Histogram

Using Splus (on ada), we can issue the commands

% Splus

> comb <- read.table("comb.data")
> hist (comb$V1)

We can also construct a kernel density estimate.

15

10

024 0.25

~amh®V/1

. ]
026 027

Kernel Density Estimate

A kernel density estimate places a small

normal distribution (the “kernel”) at each observed data point and sums them up.

> plot(density(comb$Vi, width=0.02),type="1")

0.02)$y

density(comb$V1, window = "g", width
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density(comb$V1, window = "g", width = 0.02)$x

Statistical Analysis of Data

¢ Given a set of measurements of a value, how certain can we be of the

value?

e Given a set of measurements of two values, how certain can we be that

the values are different?

e Given a measured outcome and several condition or treatment values,
how can we remove the effect of unwanted conditions or treatments on

the outcome?

Measuring CPU Time

[ made the 37 measurements of the CPU time required to compute
10000
500
in Common Lisp on darwin.cs.orst.edu.
0.27 0.25 023 024 0.26 0.24 026 025 0
0.25 0.24 025 024 0.25 0.26 024 025 0.25 0.25
0.25 0.25 024 025 024 0.25 025 024 0
0.24 025 0.24 024 025 0.25 0.26
What is the true CPU cost of this computation?

Before doing any calculations with the data,

Always Visualize Your Data




Confidence Intervals Via Distributional Theory

If we plot a histogram of the 1000 bootstrap trials, we see that it is very nearly normally
distributed. This is called the sampling distribution of the mean. The Central

Limit Theorem says that the sampling distribution of the mean is normally distributed.

The normal distribution has two parameters,

e the mean (denoted )

o the standard deviation (denoted o).

p(z) = o

If the original CPU times were distributed with mean g and standard deviation o, then the
means will be distributed with mean g and standard deviation o /y/n. (Here n = 37.) Unfor-
tunately, we must know the true standard deviation of the CPU times in order to apply the

central limit theorem. We don’t know this.

The Sample Standard Deviation

"o (. =2
S "z, —T)?
standard deviation = § = wl(ill

n—

Sample Mean

Based on this visualization, it is reasonable to compute the mean of this distribution:
mean =T = — y_ &;

Mean = 0.248
But how confident can we be that this is the true value? We would like to have a confidence

interval that would tell us the following:

If we drew random samples of size 37 and took the mean. 95% of the time, the mean

would lie between a lower bound and an upper bound.

Confidence Intervals Via Resampling

Using a computer, we can simulate this. We draw 1000 random subsamples (with replacement)
from our original 37 points and compute the mean. Then we sort these means and choose the

26th and 975th values as our lower and upper bounds.

Results: In 950 trials (out of 1000),

0.2451 <7 < 0.2505
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0.251 -

0.249
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Bootstrapping on the Median

Suppose our goal was to measure the median CPU time required for this computation, rather

than the average.

We would like to know that 95% of the time. the observed median is within some bound of the

true median.

While distribution theory can’t help us here, we can still apply the bootstrap method:

Choose 1000 random samples (with replacement) of size 37 from our original 37 points.
Take the median value of each sample. Sort and take the value at the 25th and 975th

positions.

Bootstrap Median Value
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The t distribution

Instead of the normal distribution, we can use the ¢ distribution. The ¢ distribution has three
parameters: the mean (u), the standard deviation (o), and the degrees of freedom (d.f. =
n—1).

350

300

250 1 \ tdistribution g

200

150

probability density

“\ Bootstrap density estimate

100

0.244 0.246 0.248 0.25 0.252
mean value

The 95% confidence limits are slightly tighter according to the central limit theorem using the

t distribution.

Distributional confidence intervals

A 95% confidence interval for the mean can be computed via the ¢ distribution as follows:

Let T be the sample mean.

Let s be the sample standard deviation.

Let n be the sample size.

