
11/18/2014

1

CS2510 – Computer Operating
Systems

HADOOP

Distributed File System

Dr. Taieb Znati

Computer Science Department

University of Pittsburgh

Outline

HDF Design Issues
 HDFS Application Profile
 Block Abstraction
 Replication
 Namenode and Datanodes

2

11/18/2014

2

Outline

 Hadoop Data Flow
 Read() and Write =() Operations

 Hadoop Replication Strategy
 Hadoop Topology and Metric

 Hadoop Coherency Model
 Semantics
 Sync() Operation

3

Hadoop Distributed Filesystem

HDFS Design

11/18/2014

3

Apache Software Foundation
Hadoop Project
 Hadoop is the top-level ASF project
 A framework for the development of highly

scalable distributed computing applications.
 The framework handles the processing details,

leaving developers free to focus on application
logic

 Hadoop holds various subprojects

5

Hadoop Project
 Hadoop Core, provides a distributed file system (HDFS)

and support for the MapReduce

 Several other projects are built on Hadoop Core
 HBase provides a scalable, distributed database.
 Pig is a high-level data-flow language and execution

framework for parallel computation.
 Hive is a data warehouse infrastructure to support data

summarization, ad-hoc querying and analysis of
datasets.

 ZooKeeper is a highly available and reliable
coordination system

6

11/18/2014

4

The Design of HDFS
 HDFS is a file system designed for storing very large files

with streaming data access patterns, running on
clusters of commodity hardware.
 HDFS supports files that are hundreds of megabytes,

gigabytes, or terabytes in size.

 HDFS’s data processing pattern is a write-once, read many-
times pattern.

 Hadoop is designed to run on clusters of commodity
hardware
 HDFS is designed to tolerate failures without disruption or

loss of data

7

HDFS Streaming Data Access
 HDFS supports applications where dataset is

typically generated or copied from a source,
then various analyses are performed on that
dataset over time.
 Each analysis involves a large proportion, if not all, of

the dataset
 Time to read the whole dataset is more important

than the latency in reading the first record of the
set

8

11/18/2014

5

Hadoop Distributed Filesystem

HDFS Design

Disk drive structure

10

Sector

Cylinder

Platter

Spindle

Track

Head

Actuator
Surfaces

11/18/2014

6

Hadoop Distributed Filesystem

HDFS Design

Hard Disk Drive Latency
 A read request must specify several parameters

 Cylinder #, Surface #, Sector #, Transfer Size, and Memory Address

 Disk Latency
 Seek time, to get to the track – it depends on # of tracks, arm

movement and disk seek speed

 Rotational delay, to get to the sector under the disk head – it
depends on rotational speed and how far the sector is from the
head

 Transfer time, to get bits off the disk – it depends on data rate of
the disk (bit density) and the size of access request

 Disk Latency = Seek Time + Rotation Time +
Transfer Time + Controller Overhead

12

11/18/2014

7

Applications Not Suited for HDFS
 Applications that require low-latency access, as opposed

to high throughput of data
 HBase is better suited for these types of applications
 Applications with a large number of small files require

large amount of metadata and may not be suited for
HDFS
 These applications may require large amounts of memory to

store the metadata

 HDFS does not support applications with multiple
writers, or modifications at arbitrary offsets in the file
 Files in HDFS may be written to by a single writer, with writes

always made at the end of the file

13

HDFS Blocks
 A disk block represents the minimum amount of data

that can be read or written

 A file system block is a higher-level abstraction
 Filesystem blocks are an integral multiple of the disk

block size,
 Filesystem blocks are typically a few kilobytes in size, while disk

blocks are normally 512 bytes.

 HDFS supports the concept of a block, but it is a much
larger unit—64 MB by default.
 Files in HDFS are broken into block-sized chunks, which

are stored as independent units

14

11/18/2014

8

HDFS Block Size
 HDFS blocks are large to minimize the cost of seeks.

 Large size blocks reduces the transfer time of the data
from the disk relative to the time to seek to the start of
the block
 Time to transfer a large file made of multiple blocks operates at

the disk transfer rate.

