
Statistical Analysis of Data� Given a set of measurements of a value, how certain can we be of thevalue?� Given a set of measurements of two values, how certain can we be thatthe values are di�erent?� Given a measured outcome and several condition or treatment values,how can we remove the e�ect of unwanted conditions or treatments onthe outcome?
1Measuring CPU TimeI made the 37 measurements of the CPU time required to compute0B@10000500 1CAin Common Lisp on darwin.cs.orst.edu.0.27 0.25 0.23 0.24 0.26 0.24 0.26 0.25 0.24 0.250.25 0.24 0.25 0.24 0.25 0.26 0.24 0.25 0.25 0.250.25 0.25 0.24 0.25 0.24 0.25 0.25 0.24 0.25 0.250.24 0.25 0.24 0.24 0.25 0.25 0.26What is the true CPU cost of this computation?Before doing any calculations with the data,Always Visualize Your Data
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HistogramUsing Splus (on ada), we can issue the commands% Splus> comb <- read.table("comb.data")> hist(comb$V1)
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comb$V13Kernel Density EstimateWe can also construct a kernel density estimate. A kernel density estimate places a smallnormal distribution (the \kernel") at each observed data point and sums them up.> plot(density(comb$V1, width=0.02),type="l")
density(comb$V1, window = "g", width = 0.02)$x

de
ns

ity
(c

om
b$

V
1,

 w
in

do
w

 =
 "

g"
, w

id
th

 =
 0

.0
2)

$y

0.22 0.24 0.26 0.28

0
10

20
30

40

4



Sample MeanBased on this visualization, it is reasonable to compute the mean of this distribution:mean = x = 1n nXi=1xiMean = 0.248But how con�dent can we be that this is the true value? We would like to have a con�denceinterval that would tell us the following:If we drew random samples of size 37 and took the mean, 95% of the time, the meanwould lie between a lower bound and an upper bound.
5Con�dence Intervals Via ResamplingUsing a computer, we can simulate this. We draw 1000 random subsamples (with replacement)from our original 37 points and compute the mean. Then we sort these means and choose the26th and 975th values as our lower and upper bounds.Results: In 950 trials (out of 1000), 0:2451 � x � 0:2505
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Con�dence Intervals Via Distributional TheoryIf we plot a histogram of the 1000 bootstrap trials, we see that it is very nearly normallydistributed. This is called the sampling distribution of the mean. The CentralLimit Theorem says that the sampling distribution of the mean is normally distributed.The normal distribution has two parameters,� the mean (denoted �)� the standard deviation (denoted �).p(x) = 1p2��e�12(x��� )2If the original CPU times were distributed with mean � and standard deviation �, then themeans will be distributed with mean � and standard deviation �=pn. (Here n = 37.) Unfor-tunately, we must know the true standard deviation of the CPU times in order to apply thecentral limit theorem. We don't know this.
7The Sample Standard Deviationstandard deviation = s = vuuutPni=1(xi � x)2n� 1

8



The t distributionInstead of the normal distribution, we can use the t distribution. The t distribution has threeparameters: the mean (�), the standard deviation (�), and the degrees of freedom (d:f: =n� 1).
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The 95% con�dence limits are slightly tighter according to the central limit theorem using thet distribution. 9Distributional con�dence intervalsA 95% con�dence interval for the mean can be computed via the t distribution as follows:Let x be the sample mean.Let s be the sample standard deviation.Let n be the sample size.Let t0:025(n� 1) be the value of t with n� 1 degrees of freedom such that the probability thatx < t0:025(n� 1) is 0.975.Then, x� t0:025(n� 1)s=pn � � � x + t0:025(n� 1)s=pnWhere � is the true mean of the CPU times.The t values can be looked up in a table, or you can use Splus:> qt(0.975,36)[1] 2.028094
10