Let £9925(n — 1) be the value of ¢ with n — 1 degrees of freedom such that the probability that

x < t0_023(n - l) is 0.975.
Then,
T — togn(n —1)s/vn < p < T+ togs(n —1)s/v/n

Where g is the true mean of the CPU times.

The t values can be looked up in a table, or you can use Splus:

> qt(0.975,36)
[1] 2.028094



A Bootstrap Confidence Interval When the Bootstrap Doesn’t Work Well

We can again perform a bootstrapping experiment. Let n be number of test examples. The bootstrap is good for the mean, the median, and other statistics involving the “middle” of
a distribution. The bootstrap is not good for estimating the minimum, the maximum, or other

Repeat 1000 trials: statistics involving the “tails” of the distribution.
Draw a random sample of size n with replacement from the test set.

Measure p; = the proportion correctly classified by the decision tree.
Sort the p; in increasing order.

Choose b and ub to be the 26th and 975th elements.

Then, we would say in 1000 trials, the probability is 0.95 that we would observe b < 6 < ub.

Results: 0.81 < 0 < 0.94 with confidence 0.95.

Bootstrap Graph Measuring Number of Occurrences of Events

In many CS experiments, we count the number of events that occur in n trials. For example,
in machine learning, suppose we constructed a decision tree and then evaluated it on a test set
of 100 examples and observed 88 correct classifications. We would report the proportion of

correctly classified test examples as 0.88.

But how uncertain is this quantity? How much might it vary due to the random choice of the

test set?

We will say 8 = 0.88, where € is the true proportion of correct classifications that our decision

Observed proportion of correct classifications

tree would make (on an infinite test set).

075 Lt . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
Position in sorted list



Comparing Two Measurements

10000
500

in Common Lisp on shark3.cs.orst.edu.

[ performed 33 trials of

0.21 0.20 020 0.19 0.20 0.19 0.
0.19 0.19 0.20 0.18 0.19 0.20 0
0.19 0.20 0.18 0.19 0.19 0.20 0.
0.21 0.23 0.20

—_
oo

0.20 0.19 0.19
0.20 0.20 0.20
0 022 0.18 0.19
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N

Can we conclude that shark3 is faster than darwin?

Visualizing
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Comparable kernel density estimation plots. Visually, shark3 is much faster than darwin.

Binomial Confidence Interval From Distributional Theory

Suppose we have a biased coin with probability of heads 6. Suppose we take a sample of size
n and measure the proportion of successes 6. From the central limit theorem, this quantity is

approximately normally distributed with mean 9 and standard deviation é(l — é)/ n.

We can therefore use a 95% confidence interval for the mean of the normal distribution to
compute a confidence interval for the binomial distribution. We make a slight change (called

the “continuity correction”) to correct for the discrete nature of the binomial distribution.

é — [20.973\/é<1 — é)/n + 1/(211)] S é S é+ [Z[],F]T,";\ é(l — é)/n + 1/(271)}

Here zgg75 is the value of a normally distributed variable z such that P(z < zgg975) = 0.975.
Specifically, zg975 = 1.96.

Results: 0.811 < 6 < 0.949.

Bootstrap and Normal Distributions
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Normal approx ;

Probability

‘\ KDE of bootstrap

The Normal approximation is always symmetrical, so it does not work very well when 6 is near
0.0 or 1.0.



Hypothesis Testing

Suppose we want to know whether the true difference between the two machines is zero or

non-zero. We can formalize this as a statistical decision:

Hy: pp —po =0
Hy: oy —pp #0

Hy is the “null hypothesis” and H; is the “alternative hypothesis”. An hypothesis test deter-
mines probablistically whether we can reject Hy in favor of H; by asking “Suppose H is true,

what is the probability that we would have observed the given data?”

Specifically, we want to know what is the probability that we would ohserve T, — Z, > 0.0509

when the true difference was zero. This can be determined from the ¢ distribution.

The computed value of ¢ is
Ty — Ty

t= = 21.69

S

4.59.