 For a seek time of 10ms and a transfer rate of 100 MBps, a block
size of ~100MB is required to make the seek time 1% of the
transfer time

 HDFS default is 64 MB, and in some cases 128 MB blocks

15

Block Abstraction Benefits –
Distributed Storage
 Block abstraction are useful to handle very large

data set in a distributed environment
 A file can be larger than any single disk in the

network
 Blocks from a file can be stored any of the available

disks in the cluster.
 In some cases, blocks from a single file can fill all the

disks of an HDFS cluster

16

11/18/2014

9

Block Abstraction Benefits –
Improved Storage Management
 Making a block, rather than a file, the unit of abstraction

simplifies the storage subsystem
 Provides needed flexibility to deal with various failure

modes, an intrinsic feature of HDFS clusters

 Blocks have fixed sizes, which greatly simplifies the storage
subsystem and storage management
 Makes it easy to determine the number of blocks that can be

stored in a disk

 Removes metadata concerns – Blocks are just a chunk of
data to be stored and file metadata such as permissions
information does not need to be stored with the blocks

 Another system can handle metadata orthogonally

17

Block Abstraction Benefits –
Improved Failure Tolerance
 The block abstraction is well-suited for replication to

achieve the desired level of fault tolerance and
availability
 To insure against corrupted blocks and disk and machine

failure, each block is replicated to a small number of
physically separate machines
 The default replication factor is three machines, although some

applications may require higher values

 The replication factor is maintained continuously

 A block that is no longer available is replicated in alternative
location using remaining replicas

18

11/18/2014

10

Hadoop Distributed Filesystem

HDFS ARCHITECTURE

Client

Hadoop Server Functionality

20

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Data Node

Task Tracker

Job Tracker Name Node Secondary
Name Node

HDFS MapReduce

M
a

ste
rs

11/18/2014

11

Node Categories
 Client node is responsible for workflow

 Load data into cluster (HDFS Reads)

 Provide the code to analyze data (MapReduce)

 Store results in the cluster (HDFS Writes)

 Read results from the cluster (HDFD Reads)

 A HDFS Name Node and Data Nodes
 Name node – master node – overseas and coordinates

the data storage functions of HDFS
 A datanode stores data in HDFS

 Usually more than one node with replicated data

 Job Tracker overseas and coordinate parallel processing
of data using MapReduce

 21

HDFS Namenode and Datanodes
 Namenode maintains the file system tree and the

metadata for all the files and directories in the tree.
 This information is stored persistently on the local disk

in the form of two files: the namespace image and
the edit log.

 The namenode also knows the datanodes on which
all the blocks for a given file are located,

 The namenode does not store block locations
persistently
 This information is reconstructed from datanodes

when the system starts

22

11/18/2014

12

HDFS Datanodes
 On startup, each datanode connects to the

namenode
 Datanodes cannot become functional until namenode

services is up

 Upon startup, datanodes respond to requests
from the namenode for filesystem operations.

 Client applications can have access directly to a
data nodes,
 Clients obtain datanodes’ location from the namenode

23

HDFS Datanodes -- Heartbeat
 Datanodes send heartbeats to the Namenode

every 3 seconds
 Every 10th heartbeat is a “Block Report”

 Data nodes uses Block Report to tell the Namenode about all
the blocks it has

 Block Reports allow the Namenode to build its metadata,

 It ensures that three copies of each data bock exist on different
data nodes

 Three copies is HDFS default, which can be configured with
the dfs.replication parameter in the hdfs-site.xml

24

11/18/2014

13

Cluster Topology

25

Rack 1

Switch

Namenode

DN + TT

DN + TT

DN + TT

DN + TT
DN + TT

DN + TT

Rack 2

Switch

Namenode

DN + TT

DN + TT

DN + TT

DN + TT
DN + TT

DN + TT

Rack 3

Switch

Namenode

DN + TT

DN + TT

DN + TT

DN + TT
DN + TT

DN + TT

Rack N

Switch

Namenode

DN + TT

DN + TT

DN + TT

DN + TT
DN + TT

DN + TT

Rack N-1

Switch

Namenode

DN + TT

DN + TT

DN + TT

DN + TT
DN + TT

DN + TT

Switch Switch

Public

Internet

Hadoop Distributed Filesystem

HDFS REPLICA ASSIGNMENT

Rack Awareness

11/18/2014

14

Replica Placement Tradeoffs
 Replica placement strategy achieves good balance

between reliability, bandwidth and performance
 Reliability – blocks are stored on two racks
 Reduced bandwidth – writes() only have to

traverse a single network switch
 Read performance – Only a choice of two racks

to read from
 Cluster block distribution – clients only write a

single block on the local rack

27

Tradeoffs in Replica Placement
 Tradeoff between reliability, write bandwidth and read

bandwidth
 One extreme – placing all replicas on a single node

incurs the lowest write bandwidth penalty, but offers
no real redundancy .
 Also, read bandwidth is high for off-rack reads.

 Other extreme – placing replicas in different data
centers maximizes redundancy, at the cost of
bandwidth.

