer Time + Controller Overhead 
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Applications Not Suited for HDFS 
 Applications that require low-latency access, as opposed 

to high throughput of data  
 HBase is better suited for these types of applications  
 Applications with a large number of small files require 

large amount of metadata and may not be suited for 
HDFS  
 These applications may require large amounts of memory to 

store the metadata  

 HDFS does not support applications with multiple 
writers, or modifications at arbitrary offsets in the file 
 Files in HDFS may be written to by a single writer, with  writes 

always made at the end of the file 
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HDFS Blocks 
 A disk block represents the minimum amount of data 

that can be read or written 

 A file system block is a higher-level abstraction 
 Filesystem blocks are an integral multiple of the disk 

block size,  
 Filesystem blocks are typically a few kilobytes in size, while disk 

blocks are normally 512 bytes. 

 HDFS supports the concept of a block, but it is a much 
larger unit—64 MB by default. 
 Files in HDFS are broken into block-sized chunks, which 

are stored as independent units 
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HDFS Block Size 
 HDFS blocks are large to minimize the cost of seeks.  

 Large size blocks reduces the transfer time of the data 
from the disk relative to the time to seek to the start of 
the block 
 Time to transfer a large file made of multiple blocks operates at 

the disk transfer rate. 

 For a seek time of 10ms and a transfer rate of 100 MBps, a block 
size of ~100MB is required to make the seek time 1% of the 
transfer time 

 HDFS default is 64 MB, and in some cases 128 MB blocks 
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Block Abstraction Benefits – 
Distributed Storage  
 Block abstraction are useful to handle very large 

data set in a distributed environment 
 A file can be larger than any single disk in the 

network 
 Blocks from a file can be stored any of the available 

disks in the cluster.  
 In some cases, blocks from a single file can fill all the 

disks of an HDFS cluster 
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Block Abstraction Benefits – 
Improved Storage Management 
 Making a block, rather than a file, the unit of abstraction 

simplifies the storage subsystem 
 Provides needed flexibility to deal with various failure 

modes, an intrinsic feature of HDFS clusters 

 Blocks have fixed sizes, which greatly simplifies the storage 
subsystem and storage management 
 Makes it easy to determine the number of blocks that can be 

stored in a disk  

 Removes metadata concerns – Blocks are just a chunk of 
data to be stored and file metadata such as permissions 
information does not need to be stored with the blocks 

 Another system can handle metadata orthogonally 
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Block Abstraction Benefits – 
Improved Failure Tolerance 
 The block abstraction is well-suited for replication to 

achieve the desired level of  fault tolerance and 
availability 
 To insure against corrupted blocks and disk and machine 

failure, each block is replicated to a small number of 
physically separate machines 
 The default replication factor is three machines, although some 

applications may require higher values 

 The replication factor is maintained continuously 

 A block that is no longer available is replicated in alternative 
location using remaining replicas 
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Hadoop Distributed Filesystem 

 
HDFS ARCHITECTURE 

Client 

Hadoop Server Functionality 
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Node Categories 
 Client node is responsible for workflow 

 Load data into cluster (HDFS Reads) 

 Provide the code to analyze data (MapReduce) 

 Store results in the cluster (HDFS Writes) 

 Read results from the cluster (HDFD Reads) 

 A HDFS Name Node  and Data Nodes 
 Name node – master node – overseas and coordinates 

the data storage functions of HDFS 
 A datanode stores data in HDFS  

 Usually more than one node with replicated data 

 Job Tracker overseas and coordinate parallel processing 
of data using MapReduce 
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HDFS Namenode and Datanodes 
 Namenode maintains the file system tree and the 

metadata for all the files and directories in the tree.  
 This information is stored persistently on the local disk 

in the form of two files: the namespace image and 
the edit log.  

 The namenode also knows the datanodes on which 
all the blocks for a given file are located,  

 The namenode does not store block locations 
persistently 
 This information is reconstructed from datanodes 

when the system starts 
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HDFS Datanodes 
 On startup, each datanode connects to the 

namenode 
 Datanodes cannot become functional until namenode 

services is up  

 Upon startup, datanodes respond to requests 
from the namenode for filesystem operations.  