Bootstrapping on the MedianSuppose our goal was to measure the median CPU time required for this computation, ratherthan the average.We would like to know that 95% of the time, the observed median is within some bound of thetrue median.While distribution theory can't help us here, we can still apply the bootstrap method:Choose 1000 random samples (with replacement) of size 37 from our original 37 points.Take the median value of each sample. Sort and take the value at the 25th and 975thpositions.
11Bootstrap Median Value
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When the Bootstrap Doesn't Work WellThe bootstrap is good for the mean, the median, and other statistics involving the \middle" ofa distribution. The bootstrap is not good for estimating the minimum, the maximum, or otherstatistics involving the \tails" of the distribution.
13Measuring Number of Occurrences of EventsIn many CS experiments, we count the number of events that occur in n trials. For example,in machine learning, suppose we constructed a decision tree and then evaluated it on a test setof 100 examples and observed 88 correct classi�cations. We would report the proportion ofcorrectly classi�ed test examples as 0.88.But how uncertain is this quantity? How much might it vary due to the random choice of thetest set?We will say ^� = 0:88, where � is the true proportion of correct classi�cations that our decisiontree would make (on an in�nite test set).

14

A Bootstrap Con�dence IntervalWe can again perform a bootstrapping experiment. Let n be number of test examples.Repeat 1000 trials:Draw a random sample of size n with replacement from the test set.Measure pi = the proportion correctly classi�ed by the decision tree.Sort the pi in increasing order.Choose lb and ub to be the 26th and 975th elements.Then, we would say in 1000 trials, the probability is 0.95 that we would observe lb � ^� � ub.Results: 0:81 � ^� � 0:94 with con�dence 0.95.
15Bootstrap Graph
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Binomial Con�dence Interval From Distributional TheorySuppose we have a biased coin with probability of heads �. Suppose we take a sample of sizen and measure the proportion of successes ^�. From the central limit theorem, this quantity isapproximately normally distributed with mean ^� and standard deviation r^�(1 � ^�)=n.We can therefore use a 95% con�dence interval for the mean of the normal distribution tocompute a con�dence interval for the binomial distribution. We make a slight change (calledthe \continuity correction") to correct for the discrete nature of the binomial distribution.^� � "z0:975r^�(1 � ^�)=n + 1=(2n)# � ^� � ^� + "z0:975r^�(1� ^�)=n + 1=(2n)#Here z0:975 is the value of a normally distributed variable z such that P (z � z0:975) = 0:975.Speci�cally, z0:975 = 1:96.Results: 0:811 � ^� � 0:949.
17Bootstrap and Normal Distributions
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The Normal approximation is always symmetrical, so it does not work very well when ^� is near0.0 or 1.0.
18

Comparing Two MeasurementsI performed 33 trials of 0B@10000500 1CAin Common Lisp on shark3.cs.orst.edu.0.21 0.20 0.20 0.19 0.20 0.19 0.18 0.20 0.19 0.190.19 0.19 0.20 0.18 0.19 0.20 0.22 0.20 0.20 0.200.19 0.20 0.18 0.19 0.19 0.20 0.20 0.22 0.18 0.190.21 0.23 0.20Can we conclude that shark3 is faster than darwin?
19Visualizing
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Comparable kernel density estimation plots. Visually, shark3 is much faster than darwin.
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Bootstrap TestConduct 1000 trials of the following:Draw bootstrap sample from Darwin, compute mean xdDraw bootstrap sample from Shark3, compute mean xsCount number of times xd > xs.If this is greater than 950, then we can be 95% con�dent.Result: All 1000 trials give darwin slower than shark3.We can also compute a 95% bootstrap con�dence interval on the di�erence xd � xs:0:0461 � xd � xs � 0:0553:
21Distributional TestIf two random variables are normally distributed, then their di�erence is normally distributedwith mean � = �1 � �2 and standard deviation � = q�21 + �22.Now the sampling distribution of the mean x is approximately normally distributed (accordingto the central limit theorem). So we know x1 � x2 is also normally distributed. However,because we don't know �1 or �2, we must use the t distribution instead.If the two samples have sizes n1 and n2, then x1�x2 is has a t distribution with mean x1�x2and standard deviations = vuuuut0B@Pn1i=1(x1;i � x1)2n1 � 1 + Pn2i=1(x2;i � x2)2n2 � 1 1CA 0@ 1n1 + 1n21Aand n1 + n2 � 2 degrees of freedom.Using the data above, we obtainx1 � x2 = 0:0509s = 0:0023df = 68.A 95% con�dence interval for the di�erence is (0.0463,0.0555).