 Hadoop designed placement strategy to achieve a
balance between the two extremes

28

11/18/2014

15

Hadoop Distributed Filesystem

HADOOP TOPOLOGY

Distance Metric

Hadoop Network Topology
 In the context of data intensive

processing, data transfer rate is
the limiting factor

 What is does it mean for two
nodes to be close?
 Ideally, measure should be

expressed in terms of
bandwidth
 Difficult to measure in practice

 Hadoop’s approach considers
the network as a tree
 Distance(N1, N2) = Sum of the

distance to their closest ancestor

 Tree Topology

30

11/18/2014

16

Network Topology – Closeness
Measure
 The tree levels reflect

the idea that the
bandwidth available
decreases progressively
 Processes on the same

node

 Different nodes on the
same rack

 Nodes on different racks
in the same data center

 Nodes in different data
centers

 Dist(/D1/R1/N1, /D2/R2/N2) =
Distance between node N1 on
rack R1 in datacenter D1 and
node N2 on rack R2 in
datacenter D2
 Dist(/D1/R1/N1, /D1/R1/N1) = 0

 Processes on the same node

 Dist(/D1/R1/N1, /D1/R1/N2) = 2
 Different nodes on the same rack

 Dist(/D1/R1,N1, /D1/R2/N3) = 4
 Nodes on different racks, in the

same data center

 Dist(/D1/R1/N1, /D2/R3/N3) = 6
 Nodes on different data centers

31

Hadoop Topology – Node Distance

32

Rack

Data Center D2

R2

Data Center D1

N1

N2

d=0

Node

d=6

d=4

R1 R1

d=2

N1 N1

11/18/2014

17

Hadoop Replica Placement
Strategy
 Place the first replica on the same node as the client

 For clients outside the cluster, a node is chosen at random
although the system tries not to pick nodes that are too full or
too busy

 Place the second replica off-rack – on a different rack
from the first, chosen at random

 Place third replica on same rack as the second, but on a
different node chosen at random

 Further replicas are placed on random nodes on the cluster

 System may try to avoid placing too many
replicas on the same rack

33

Hadoop Replica Placement
Example

34

Rack

Data Center

11/18/2014

18

Hadoop Distributed Filesystem

HADOOP

File Loading

Loading Files in HDFS
1. Client breaks the file into blocks, B1, B2, … BN

2. Client informs Namenode that it wasn’t to write
the file,

3. Client gets permission for Namenode to write the
file, and receives a list of three Datanodes for each
block

4. Client contacts Datanodes successively for each
block, makes the datanode is ready to receive the
block and sends the block to the Datanode

 Data is replicated across the datanodes, as
described in the list.

36

11/18/2014

19

Hadoop Distributed File System

37

NameNode

DataNodes

HDFS Server

Block Size: 128MB
Replicated

Heartbeat

Blockmap

Application

HDFS Client

Local File System
Block Size: 2KB

N1 Add1

N2 Add2

N2 Add3

Hadoop Distributed Filesystem

HDFS OPERATIONS ANATOMY

READ OPERATION

11/18/2014

20

Data Flow – File Read

DataNode Location

B1 NN1 Add1

B1 NN2 Add2

B2 NN3 Add3

B2 NN4 Add4

39

DataNode DataNode DataNode

NameNode

Distributed
FileSystem

FSData
InputStream

HDFS Client

1:Open

3:Read

7:Close

2:Get Block
 Locations

Client JVM
Client Node

4:Read 5:Read

Remote Procedure Call

Datanodes are sorted
based on their proximity

to the client

Read () Characteristics
 Location Optimality

 Guided by the namenode mapping table, client contacts
best datanodes directly to retrieve data for each block

 Scalability – HDFS scales to a large number of
concurrent clients
1. Data traffic is distributed across all the data nodes

2. Namenodes merely services block location requests –
 The entire (block, datanode) mapping table is stored in memory, for

efficient access

3. If the client is itself a datanode, e.g., MapReduce task, the
read is performed locally

40

11/18/2014

21

Read() Operation
 The DistributedFileSystem returns a FSDataStream to the

client
 FSDataStream is an input stream that supports file seeks

 FSDataStream wraps a DFSInputStream, which manages the
datanode and namenode I/O communication

 Client repeadtly calls read() on the stream to read blocks
 DFSInputStream uses the address mapping table to connect to

the “closest” datanode to read blocks
 Blocks are read in order, with the DFSInputStream opening new

connections to datanodes as the client reads through the stream

 DFSInputStream calls namenode to retrieve the datanode
locations for the next batch of blocks as needed

 All happens transparently from the user, as if a continuous
stream is being read.