Paired Differences

Suppose we had a set of benchmark programs that we were going to run on two machines. We

will run each program on each machine to obtain the following data:

Program CPU1 CPU2

P1 3.482514  3.896850
P2 3.677492 3.866780
P3 3.877525 4.206775
P4 6.787100 7.197257
P5 1.789549 2.250253
P6 5.156133 5.457694
pP7 4.777698 5.075136
P8 3.906618 4.095468
P9 6.374434 6.456649
P10 5.152357 5.257691

Notice that the different programs have very different run times (e.g., ranging from 1.78 to 6.79
on CPUT).

Bootstrap Test

Conduct 1000 trials of the following:
Draw bootstrap sample from Darwin, compute mean z,
Draw bootstrap sample from Shark3, compute mean =
Count number of times T, > .

If this is greater than 950, then we can be 95% confident.

Result: All 1000 trials give darwin slower than shark3.

We can also compute a 95% hootstrap confidence interval on the difference 7, — &,

0.0461 <7y — =, < 0.0553.

Distributional Test

If two random variables are normally distributed. then their difference is normally distributed

with mean g = g, — p» and standard deviation o = \/o7 + 03.

Now the sampling distribution of the mean Z is approximately normally distributed (according
to the central limit theorem). So we know T} — Ty is also normally distributed. However,

because we don’t know g7 or o9, we must use the ¢ distribution instead.

If the two samples have sizes n; and no, then T} —Z» is has a ¢ distribution with mean 7, — z,
and standard deviation

s = J(Zyll(ﬁil,z -7 %2 — Tz)z) ( 11 )

’I’Llfl ’I’Lg*l

and n; 4+ ny — 2 degrees of freedom.

Using the data above, we obtain
T — Ty = 0.0509

s =0.0023

df = 68.

A 95% confidence interval for the difference is (0.0463,0.0555).



Visualization (3)

CPU time

5 6
Program Number

Here we have plotted the data in sequential order (by program). We can see even more strongly

that the CPU times of the programs co-vary.

Analysis of Paired Data

Construct points by subtracting C PU1; — C PU2;, and analyze this just like the univariate

data we analyzed last time.

mean = 0.2779

standard deviation = 0.1321
degrees of freedom =9
value of ¢t = 6.6549

The probability of seeing this value (or greater) if the true mean were 0 is 0.0000466, so we can
reject the null hypothesis that the mean is zero in favor of the alternative hypothesis that the

mean is greater than zero with confidence at least 0.9999534.

However, in the absence of prior expectation that CPU2 is slower than CPU1, we should use
a “two-tailed test”. To do this, we must compute the probability that we would have seen
a value t > 6.6549 or t < —6.6549. Because the distribution is symmetric, this probability
is 0.0000932, so we can reject the null hypothesis in favor of the hypothesis that the mean is

non-zero with confidence 0.9999068.

Visualization

There are many ways to visualize the data. We can superimpose a kernel density estimate for

each of the CPU’s:
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This suggests that CPU1 is systematically offset from CPU2.

Visualization (2)

8
o
7+ 4
o
6 |
5+ 4
N
2 Eput=cpuz
S o =
4t ps R
o o 7
3F 4
N
2+ 4
. . . . . . . . . . .
15 2 25 3 35 5 55 6 65 7

This plots CPU1 versus CPU2 and also plots the line y = 2. Notice that the performance of
CPU1 is correlated with the performance of CPU2. Notice that all points lie above the line,

suggesting that CPU2 is always bigger than CPUL.



Differences in Proportions

In Machine Learning, we often need to test differences of two proportions. For example, in the

ID3 vsBackprop comparison paper, we compared ID3 and Backprop on the same test set to see

which algorithm was better. This is a case of paired differences.

To perform the paired differences test, we need the 2x2 table:

Backpropagation

Correct Incorrect
4239 512 Disagree: 1385 (19.2%)
Correct
(58.5%) (7.1%)
D3
873 1618
Incorrect
(12.1%) (22.3%) Agree: 5857 (80.9%)

We will call the cells in this table celly;. cellyg, celly;. and celly.

