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ABSTRACT
Motivation: Novel methods, both molecular and statistical,
are urgently needed to take advantage of recent advances
in biotechnology and the human genome project for disease
diagnosis and prognosis. Mass spectrometry (MS) holds great
promise for biomarker identification and genome-wide protein
profiling. It has been demonstrated in the literature that bio-
markers can be identified to distinguish normal individuals
from cancer patients using MS data. Such progress is espe-
cially exciting for the detection of early-stage ovarian cancer
patients. Although various statistical methods have been util-
ized to identify biomarkers from MS data, there has been
no systematic comparison among these approaches in their
relative ability to analyze MS data.
Results: We compare the performance of several classes of
statistical methods for the classification of cancer based on MS
spectra. These methods include: linear discriminant analysis,
quadratic discriminant analysis, k -nearest neighbor classi-
fier, bagging and boosting classification trees, support vector
machine, and random forest (RF). The methods are applied to
ovarian cancer and control serum samples from the National
Ovarian Cancer Early Detection Program clinic at Northwest-
ern University Hospital. We found that RF outperforms other
methods in the analysis of MS data.
Contact: hongyu.zhao@yale.edu
Supplementary information: http://bioinformatics.med.yale.
edu/proteomics/BioSupp1.html

1 INTRODUCTION
In the past several years, microarray technology has attracted
tremendous interest as it provides the potential ability to
monitor the expression of an entire genome on a single
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chip. Thus, researchers can generate a ‘snap shot’ view of
the expression level of thousands of genes simultaneously
(Nature Genetics, 1999). However, microarray technology
is inherently limited. It is directed at analyzing mRNA rather
than the actual biological effector, which usually is the res-
ulting protein molecule; it is blind to the array of protein
post-translational modifications (e.g., phosphorylation) which
often modulate protein function; levels of mRNA expression
often correlate poorly with the actualin vivo protein con-
centration due to differential rates of mRNA translation and
varying protein half-lives.

Proteins, which carry out and modulate the vast majority of
chemical reactions which together constitute ‘life’, are really
our targets of interest. Proteomics is an integral part of the
process of understanding biological systems, pursuing drug
discovery, and uncovering disease mechanisms. Because of
their importance and very high level of variability and com-
plexity, the analysis of protein expression and protein : protein
interactions is as potentially exciting as it is a challenging task
in life science research (Science, 2001). Comparative profiling
of protein extracts from normal versus experimental cells and
tissues enables us to potentially discover novel proteins that
play important roles in disease pathology, response to stimuli,
and developmental regulation. However, to conduct massively
parallel analysis of thousands of proteins, over a large number
of samples, in a reproducible manner so that logical decisions
can be made based on qualitative and quantitative differences
in protein content is an extremely challenging endeavor.

Mass spectrometry (MS) is increasingly being used for rapid
identification and characterization of protein populations. The
relative ease of operation of matrix assisted laser desorption
ionization (MALDI) coupled with time-of-flight detection and
its characteristic generation of (mostly) singly charged peptide
and protein ions makes this MS platform the current method
of choice for disease biomarker discovery. MALDI-MS uses
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a nitrogen UV laser (337 nm) to generate ions from high mass,
non-volatile samples such as peptides and proteins. The key to
this technique, which was discovered several years ago, is that
in the presence of an energy absorbing matrix likeα-cyano-4-
hydroxy cinnamic acid (CHCA), large molecules like peptides
ionize instead of decomposing. In this technique, purified or
partially purified proteins are mixed with a crystal-forming
matrix, placed on an inert metal target, and subjected to a
pulsed laser beam to produce gas phase ions that traverse a
field-free flight tube and then are separated according to their
mass/charge ratio(m/z). The key is that the time is propor-
tional to the square root ofm/z. Since MALDI has the inherent
advantage that most ions are singly charged, the mass of the
analyte usually is equal tom/z and each analyte usually pro-
duces only a single ion type. By recording the time-of-flight,
we can measure the mass of the peptide/protein ions. The res-
ulting data format is very simple: paired mass/charge ratio
versus intensities. (See http://info.med.yale.edu/wmkeck/
prochem/procmald.htm for more information on MS.)

MS data sets are increasingly used for protein profiling in
cancer research. An important goal of this endeavor is the
ability to predict cancer on the basis of peptide/protein intens-
ities. The identification of phenotypic expression patterns that
correlate strongly to a defined pathological condition might
well represent a significant step towards early detection and/or
the development of novel therapies in which these molecules
might serve as clinical targets (Funget al., 2000).