41

Read() Operation – Case of Failure
 In case of communication errors with a datanode,

client contacts the next closet block to read the block

 The client also remembers the node failure and no
longer contacts the failed node for later blocks

 In case of a block checksum failure, the client declares the
block as corrupted and reports the failure to the namenode

 The client then attempts to read a replica of the
block from another namenode

42

11/18/2014

22

Hadoop Distributed Filesystem

HDFS OPERATIONS ANATOMY

WRITE OPERATION

Data Flow – File Creation
 DistributedFileSystem makes an RPC call to the

namenode to create a new file in the filesystem’s
namespace, with no blocks associated with it

 Namenode performs various checks to make sure the file
doesn’t already exist, and that the client has the right
permissions to create the file
 If success, namenode makes a record of the new file

 DistributedFileSystem returns a FSDataOutputStream for the
client to start writing data to

 DFSOutput Stream, handles communication with the
datanodes and namenode

 If failure, an exception is thrown at the client

44

11/18/2014

23

Data Flow – File Write()
 DFSOutputStream splits data into packets

 Pakckets are written to an internal queue, called the data
queue, to be consumed by the Data Streamer,

 Data Streamer asks namenode to allocate new blocks by
selecting a list of suitable datanodes to store the replicas

 The list of datanodes forms a pipeline, usually a replication of
level 3

 DataStreamer streams the packets to the first datanode in the
pipeline, for replication across the pipeline

 DFSOutputStream maintains an internal ack queue of packets to be
acked by datanodes

 A packet is removed from the ack queue only when it has been
acked by all the datanodes in the pipeline

45

Data Flow – File Write

46

DataNode DataNode DataNode

NameNode

Distributed
FileSystem

FSData
InputStream

HDFS Client

1:Create

3:Write

6:Close

2:Create

Client JVM
Client Node

4

4:Write(Packet)

Data Node Pipeline
Replication Degree =3

7:Complete

4:Acknowledge(Packet)

5 5

4

11/18/2014

24

Write Failure Recovery – Step 1
 Failure of a datanode during a write, leads to the

following set of actions:
 Pipeline is closed, and any packets in the ack queue are

added to the front of the data queue
 Gurantees that datanodes that are downstream

from the failed node do not miss any packets
 Current block on the good datanodes is given a new

identity, which is communicated to the namenode
 Gurantees that the partial block on the failed

datanode will be deleted if the failed datanode
recovers later on

47

Write Failure Recovery – Step 2
 Failed datanode is removed from the pipeline and the

remainder of the block’s data is written to the two good
datanodes in the pipeline.

 Namenode notices that the block is under-replicated, and
arranges for a further replica to be created on another
node.
 Subsequent blocks are then treated as normal

 To overcome multiple datanode failures, block are
asynchronously replicated across the cluster until its target
replication factor is reached

48

11/18/2014

25

Hadoop Coherency Model
 A coherency model for a file system describes the data

visibility of reads and writes for a file.
 HDFS trades off some POSIX requirements for

performance
 Different behavior than expected in typical POSIX

environments may be observed

 Hadoop coherency model semantics
 After its creation, the file is visible in the file system

namespace
 Any content written to the file is not guaranteed to be

visible, even if the stream is flushed.
 File appears to have a length of zero

49

Hadoop Coherency Model – Effect
and Remedy
 The first block becomes visible to new readers only after

more than a block’s worth of data has been written
 Same holds for subsequent blocks – it is always the current block

being written that is not visible to other readers.

 HDFS sync() method on FSDataOutputStream forces all
buffers to be synchronized to the datanodes
 If sync() is successful, HDFS guarantees that the data written up to

that point in the file is persisted and visible to all new readers.

 A crash of a client or HDFS does not cause data loss

 Behavior is similar to the fsync system call in Unix that
commits buffered data for a file descriptor

50

11/18/2014

26

Conclusion

 Hadoop Design Issues

 Hadoop Data Flow
 Read() and Write =() Operations

 Hadoop Replication Strategy
 Hadoop Topology
 Distance Metric
 Replica Placement

 Hadoop Coherency Model

51

Reference
 Data-Intensive Text Processing with

MapReduce, Jimmy Lin and Chris Dyer.

 MapReduce: Simplified Data Processing on
Large Clusters, Jeffrey Dean and Sanjay
Ghemawat,

 The Google File System, Sanjay Ghemawat,
Howard Gobioff, and Shun-TakLeung,

52

http://www.umiacs.umd.edu/~jimmylin/book.html
http://www.umiacs.umd.edu/~jimmylin/book.html
http://www.umiacs.umd.edu/~jimmylin/book.html
http://www.umiacs.umd.edu/~jimmylin/book.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