22

Hypothesis TestingSuppose we want to know whether the true di�erence between the two machines is zero ornon-zero. We can formalize this as a statistical decision:H0: �1 � �2 = 0H1: �1 � �2 6= 0H0 is the \null hypothesis" and H1 is the \alternative hypothesis". An hypothesis test deter-mines probablistically whether we can reject H0 in favor of H1 by asking \Suppose H0 is true,what is the probability that we would have observed the given data?"Speci�cally, we want to know what is the probability that we would observe x1 � x2 � 0:0509when the true di�erence was zero. This can be determined from the t distribution.The computed value of t is t = x1 � x2s = 21:69The probability of seeing a t value greater than or equal to this is virtually 0.0. t0:99999(68) =4:59.
23Paired Di�erencesSuppose we had a set of benchmark programs that we were going to run on two machines. Wewill run each program on each machine to obtain the following data:Program CPU1 CPU2P1 3.482514 3.896850P2 3.677492 3.866780P3 3.877525 4.206775P4 6.787100 7.197257P5 1.789549 2.250253P6 5.156133 5.457694P7 4.777698 5.075136P8 3.906618 4.095468P9 6.374434 6.456649P10 5.152357 5.257691Notice that the di�erent programs have very di�erent run times (e.g., ranging from 1.78 to 6.79on CPU1).

24



VisualizationThere are many ways to visualize the data. We can superimpose a kernel density estimate foreach of the CPU's:
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This suggests that CPU1 is systematically o�set from CPU2.
25Visualization (2)
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This plots CPU1 versus CPU2 and also plots the line y = x. Notice that the performance ofCPU1 is correlated with the performance of CPU2. Notice that all points lie above the line,suggesting that CPU2 is always bigger than CPU1.
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Visualization (3)
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Here we have plotted the data in sequential order (by program). We can see even more stronglythat the CPU times of the programs co-vary.
27Analysis of Paired DataConstruct points by subtracting CPU1i � CPU2i, and analyze this just like the univariatedata we analyzed last time.mean = 0.2779standard deviation = 0.1321degrees of freedom = 9value of t = 6.6549The probability of seeing this value (or greater) if the true mean were 0 is 0.0000466, so we canreject the null hypothesis that the mean is zero in favor of the alternative hypothesis that themean is greater than zero with con�dence at least 0.9999534.However, in the absence of prior expectation that CPU2 is slower than CPU1, we should usea \two-tailed test". To do this, we must compute the probability that we would have seena value t � 6:6549 or t � �6:6549. Because the distribution is symmetric, this probabilityis 0.0000932, so we can reject the null hypothesis in favor of the hypothesis that the mean isnon-zero with con�dence 0.9999068.
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Analysis as Unpaired DataIf we had used our previous technique for unpaired data, we would not be able to detect thedi�erence between the two CPU's.x1 � x2 = 0:2779s = 0:6473df = 18t = 0:4293The probability of observing this t value (or greater) if the true di�erence is zero is 0.3364 (fora one-tailed test). For a 2-tailed test, it is 0.6728. So we cannot reject the null hypothesis usingthis analysis.
29Bootstrap Analysis1000-fold Bootstrap 95% Con�dence Interval for CPU2� CPU1:0:2086 � (CPU2 �CPU1 � 0:3580.1000-fold Bootstrap 95% Con�dence Interval for CPU2� CPU1:�1:4533 � CPU2� CPU1 � 1:0277. (This contains 0, so we cannot reject the null hypoth-esis.)

30

Di�erences in ProportionsIn Machine Learning, we often need to test di�erences of two proportions. For example, in theID3 vs _Backprop comparison paper, we compared ID3 and Backprop on the same test set to seewhich algorithm was better. This is a case of paired di�erences.To perform the paired di�erences test, we need the 2x2 table: Disagree: 1385 (19.2%)Agree: 5857 (80.9%)(22.3%)(12.1%) (7.1%)1618873 512(58.5%)4239ID3 Backpropagation
IncorrectCorrect IncorrectCorrect