As MS is increasingly used for protein profiling, signific-
ant challenges have arisen with regard to analyzing the data
sets. These include peak identification and alignment, MS
spectrum normalization, and data set visualization, among
others. These pre-processing steps are arguably critical and
we are currently evaluating them carefully. The final and most
important step is the classification of disease status based on
MS data. Recent publications on cancer classification using
MS data sets have mainly focused on identifying biomarkers
in serum to distinguish between cancer and normal samples.
Basically these studies first use approximate criteria to select a
subset of variables acquired on a ‘training set’ of samples, stat-
istical methods are then applied to this subset to identify the
most important variables as biomarkers. Finally, the perform-
ance of these biomarkers is determined based on their ability
to classify samples. The statistical methods used to select
biomarkers include T-statistics (Guoanet al., 2002), classific-
ation methods such as trees (Bao-Linget al., 2002), genetic
algorithms and self-organizing-maps (SOM) (Petricoinet al.,
2002), and artificial neural network (Ballet al., 2002). There
is a rapidly growing literature on the use of MS to identify
peptide and protein biomarkers. Virtually all of these reports
are based on MS data obtained via surface enhanced laser
desorption ionization (SELDI) and the use of only a single
methodology to identify the biomarkers. Here we utilize
MALDI MS to obtain the data set and then use it to compare
the performance of several well-known classification methods

Fig. 1. MALDI-MS sample plots.

which can be reasonably easily adapted to the analysis of MS
data sets. It is our ongoing endeavor to evaluate their relat-
ive performance in analyzing MS data sets. Although it is a
very important aspect of biomarker discovery, this report does
not cover various options for biomarker selections. Rather,
we will compare two criteria for biomarker selection and
then use selected biomarkers to compare several classification
methods. We review below some classification methods and
assess their performance on an ovarian cancer MALDI-MS
data set obtained by the Keck Laboratory at Yale University
(http://info.med.yale.edu/wmkeck/) as described in Section 4.
Figure 1 shows the MALDI-MS data from one cancer and one
normal serum sample.

2 MATERIALS AND METHODS
2.1 Discriminant methods
For our following discussion, we can summarize our MS
data set forn samples in ap × (n + 1) matrix: (mz, X) =
(mz,X1, . . . ,Xn) where p is the number ofm/z ratios
observed,mz is a column vector denoting the measured
m/z ratios, and theXi are the corresponding intensities for the
ith sample. We also have a vectorY = (y1, . . . ,yn) to denote
the sample cancer status. Our goal is to predictyi based on
the intensity profileX′

i = (x1i ,x2i , . . . ,xpi). For our ovarian
cancer data set, there are two classes, cancer or normal, and
the class labelsyi can be defined as 1 or 2, respectively. Gener-
ally we can haveg classes, and the goal of statistical analysis
is to use the class information to reveal the structures of the
data. A predictor or classifier partitions the spaceX of protein
intensity profiles into two disjoint subsets,A1 andA2, such
that for a sample with intensity profileX = (x1, . . . ,xp) ∈ Aj

the predicted class isj .
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Classifiers are built from observations with known
classes, which comprise the learning set (LS) L = {(X1,
y1), . . . , (XnL

,ynL
)}. Classifiers can then be applied to a test

set (TS) T = {X1, . . . ,XnT
}, to predict the class for each

observation. If the true classesy are known, they can be com-
pared with the predicted classes to estimate the error rate of
the classifiers.

We denote a classifier built from a learning setL byC(·,L);
the predicted class for an observationx is C(x,L). Below
we briefly review several well-known discrimination methods
which are compared in our study. Most of the methods dis-
cussed below have also been compared in the context of using
microarray data to distinguish various cancer types (Dudoit
et al., 2002). General references on the topic of discriminant
analysis include Mardiaet al. (1979), McLachlan (1992), and
Ripley (1996).