Bootstrap Confidence Interval on Difference of Two
Proportions

To construct one bootstrap sample,

let n = 4239 4 512 + 873 + 1618

let cellyy = cellyy = cellyy = cell;; =0

Repeat n times:
Draw a random number r between 0 and n — 1 and
If r < 4239 then cell;;+ =1
else if r < 4239 4+ 512 then celljp+ =1
else if r < 4239 4 512 4 873 then celly+ =1
else cellyg+ =1

Difference in proportions on this trial is (cellig — celly)/n

Repeat this 1000 times, sort them in order, and construct a confidence interval from the 26th

and 975th elements in the list.

Results for NETtalk: —0.0594 < prp3 — ppp < —0.0398.

Analysis as Unpaired Data

If we had used our previous technique for unpaired data, we would not be able to detect the

difference between the two CPU’s.

s = 0.6473
df =18
¢ =0.4293

The probability of observing this ¢ value (or greater) if the true difference is zero is 0.3364 (for
a one-tailed test). For a 2-tailed test, it is 0.6728. So we cannot reject the null hypothesis using

this analysis.

Bootstrap Analysis

1000-fold Bootstrap 95% Confidence Interval for CPU2 — CPU1:
0.2086 < (CPU2 — CPU1 < 0.3580.

1000-fold Bootstrap 95% Confidence Interval for CPU2 — CPUT1:
—1.4533 < CPU2 — CPU1 < 1.0277. (This contains 0, so we cannot reject the null hypoth-

esis.)



Distributional Confidence Interval for the Paired Difference of
Two Proportions

To construct a 95% confidence interval for the difference of two proportions, we can work as

follows:

Let pig = cellyg/n and pg; = celly; /n.
Let SE = \/[Pm +poi — (po — pm ) /n
Let po—iy = pa — Py = (cellyy — cellp)/n
Then

Pa—p— [1.96SE +1/(2n)] < pa—i < pa—p + [1.96SE + 1/(2n)].

For the NETtalk example: —0.0599 < prp3—pp < —0.0398.

This interval is tighter than the bootstrap interval, but it is based on the Central Limit Theorem.

Tests for Unpaired Differences of Two Proportions

Let p; be the proportion of successes in n; trials.
Let pa be the proportion of successes in ny trials.
Let p = (nop1 + nipa)/(n1 + ny) be the pooled proportion of successes.

Then
pP1—p

z= /P =p)(1/ni +1/n+2)

is approximately standard normally distributed.

We can obtain a confidence interval for the difference in the two proportions by letting SE =

\/p](l — p1)/n1 4 pa(1 — pa)/ny and computing

P — P2 — [1.965E+ 1/(’)11 +n2)] <pi—p2<p —ps+ [1965E + 1/(’)11 + nz)]

For NETtalk, this gives —0.0651 < prp3 — ppp < —0.0346

There is a method known as Fisher's Exact Test that gives better estimates for small samples

(ny +ny < 20 or 20 < ny 4+ ny < 40 and smallest expected cell has less than 5 examples in it).

Bootstrap For Difference of Non-Paired Proportions

Suppose we have a sample of size ny with p; proportion of successes and a sample of size ny

with py proportion of successes.

Repeat 1000 times:
Flip n; random coins with probability of success p;
let p1; be the observed probability of success.
Flip ny random coins with probability of success po
let py; be the observed probability of success.
Let p; = p1,; — pa

Sort the list of p; values and choose the 26th and 975th elements.

If we treat the NETtalk data as un-paired, this test gives a confidence interval of —0.0645 <

prp3 — ppp < —0.0338. This is much wider than the paired-differences interval.

Distributional Tests of the Paired Difference of Two
Proportions

For paired differences, the quantity

2 (\cellm — 66”01‘ — 1)2

cellyy + celly
is distributed according to the x? distribution with 1 degree of freedom. 93.5747
For NETtalk, this value is 93.57. The probability of seeing a value at least that large under the

null hypothesis (that the two proportions are identical) is < 0.0001. So we can reject the null

hypothesis with confidence at least 0.9999.