 Client applications can have access directly to a 
data nodes,  
 Clients obtain datanodes’ location from the namenode 
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HDFS Datanodes -- Heartbeat 
 Datanodes send heartbeats to the Namenode 

every 3 seconds 
 Every 10th heartbeat is a “Block Report” 

 Data nodes uses Block Report to tell the Namenode about all 
the blocks it has 

 Block Reports allow the Namenode to build its metadata, 

 It ensures that three copies of each data bock exist on different 
data nodes 

 Three copies is HDFS default, which can be configured with 
the dfs.replication parameter in the hdfs-site.xml 
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Cluster Topology 
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Replica Placement Tradeoffs 
 Replica placement strategy achieves good balance 

between reliability, bandwidth and performance 
 Reliability – blocks are stored on two racks 
 Reduced bandwidth – writes() only have to 

traverse a single network switch 
 Read performance – Only a choice of two racks 

to read from 
  Cluster block distribution – clients only write a 

single block on the local rack 
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Tradeoffs in Replica Placement 
 Tradeoff between reliability, write bandwidth and read 

bandwidth 
 One extreme – placing all replicas on a single node 

incurs the lowest write bandwidth penalty, but offers 
no real redundancy .  
 Also, read bandwidth is high for off-rack reads.  

 Other extreme – placing replicas in different data 
centers maximizes redundancy, at the cost of 
bandwidth.  

 Hadoop designed placement strategy to achieve a 
balance between the two extremes 
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Hadoop Distributed Filesystem 

 
HADOOP TOPOLOGY 

Distance Metric 

Hadoop Network Topology  
 In the context of data intensive 

processing, data transfer rate is 
the limiting factor 

 What is does it mean for two 
nodes to be close? 
 Ideally, measure should be 

expressed in terms of 
bandwidth 
 Difficult to measure in practice 

 Hadoop’s approach considers 
the network as a tree 
 Distance(N1, N2) = Sum of the 

distance to their closest ancestor 

 Tree Topology  
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Network Topology – Closeness 
Measure 
 The tree levels reflect 

the idea that the 
bandwidth available 
decreases progressively 
 Processes on the same 

node 

 Different nodes on the 
same rack 

 Nodes on different racks 
in the same data center 

 Nodes in different data 
centers 

 Dist(/D1/R1/N1, /D2/R2/N2) =   
Distance between node N1 on  
rack R1 in datacenter D1 and 
node N2 on rack R2 in 
datacenter D2 
 Dist(/D1/R1/N1, /D1/R1/N1) = 0 

 Processes on the same node 

 Dist(/D1/R1/N1, /D1/R1/N2) = 2 
 Different nodes on the same rack 

 Dist(/D1/R1,N1, /D1/R2/N3) = 4 
 Nodes on different racks, in the 

same data center 

 Dist(/D1/R1/N1, /D2/R3/N3) = 6 
 Nodes on different data centers 
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Hadoop Topology – Node Distance 
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Hadoop Replica Placement 
Strategy 
 Place the first replica on the same node as the client 

 For clients outside the cluster, a node is chosen at random 
although the system tries not to pick nodes that are too full or 
too busy 

 Place the second replica off-rack – on a different rack 
from the first, chosen at random 

 Place third replica on same rack as the second, but on a 
different node chosen at random  

 Further replicas are placed on random nodes on the cluster 

 System may try to avoid placing too many 
replicas on the same rack 
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Hadoop Replica Placement 
Example 
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Hadoop Distributed Filesystem 

 
HADOOP  

File Loading 

Loading Files in HDFS 
1. Client breaks the file into blocks, B1, B2, … BN 

2. Client informs Namenode that it wasn’t to write 
the file,  

3. Client gets permission for Namenode to write the 
file, and receives a list of three Datanodes for each 
block 

4. Client contacts Datanodes successively for each 
block, makes the datanode is ready to receive the 
block and sends the block to the Datanode 

 Data is replicated across the datanodes, as 
described in the list. 
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Hadoop Distributed File System 

37 

NameNode 

DataNodes 

HDFS Server 

Block Size: 128MB 
Replicated 

Heartbeat 

Blockmap 

Application 

HDFS Client 

Local File System 
Block Size: 2KB 

N1        Add1 

N2        Add2 

N2        Add3 
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Data Flow – File Read 

DataNode Location 

B1 NN1 Add1 

B1 NN2 Add2 

B2 NN3 Add3 

B2 NN4 Add4 
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DataNode DataNode DataNode 

NameNode 

  

Distributed 
FileSystem 

FSData 
InputStream 

HDFS Client 

1:Open 

3:Read 

7:Close 

2:Get Block         
  Locations 

Client JVM 
Client Node 

4:Read 5:Read 

Remote Procedure Call 

Datanodes are sorted 
based on their proximity 

to the client 

Read () Characteristics 
 Location Optimality 

 Guided by the namenode mapping table, client contacts  
best datanodes directly to retrieve data for each block 

 Scalability – HDFS scales to a large number of 
concurrent clients 
1. Data traffic is distributed across all the data nodes 