We will call the cells in this table cell11, cell10, cell01, and cell00.
31Bootstrap Con�dence Interval on Di�erence of TwoProportionsTo construct one bootstrap sample,let n = 4239 + 512 + 873 + 1618let cell00 = cell01 = cell10 = cell11 = 0Repeat n times:Draw a random number r between 0 and n� 1 andIf r < 4239 then cell11+ = 1else if r < 4239 + 512 then cell10+ = 1else if r < 4239 + 512 + 873 then cell01+ = 1else cell00+ = 1Di�erence in proportions on this trial is (cell10 � cell01)=nRepeat this 1000 times, sort them in order, and construct a con�dence interval from the 26thand 975th elements in the list.Results for NETtalk: �0:0594 � pID3 � pBP � �0:0398.
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Bootstrap For Di�erence of Non-Paired ProportionsSuppose we have a sample of size n1 with p1 proportion of successes and a sample of size n2with p2 proportion of successes.Repeat 1000 times:Flip n1 random coins with probability of success p1let p1;i be the observed probability of success.Flip n2 random coins with probability of success p2let p2;i be the observed probability of success.Let ^pi = p1;i � p2;iSort the list of ^pi values and choose the 26th and 975th elements.If we treat the NETtalk data as un-paired, this test gives a con�dence interval of �0:0645 �pID3 � pBP � �0:0338. This is much wider than the paired-di�erences interval.
33Distributional Tests of the Paired Di�erence of TwoProportionsFor paired di�erences, the quantity�2 = (jcell10 � cell01j � 1)2cell10 + cell01is distributed according to the �2 distribution with 1 degree of freedom. 93.5747For NETtalk, this value is 93.57. The probability of seeing a value at least that large under thenull hypothesis (that the two proportions are identical) is < 0:0001. So we can reject the nullhypothesis with con�dence at least 0.9999.

34

Distributional Con�dence Interval for the Paired Di�erence ofTwo ProportionsTo construct a 95% con�dence interval for the di�erence of two proportions, we can work asfollows:Let p10 = cell10=n and p01 = cell01=n.Let SE = r[p10 + p01 � (p10 � p01)2] =nLet pa�b = pa � pb = (cell10 � cell01)=nThen pa�b � [1:96SE + 1=(2n)] � pa�b � pa�b + [1:96SE + 1=(2n)]:For the NETtalk example: �0:0599 � pID3�BP � �0:0398.This interval is tighter than the bootstrap interval, but it is based on the Central Limit Theorem.

35Tests for Unpaired Di�erences of Two ProportionsLet p1 be the proportion of successes in n1 trials.Let p2 be the proportion of successes in n2 trials.Let p = (n2p1 + n1p2)=(n1 + n2) be the pooled proportion of successes.Then z = p1 � p2rp(1� p)(1=n1 + 1=n + 2)is approximately standard normally distributed.We can obtain a con�dence interval for the di�erence in the two proportions by letting SE =rp1(1� p1)=n1 + p2(1 � p2)=n2 and computingp1 � p2 � [1:96SE + 1=(n1 + n2)] � p1 � p2 � p1 � p2 + [1:96SE + 1=(n1 + n2)]For NETtalk, this gives �0:0651 � pID3 � pBP � �0:0346There is a method known as Fisher's Exact Test that gives better estimates for small samples(n1+n2 < 20 or 20 � n1+n2 � 40 and smallest expected cell has less than 5 examples in it).
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Evaluation and Comparison of Learning Algorithms
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37Special Problems with Learning AlgorithmsThere are multiple sources of variation in learning algorithms:� Test set choice. Randomly-chosen test sets may be unrepresentative.� Training set choice. Randomly-chosen training sets may be unrepresentative.� Algorithm instability. The classi�er produced by an algorithm can vary substantiallyfor even minor changes in the training set. Algorithms may also have internal sources ofrandomness (e.g., random initial weights for neural network algorithms).
38