Estimating Performance for Small Samples:
10-Fold Cross-Validation

Protocol:
¢ Split S into n = 10 disjoint subsets Sy, ..., Syg.
¢ Repeat 10 times:
~Let S/), =S—S; and S, = S,.

— Run the algorithm
Cl = A(Siun)

— Apply classifer to test set S,(é), and count number of errors errl’,

¢ Compute statistic

1 .
error rate = — 3" err(?)

|57

We can compute a binomial confidence interval for this number in the usual way.

To stabilize this estimate, it can be repeated many times and averaged.

Comparing Two Learning Algorithms: The 5x2cv test

Protocol:
¢ Repeat for j=1,...,5:
— Split S into n = 2 disjoint subsets S, and S,.

— Train each algorithm on each subset:
o =4a(s) ) = A(S)
Cy' =B(S) Cf' =B(S)

— Test each classifier on the other subset and compute differences:

6 = &) _ b
60 = &) _ )

— Compute the statistic

53 = (65'1) - 5})2 + (61(2) - 3})2-

¢ Finally, compute

o ¢t has 5 degrees of freedom.

Evaluation and Comparison of Learning Algorithms

/\

single domain multiple domains
9
analyze classifiers analyze algorithms
predict choose predict choose

classifier between algorithm between

accuracy classifiers accuracy algorithms
separate no separate no small large small large
test data test data test data test data sample sample sample sample

1 2 3 4 5 6 7 8

Special Problems with Learning Algorithms

There are multiple sources of variation in learning algorithms:

o Test set choice. Randomly-chosen test sets may be unrepresentative.
¢ Training set choice. Randomly-chosen training sets may be unrepresentative.

e Algorithm instability. The classifier produced by an algorithm can vary substantially

for even minor changes in the training set. Algorithms may also have internal sources of

randomness (e.g.. random initial weights for neural network algorithms).



Achieving Arbitrary Levels of Significance A Method to Avoid: The resampled ¢ test

0.25

Protocol:
¢ Repeat n =30 times:
5 — Subdivide S into 2 sets: S,(;‘L,‘n and S,((’),
5
2 1 — Run the algorithms
>
s Cl = A(Siin)
E I3 I3
: 1 5’ = B(S}iuin)
[<} .
& — Apply the classifiers to the test set, S,(;l,, and measure the difference
] in error rates 6! = 64(,11) - e(é).
¢ Compute statistic
0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 ‘=
Number of replications -
Regression Analysis of CPU Comparison Measurement of Type I Error
In our analysis of henchmark data across two CPU’s, we assumed that there was a fixed, 03l ‘ |
additive difference between the CPU’s and we computed ZTepiy — Topre. But usually, we %

assume that a computer program contains a certain amount of work (let’s call it ;) and a CPU 025 |

has a certain speed. Hence, the following two linear models are more reasonable: g
D o2t i
] %
CPUL _ 1,CPUI . =
v =k T+ € 5 ol |
2
e Y =
yI(PI_ = KOPU2 4 e, g 1{
£ o1l {» i
Where k7PU1 is the speed of CPUL and k72 is the speed of CPU2. €, and €, are random 17 Il
nois rms 008 Pil I iTr‘l
se terms. }W mﬁ‘}m
To compare two CPU’s, it is convenient to take ratios, as follows: Chverem opTes  Rempiedt ot p—
PU2 PU2
yI_C U2 e kC L
y Pl —e,  EOPUL ¢ Resampled ¢ test and difference-of-proportions test have unacceptable
. Type 1 errors.
Regrouping, we get yp
ont LCPU2
0
i = porn¥? +e

where € is a combined error term.



Confidence Intervals on Regression Coefficients Regression Analysis
Bootstrap Analysis

If we assume € is normally distributed (a dubious assumption), we can determine the ratio

Draw 1000 samples of the (y¢ V!, y©7U2) pairs. % by linear regression.

Perform a linear regression on each sample.