2. Namenodes merely services block location requests –  
 The entire (block, datanode) mapping table is stored in memory, for 

efficient access 

3. If the client is itself a datanode, e.g., MapReduce task, the 
read is performed locally  
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Read() Operation 
 The DistributedFileSystem returns a FSDataStream to the 

client 
 FSDataStream  is an input stream that supports file seeks 

 FSDataStream wraps a DFSInputStream, which manages the 
datanode and namenode I/O communication 

 Client repeadtly calls read() on the stream to read blocks 
 DFSInputStream uses the address mapping table to connect to 

the “closest” datanode to read blocks 
 Blocks are read in order, with the DFSInputStream opening new 

connections to datanodes as the client reads through the stream 

 DFSInputStream calls namenode to retrieve the datanode 
locations for the next batch of blocks as needed 

 All happens transparently from the user, as if a continuous 
stream is being read.  
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Read() Operation – Case of Failure 
 In case of communication errors with a datanode, 

client contacts the next closet block to read the block 

 The client also remembers the node failure and no 
longer contacts the failed node for later blocks 

 In case of a block checksum failure, the client declares the 
block as corrupted and reports the failure to the namenode 

 The client then attempts to read a replica of the 
block from another namenode 
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Hadoop Distributed Filesystem 

 
HDFS OPERATIONS ANATOMY 

WRITE OPERATION 
 

Data Flow – File Creation 
 DistributedFileSystem makes an RPC call to the 

namenode to create a new file in the filesystem’s 
namespace, with no blocks associated with it 

 Namenode performs various checks to make sure the file 
doesn’t already exist, and that the client has the right 
permissions to create the file  
 If success, namenode makes a record of the new file  

 DistributedFileSystem returns a FSDataOutputStream for the 
client to start writing data to  

 DFSOutput Stream, handles communication with the 
datanodes and namenode 

 If failure, an exception is thrown at the client 
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Data Flow – File Write() 
 DFSOutputStream splits data into packets 

 Pakckets are written to an internal queue, called the data 
queue, to be consumed by the Data Streamer,  

 Data Streamer asks namenode to allocate new blocks by 
selecting a list of suitable datanodes to store the replicas 

 The list of datanodes forms a pipeline, usually a replication of 
level 3 

 DataStreamer streams the packets to the first datanode in the 
pipeline, for replication across the pipeline 

 DFSOutputStream maintains an internal ack queue of packets to be 
acked by datanodes 

 A packet is removed from the ack queue only when it has been 
acked by all the datanodes in the pipeline  

45 

Data Flow – File Write 

46 

DataNode DataNode DataNode 

NameNode 

  

Distributed 
FileSystem 

FSData 
InputStream 

HDFS Client 

1:Create 
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Write Failure Recovery – Step 1 
 Failure of a datanode during a write, leads to the 

following set of actions: 
 Pipeline is closed, and any packets in the ack queue are 

added to the front of the data queue  
 Gurantees that  datanodes that are downstream 

from the failed node do not miss any packets 
 Current block on the good datanodes is given a new 

identity, which is communicated to the namenode  
 Gurantees that the partial block on the failed 

datanode will be deleted if the failed datanode 
recovers later on 
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Write Failure Recovery – Step 2 
 Failed datanode is removed from the pipeline and the 

remainder of the block’s data is written to the two good 
datanodes in the pipeline.  

 Namenode notices that the block is under-replicated, and 
arranges for a further replica to be created on another 
node.  
 Subsequent blocks are then treated as normal 

 To overcome multiple datanode failures, block are 
asynchronously replicated across the cluster until its target 
replication factor is reached 
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Hadoop Coherency Model 
 A coherency model for a file system describes the data 

visibility of reads and writes for a file.  
 HDFS trades off some POSIX requirements for 

performance 
 Different behavior than expected in typical POSIX 

environments may be observed  

 Hadoop coherency model semantics 
 After its creation, the file is visible in the file system 

namespace 
 Any content written to the file is not guaranteed to be 

visible, even if the stream is flushed.  
 File appears to have a length of zero 
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Hadoop Coherency Model – Effect 
and Remedy 
 The first block becomes visible to new readers only after 

more than a block’s worth of data has been written  
 Same holds for subsequent blocks – it is always the current block 

being written that is not visible to other readers. 

 HDFS sync() method on FSDataOutputStream forces all 
buffers to be synchronized to the datanodes 
 If sync() is successful, HDFS guarantees that the data written up to 

that point in the file is persisted and visible to all new readers. 

 A crash of a client or HDFS does not cause data loss  

 Behavior is similar to the fsync system call in Unix that 
commits buffered data for a file descriptor 
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Conclusion 

 Hadoop Design Issues 

 Hadoop Data Flow 
 Read() and Write =() Operations 

 Hadoop Replication Strategy 
 Hadoop Topology 
 Distance Metric 
 Replica Placement 

 Hadoop Coherency Model 
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