Estimating Performance for Small Samples:10-Fold Cross-ValidationProtocol:� Split S into n = 10 disjoint subsets S1; : : : ; S10.� Repeat 10 times:{ Let S(i)train = S � Si and S(i)test = Si.{ Run the algorithmC(i)A = A(S(i)train){ Apply classifer to test set S(i)test and count number of errors err(i).� Compute statistic error rate = 1jSjXi err(i)We can compute a binomial con�dence interval for this number in the usual way.To stabilize this estimate, it can be repeated many times and averaged.
39Comparing Two Learning Algorithms: The 5x2cv testProtocol:� Repeat for j = 1; : : : ; 5:{ Split S into n = 2 disjoint subsets S1 and S2.{ Train each algorithm on each subset:C(1)A = A(S1) C(2)A = A(S2)C(1)B = B(S1) C(2)B = B(S2){ Test each classi�er on the other subset and compute di�erences:�(1)j = �(1)A � �(1)B .�(2)j = �(2)A � �(2)B .{ Compute the statistics2j = (�(1)j � �j)2 + (�(2)j � �j)2:� Finally, compute t = �(1)1r15 P5j=1 s2j� t has 5 degrees of freedom.
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A Method to Avoid: The resampled t testProtocol:� Repeat n = 30 times:{ Subdivide S into 2 sets: S(i)train and S(i)test.{ Run the algorithmsC(i)A = A(S(i)train)C(i)B = B(S(i)train){ Apply the classi�ers to the test set, S(i)test, and measure the di�erencein error rates �(i) = �(i)A � �(i)B .� Compute statistic t = �vuutPni=1(�(i)��)2n(n�1)
41Measurement of Type I Error
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Achieving Arbitrary Levels of Signi�cance
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43Regression Analysis of CPU ComparisonIn our analysis of benchmark data across two CPU's, we assumed that there was a �xed,additive di�erence between the CPU's and we computed xCPU1 � xCPU2. But usually, weassume that a computer program contains a certain amount of work (let's call it xi) and a CPUhas a certain speed. Hence, the following two linear models are more reasonable:yCPU1i = kCPU1xi + �1yCPU2i = kCPU2xi + �2Where kCPU1 is the speed of CPU1 and kCPU2 is the speed of CPU2. �1 and �2 are randomnoise terms.To compare two CPU's, it is convenient to take ratios, as follows:yCPU2i � �1yCPU1i � �2 = kCPU2kCPU1Regrouping, we get yCPU2i = kCPU2kCPU1y2 + �where � is a combined error term. 44



Regression AnalysisIf we assume � is normally distributed (a dubious assumption), we can determine the ratiokCPU2kCPU1 , by linear regression. Program CPU1 CPU2P1 3.482514 4.119505P2 3.677492 4.254761P3 3.877525 4.756673P4 6.787100 8.260877P5 1.789549 2.067093P6 5.156133 6.246014P7 4.777698 6.101515P8 3.906618 4.494181P9 6.374434 7.434952P10 5.152357 6.068562> lm(cpu2 ~ cpu1 - 1)Coefficients:cpu11.198235Degrees of freedom: 10 total; 9 residualResidual standard error: 0.1808158 45Results of Linear Regression
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46

Con�dence Intervals on Regression Coe�cientsBootstrap AnalysisDraw 1000 samples of the (yCPU1i ; yCPU2i ) pairs.Perform a linear regression on each sample.Collect the coe�cients, sort, and choose the 26th and 975th elements.This takes 2.5 minutes in Splus and produces the interval (1.175634,1.223873).
47Con�dence Intervals on Regression Coe�cientsDistributional AnalysisWe will refer to the estimated value of the coe�cient as b.Let s be the residual standard error printed by Splus.Then the standard error of the coe�cient is sb = s=rPni=1(yCPU1i )2. A con�dence interval forthe coe�cient is b� t0:975(n � 1)sb � b � b + t0:975(n � 1)sbIn this example, this gives (1.17077,1.225699), which is slightly wider than the bootstrap inter-val.
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Testing Techniques Using Human SubjectsSuppose we want to test two new user interfaces for an information retrieval system. We wantto design a study where human subjects will use each of the new interfaces (plus the existinginterface) to solve a series of six test problems while we measure the amount of time requiredto solve each problem (the \score").We want to be able to separate out any e�ects due to individual subjects. We also wantto control for \learning" e�ects during the experiments (i.e., the subjects may become morecomfortable with the physical set, the experimenter, etc.). Experiment Design:Subject Trial Interface1,4 1,2 existing1,4 3,4 new-A1,4 5,6 new-B2,5 1,2 new-A2,5 3,4 new-B2,5 5,6 existing3,6 1,2 new-B3,6 3,4 existing3,6 5,6 new-A49Datasubject trial interface score subject trial interface score1 1 1 1 24.415793 19 4 1 1 20.6008812 1 2 1 18.120118 20 4 2 1 22.7718793 1 3 2 32.474585 21 4 3 2 22.2487694 1 4 2 15.529653 22 4 4 2 16.3787285 1 5 3 16.871876 23 4 5 3 15.9626236 1 6 3 1.642948 24 4 6 3 11.3347077 2 1 2 20.874529 25 5 1 2 18.0560068 2 2 2 17.577347 26 5 2 2 14.7566389 2 3 3 19.882630 27 5 3 3 18.33978410 2 4 3 16.636160 28 5 4 3 7.38202711 2 5 1 16.588235 29 5 5 1 13.41845112 2 6 1 12.654211 30 5 6 1 15.63169613 3 1 3 19.918697 31 6 1 3 11.18549414 3 2 3 10.958781 32 6 2 3 11.21188015 3 3 1 17.559887 33 6 3 1 21.84903516 3 4 1 17.073742 34 6 4 1 21.65035017 3 5 2 19.116569 35 6 5 2 23.72902718 3 6 2 13.731467 36 6 6 2 9.874535
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Visualizing the Data
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Plot of score versus subject.
51Visualization (2)
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Visualization (3)
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53Analysis of Variance (ANOVA)We adopt the following model:score = � + subjecti + trialj + interfacek + �ijkwhere � is the overall average performance on the tasks.subjecti is the change due to the ith subject.trialj is the change due to the jth trial.interfacek is the change due to using the kth interface.and �ijk is random noise.The key idea of ANOVA is that variation in the observed score may be caused by variationwithin subjects and trials and noise as well as between the interfaces (which is what we arereally trying to test).Under the null hypothesis, variation within subjects, trials, and interfaces would be the same asthe variation due to noise (because it would all be noise). So, if the variation between interfacesis much larger than the variation due to noise, we have a signi�cant e�ect.