Collect the coefficients, sort, and choose the 26th and 975th elements. Program  CPUL  CPUZ
P1 3.482514  4.119505

This takes 2.5 minutes in Splus and produces the interval (1.175634,1.223873). P2 3.677492 4.254761
P3 3.877525 4.756673
P4 6.787100 8.260877
P5 1.789549 2.067093
P6 5.156133 6.246014
P7 4.777698 6.101515
P8 3.906618 4.494181
P9 6.374434 7.434952
P10 5.152357 6.068562

> Im(cpu2 ~ cpul - 1)
Coefficients:

cpul
1.198235

Degrees of freedom: 10 total; 9 residual
Residual standard error: 0.1808158

Confidence Intervals on Regression Coefficients Results of Linear Regression
Distributional Analysis

We will refer to the estimated value of the coeficient as b. 8T T
Let s be the residual standard error printed by Splus. T ]
Then the standard error of the coefficient is s, = s/,/S0; (yCPU1)2. A confidence interval for 6l o A&7 i
the coefficient is N cPuz=11sECRUL .
a 5 = e b
b—tygrs(n —1)s; <b < b+tggrs(n —1)s; ° T oeueceur

In this example, this gives (1.17077,1.225699), which is slightly wider than the bootstrap inter-

val.

y,C‘I’['Q — 1.198%@1’['1



Visualizing the Data Testing Techniques Using Human Subjects

Suppose we want to test two new user interfaces for an information retrieval system. We want

: to design a study where human subjects will use each of the new interfaces (plus the existing
o
” interface) to solve a series of six test problems while we measure the amount of time required
9 to solve each problem (the “score”).
o . ' We want to be able to separate out any effects due to individual subjects. We also want
g : : L . . . .
8 . . . ' to control for “learning” effects during the experiments (i.e., the subjects may become more
& . . *
§ EE ! : comfortable with the physical set, the experimenter, etc.). Experiment Design:
2 . Subject Trial Interface
: 1.4 1,2 existing
['2]
1.4 3.4  new-A
I 2 B a p : 1.4 5,6 new-B
data$subject 2.5 1.2 new-A
2,5 3.4 new-B
Plot of score versus subject. 25 56 existing
3.6 1.2 new-B
3.6 3,4 existing
3.6 56  new-A
Visualization (2) Data
subject trial interface score subject trial interface score
1 1 1 1 24.415793| 19 4 1 1 20.600881
° 2 1 2 1 18.120118 | 20 4 2 1 22.771879
v 3 1 3 2 32.474585 | 21 4 3 2 22.248769
- 4 1 4 2 15.529653 | 22 4 4 2 16.378728
o . . 5 1 5 3 16.871876 | 23 4 5 3 15.962623
.ol ! i . 6 1 6 3 1.642948 | 24 4 6 3 11.334707
[0 ° . - -
§ . . : [ 2 1 2 20.874529| 25 5 1 2 18.056006
g, ! : . 8 2 2 2 17.577347| 26 5002 2 14756638
© . : 9 2 3 3 19.882630 | 27 5 3 3 18.339784
9 ‘ ' . 10 2 4 3 16.636160 | 28 5 4 3 T7.382027
. 11 2 5 1 16.588235 | 29 5 5 1 13.418451
" 12 2 6 1 12.654211 30 5 6 1 15.631696
13 3 1 3 19.918697 | 31 [§ 1 3 11.185494
T T T T r ; 14 3 2 3 10.958781 | 32 [§ 2 3 11.211880
1 2 5 6
datastrial 15 3 3 1 17.559887 | 33 6 3 1 21.849035
16 3 4 1 17.073742 | 34 6 4 1 21.650350
. . L 17 3 5 2 19.116569 | 35 6 5 2 23.729027
Plot of score versus trial. We can see some “learning” effect. 18 3 6 2 13.731467 | 36 6 6 2 0.874535