54

Analysis of Variancescoreijk � score scorei � score scorej � score scorek � score scoreijk � ^scoreof squares = sum of squares + sum of squares + sum of squares + sum of squares(about mean) from subjects from trials from interfaces from �Df Sum of Sq Mean Sq F Value Pr(F)subject 1 17.9058 17.9058 0.777969 0.3843408trial 1 158.1699 158.1699 6.872160 0.0132874interface 1 155.0756 155.0756 6.737719 0.0141348Residuals 32 736.5131 23.0160F = Mean SqiResidual Mean SquareFrom this we see that the e�ects due to trial and interface are signi�cant (at the 0.98 level),while the e�ect due to di�erent subjects is insigni�cant.
55ANOVA and Linear RegressionFor every ANOVA, there is an equivalent (but usually complex) linear regression. It can besummarized by the coe�cients:(Intercept) subject trial interface17.7141 -0.412954 -1.227347 -2.541945These aren't actually coe�cients that multiply the values of the various variables. But theirsign and magnitude tells us the direction of the interaction. There is a learning e�ect due totrials, because the score decreases with trials. There is an even larger improvement due to theinterface.
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True ModelMain e�ect: 18E�ect due to subject: (0; 1; 0; 2;�1;�2)E�ect due to trial: (3; 2; 1;�1;�2;�3)E�ect due to interface: (2; 1;�3)Gaussian noise with mean 0 and standard deviation 4.
57Analysis of Frequency Data using �2Recall the user interface experiment.Usability Heuristic Walkthrough Design Rules Totalvia technique: 30 105 30 13 178expected by H0: 44.5 44.5 44.5 44.5 178(observed� expected)2expected 4.72 82.25 4.72 22.30 144.00We can test an hypothesis about frequencies by computing the set of frequencies expectedunder the hypothesis. Then, we can computeXi (observedi � expectedi)2expectediThis is distributed approximately as �2 with n�1 degrees of freedom. In this case, the observedvalue is highly signi�cant!We can test other hypotheses too, as long as the expected frequency is 5 or more in each cell.
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Experimental Techniques from Psychology� Protocol Analysis{ Action protocols. Keystrokes, operations, eye-motion.{ Verbal protocols. Thinking aloud.� Surveys and Questionnaires� Experimental Manipulations
59Action Protocols� Sequence of actions, often with associated times.� Keystrokes, mousing, application-level actions can be measured by soft-ware� Eyetracking: Where was the subject looking?
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Verbal Protocols� Ask subjects to \think out loud"This often requires prompting: \Please keep talking"Or use of some reminder, ideally automatic.� Do not ask subjects to explain their actionsExplanations produce rationalizations and reconstructions.These are unreliable.� Verbal protocols are incompleteDo not capture subconscious or perceptual processing.Do not capture all conscious processing either.Absence from protocol does not imply absence from subject's mind.� Protocol interference?The requirement to think aloud slows subjects by a factor of 2.
61Protocol Analysis� Protocols are time-consuming to analyze� Useful for identifying user goals and subgoals, conceptual categories,conceptual misunderstandings� Typical analytical strategy:Break problem-solving into episodes.Identify goals and actions in each episode.Try to track episode interruptions and shifts (hard!)Protocol analysis can be very subjective.Use multiple analysts.Develop an agreed-upon set of criteria and stick to them.

62

Typical Results� Time Allocation: \Subjects spent 20% of their time formulating queries, 30% waiting,40% analyzing the results of queries, and 10% trying to �gure out how to use the interface"� Problem Solving Strategies: \Subjects lack a global plan, they repeatedly identifysingle bugs and �x them." or \Subjects systematically processed the speci�cations".
63Uses of Protocol Analysis� Exploratory ResearchStudy how people currently solve a task:what are the information processing subtasks they must perform?What information sources do they use?Where would automation provide the biggest impact?� Design EvaluationBuild a system prototypeTest human subjects on that prototype� Adjunct to Quantitative MeasuresMeasure speed and accuracyUse protocols to understand the causes of errors and misconceptions.
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Surveys and Questionnaires� Advantages:{ Cheap to perform.{ Can use many subjects.{ Easier to analyze than protocols.� Disadvantages:{ Non-responses may bias the results.{ Hard to measure what you really want to measure.{ Easily manipulated.
65Questionnaire Design� Ask questions in an unbiased manner� Ask multiple questions related to the same topic� Include questions on interfering or interacting factors� Most questions should be multiple choiceRating scales should have 5{7 levels at most.Rating scales should all be laid out the same way.All wording should be carefully checked for potential misunderstandings and biases.Pre-test the questionnaire (with verbal protocols).Consider randomizing the order of questions for di�erent subjects.� Include some free-response questions and room for commentsSubjects may have other things they want to talk about (detect incompleteness)Subjects may want to complain about questions or explain their answers (detect problemswith questions).
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Questionnaire Design (2)� Make it easy for subjects to answerKeep it as short as possibleProvide pre-paid return envelopesProvide a reward for returning the questionnaire.� Choose a random sample|avoid self-selection� Follow up with non-responding subjects� Maintain con�dentiality and reassure subjects of this.� O�er every subject a free copy of the survey results.
67Questionnaire Analysis� Reliability and Validity� Representativeness� Use ANOVA or Contingency Table Analysis to Control for Interactions� Use Care in Grouping Data

68



Contingency Table Analysis� Null Hypothesis: The factors are independent� Alternative Hypothesis: The factors are not independentMeasured Data: Low Satisfaction High SatisfactionLow Experience 22 12 34 (.466)High Experience 10 29 39 (.534)32 (.438) 41 (.562) 73 (1.00)Null Hypothesis: Low Satisfaction High SatisfactionLow Experience 14.9 19.1 34High Experience 17.1 21.9 3932 41 73�2 test with 2 degrees of freedom:X (observed� expected)2expected = 11:27 > 5:99(p = 0:0036)
69Experimental Manipulations� Randomly divide subjects into groups� Each group employs a di�erent technique or method� A dependent variable is measured� ANOVA or �2 test is used to analyze the e�ect of the technique on thedependent variableThe user-interface analysis study is an excellent example of this.
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Computational Experiments� Questions to be asked:Why does one algorithm do better than another?When does one algorithm do better than another?� Hold algorithms constant, vary problemsProblem attributes: size, amount of noise, degree of nonlinearity, amount of data, etc.� Hold problems constant, vary algorithmsNETtalk study: explored various modi�cations along a continuum from one algorithm toanother.
71Parallel Computing� Speedup. Ratio of best serial running time to the running time on n processors.� Scaling. Ratio of size of biggest problem that can be run on one machine to the size ofthe biggest problem that can be run on n machines.
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Comparing Results Across Machines� CPU time can't be usedMachines have di�erent speeds, memory architectures, user loads, etc.� Identify proxies for CPU time (and other resources)Number of iterationsNumber of comparisonsNumber of transactionsNumber of rule �rings� One proxy unit should always take the same amount of CPU time on agiven machine
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