Analysis of Variance

score;j, — SCOTE SCOTE; — SCOTE score; — score SCOTE} — SCOTE score i, — score
of squares = | sum of squares | + | sum of squares | + | sum of squares | + | sum of squares
(about mean) from subjects from trials from interfaces from €
Df Sum of Sq Mean Sq F Value Pr(F)
subject 1 17.9058 17.9058 0.777969 0.3843408
trial 1 158.1699 158.1699 6.872160 0.0132874

interface 1 155.0756 155.0756 6.737719 0.0141348
Residuals 32 736.5131 23.0160

Mean Sq;

~ Residual Mean Square

From this we see that the effects due to trial and interface are significant (at the 0.98 level),

while the effect due to different subjects is insignificant.

ANOVA and Linear Regression

For every ANOVA, there is an equivalent (but usnally complex) linear regression. It can be

summarized by the coefficients:

(Intercept) subject trial interface
17.7141 -0.412954 -1.227347 -2.541945

These aren’t actually coefficients that multiply the values of the various variables. But their
sign and magnitude tells us the direction of the interaction. There is a learning effect due to
trials, because the score decreases with trials. There is an even larger improvement due to the

interface.

Visualization (3)
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Plot of score versus which interface was used.

Analysis of Variance (ANOVA)
We adopt the following model:
score = |t + subject; + trial; + inter face;, + €;ji

where g is the overall average performance on the tasks.
subject; is the change due to the ith subject.

trial; is the change due to the jth trial.

inter face; is the change due to using the kth interface.

and €;j; is random noise.

The key idea of ANOVA is that variation in the observed score may be caused by variation
within subjects and trials and noise as well as between the interfaces (which is what we are

really trying to test).

Under the null hypothesis, variation within subjects, trials, and interfaces would be the same as
the variation due to noise (because it would all be noise). So, if the variation between interfaces

is much larger than the variation due to noise, we have a significant effect.



Experimental Techniques from Psychology

e Protocol Analysis

— Action protocols. Keystrokes, operations, eye-motion.

— Verbal protocols. Thinking aloud.
e Surveys and Questionnaires

¢ Experimental Manipulations

Action Protocols

e Sequence of actions, often with associated times.

¢ Keystrokes, mousing, application-level actions can be measured by soft-
ware

¢ Eyetracking: Where was the subject looking?

True Model

Main effect: 18

Effect due to subject: (0,1,0,2, -1, -2)
Effect due to trial: (3,2,1,—1,-2,-3)
Effect due to interface: (2,1, —3)

Gaussian noise with mean 0 and standard deviation 4.

Analysis of Frequency Data using \’

Recall the user interface experiment.

Usability Heuristic Walkthrough Design Rules Total

via technique: 30 105 30 13 178
expected by Hy: 44.5 44.5 44.5 44.5 178
(observed — expected)? . - - .

4.72 82.25 4.72 22.30 144.00

expected

We can test an hypothesis about frequencies by computing the set of frequencies expected
under the hypothesis. Then, we can compute

(observed; — expected;)?

: expected;

This is distributed approximately as y? with n— 1 degrees of freedom. In this case, the observed
value is highly significant!

We can test other hypotheses too, as long as the expected frequency is 5 or more in each cell.



Typical Results Verbal Protocols

e Time Allocation: “Subjects spent 20% of their time formulating queries, 30% waiting, e Ask subjects to “think out loud”
40% analyzing the results of queries, and 10% trying to figure out how to use the interface” This often requires prompting: “Please keep talking”

e Problem Solving Strategies: “Subjects lack a global plan, they repeatedly identify r use of some reminder, ideally automatic

single bugs and fix them.” or “Subjects systematically processed the specifications”. e Do not ask subjects to explain their actions
Explanations produce rationalizations and reconstructions.

These are unreliable.

e Verbal protocols are incomplete
Do not capture subconscious or perceptual processing.
Do not capture all conscious processing either.

Absence from protocol does not imply absence from subject’s mind.

o Protocol interference?

The requirement to think aloud slows subjects hy a factor of 2.

Uses of Protocol Analysis Protocol Analysis

¢ Exploratory Research ¢ Protocols are time-consuming to analyze

Study how people currently solve a task: . - .

! peol ! N e Useful for identifying user goals and subgoals, conceptual categories,

what are the information processing subtasks they must perform? . .

) : conceptual misunderstandings
What information sources do they use?

Where would automation provide the biggest impact? ¢ Typical analytical strategy:

Break problem-solving into episodes.

e Design Evaluation . L .
g Identify goals and actions in each episode.

Build a system prototype . . . .
o ! Vi Try to track episode interruptions and shifts (hard!)
Test human subjects on that prototype
e Adjunct to Quantitative Measures Protocol analysis can be very subjective.
Measure speed and accuracy Use multiple analysts.

Use protocols to understand the causes of errors and misconceptions. Develop an agreed-upon set of criteria and stick to them.



Questionnaire Design (2) Surveys and Questionnaires

e Make it easy for subjects to answer ¢ Advantages:
Keep it as short as possible — Cheap to perform.

Provide pre-paid return envelopes .
. . . . — Can use many subjects.
Provide a reward for returning the questionnaire.

— Easier to analyze than protocols.
e Choose a random sample—avoid self-selection
¢ Disadvantages:
¢ Follow up with non-responding subjects
— Non-responses may bias the results.
e Maintain confidentiality and reassure subjects of this.
— Hard to measure what you really want to measure.

e Offer every subject a free copy of the survey results. — Easily manipulated.

Questionnaire Analysis Questionnaire Design
¢ Reliability and Validity e Ask questions in an unbiased manner
¢ Representativeness e Ask multiple questions related to the same topic
¢ Use ANOVA or Contingency Table Analysis to Control for Interactions ¢ Include questions on interfering or interacting factors
e Use Care in Grouping Data e Most questions should be multiple choice

Rating scales should have 5 7 levels at most.

Rating scales should all be laid out the same way.

All wording should be carefully checked for potential misunderstandings and biases.
Pre-test the questionnaire (with verbal protocols).

Consider randomizing the order of questions for different subjects.

Include some free-response questions and room for comments
Subjects may have other things they want to talk about (detect incompleteness)
Subjects may want to complain about questions or explain their answers (detect problems

with questions).



Computational Experiments Contingency Table Analysis

¢ Questions to be asked:

e Null Hypothesis: The factors are independent
Why does one algorithm do better than another?

e Alternative Hypothesis: The factors are not independent
When does one algorithm do better than another?

¢ Hold algorithms constant, vary problems Low Satisfaction High Satisfaction

Problem attributes: size, amount of noise, degree of nonlinearity, amount of data, etc.

Low Experience 22 12 34 (.466)
Measured Data:
High Experience 10 29 39 (.534)
e Hold problems constant, vary algorithms 32 (438) 41 (:562) 73 (1.00)
NETtalk study: explored various modifications along a continuum from one algorithm to
another. Low Satisfaction High Satisfaction
. Low Experience 14.9 19.1 34
Null Hypothesis:
High Experience 171 21.9 39
32 41 73

x? test with 2 degrees of freedom:

(observed — expected)?

=11.27 > 5.99

expected

(p = 0.0036)

Parallel Computing Experimental Manipulations

¢ Speedup. Ratio of best serial running time to the running time on n processors. ¢ Randomly divide subjects into groups
e Scaling. Ratio of size of biggest problem that can be run on one machine to the size of ¢ Each group employs a different technique or method
the biggest problem that can be run on n machines.

¢ A dependent variable is measured

e ANOVA or )’ test is used to analyze the effect of the technique on the
dependent variable

The user-interface analysis study is an excellent example of this.



Comparing Results Across Machines

¢ CPU time can’t be used

Machines have different speeds, memory architectures, user loads, etc.

¢ Identify proxies for CPU time (and other resources)
Number of iterations
Number of comparisons
Number of transactions

Number of rule firings

¢ One proxy unit should always take the same amount of CPU time on a

given machine