Linear discriminant analysis (LDA),quadratic discriminant
analysis (QDA). LDA (linear discriminant analysis) was first
described by Fisher (1936). It seeks a linear combinationxa of
the sample intensityX = (x1, . . . ,xp) which has a maximal
ratio of the separation of the class means to the within-class
variance, that is, maximizing the ratioaTBa/aTWa, where
W denotes the within-class covariance matrix, i.e. the covari-
ance matrix of the variables centered on the class mean, and
B denotes the between-classes covariance matrix. These two
matrices can be calculated as follows. LetM be then × p

matrix of class means, andG be then × g matrix of class
indicator variables (sogij = 1 ⇐⇒ casei is assigned to
classj ). Let x̄ be the means of the variables over the whole
sample, then the sample covariance matrices are

W = (X − GM)T(X − GM)

n − g

B = (GM − 1x̄)T(GM − 1x̄)

g − 1

Different denominators have been used in covariance
matrices. Here we follow the notation in Venables and Ripley
(2002). The criterion used in LDA is very intuitive. LDA is a
non-parametric method that is also a special form of a max-
imum likelihood discriminant rule for multivariate normal
class densities with the same covariance matrix. An alterna-
tive approach to discrimination is via probability models. Let
πc denote the prior probabilities of the classes, andp(x|c) the
densities of distributions of the observations for classc. Then
the posterior distribution of the classes after observingx is

p(c|x) = πcp(x|c)
p(x)

∝ πcp(x|c)

The allocation rule which makes the smallest expected number
of errors chooses the class with maximalp(c|x); this is known
as theBayes rule. Now suppose the distribution for classc is
multivariate normal with meanµc and covariance�c. Then

theBayes rule minimizes

Qc = −2 log(p(x|c)) − 2 log(πc)

= (x − µc)�
−1
c (x − µc)

T + log(|�c|) − 2 log(πc)

The difference between theQc for two classes is a quad-
ratic function ofx, so the method is known as QDA and the
boundaries of the decision regions are quadratic surfaces in
thex space. LDA is a special case of QDA where classes have
common covariance matrix.

k-Nearest neighbor (KNN). KNN classifiers are based on
finding thek nearest examples in some reference set, and tak-
ing a majority vote among the classes of thesek examples,
or, equivalently, estimating the posterior probabilityp(c|x)

by the proportions of the classes among thek examples. We
can measure ‘nearest’ by Euclidean distance or by one minus
correlation. Here we consider usingk = 1, 3 under Euclidean
distance.

Bagging, boosting classification trees. Constructing
classification trees may be seen as a type of variable selection.
Possible interactions between variables are handled automa-
tically, and so is monotonic transformation of the variables.
These issues are reduced to which variables to divide on,
and how to achieve the split in building a classification tree.
Specifically we construct trees by recursive splits of subsets
of the samples into two child subsets, starting with all the
samples. Each terminal node is assigned a class label and the
resulting partition corresponds to a final classifier. There are
several forms of trees. Here we use theCART—classification
and regression trees. For a detailed technical discussion of
CART, see Breimanet al. (1983).

Aggregating classifiers could dramatically improve predict-
ive accuracy (Breiman, 1996, 1998). In classification, the
multiple classifiers are aggregated by majority votes, i.e. the
final class is the one predicted by the majority of the predictors.
Breiman (1998) studied the bias and variance properties of
the aggregated predictors. The key is the possible instability
of the prediction method, i.e. whether small changes in the
learning set result in large changes in the predictor. CART is
an unstable classifier that can benefit from aggregation. Here
we aggregate trees which are grown until they perfectly fit
the data. The simplest form of bagging is using bootstrap
to produce pseudo-replicates. In our study, we aggregated
50 bootstrap samples to produce a pool of classification trees.
This algorithm works in the following way (suppose our
sample isS havingn samples):

Algorithm 1, Bagging

(1) Sample with replacement to formN bootstrap samples
{B1, . . . ,BN }.

(2) UseBk to construct Tree classifierTk, and predictS
usingTk.

(3) Final prediction is un-weighted average.
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Boosting was first proposed by Freund and Schapire (1997),
and it was also called arcing and studied by Breiman (1998).
The basic idea is to adaptively resample the original data so
that the weights are increased for those most frequently mis-
classified samples. The final prediction is based on weighted
or un-weighted voting. It is conjectured that boosting is a
special form of RF (Breiman, 2001) (see below). Here we
consider two special forms ofBoosting: arc-x4 and arc-fs,
following the descriptions of Breiman (1998).

Algorithm 2, Arc-fs details

(1) At first step, initializep(1)
i = 1/n.

Let P (1) = {p(1)
1 , . . . ,p(1)

n }.
(2) At kth step, using the current probabilitiesP (k),

sample with replacement from sampleS to get the
training setSk and construct tree classifierTk usingSk.

(3) RunS downTk and letd(i) = 1 if ith case is classified
incorrectly, otherwise zero.

(4) Defineεk = �ip
(k)
i ,βk = (1 − εk)/εk, updatek + 1

step probabilities by

p
(k+1)
i = p

(k)
i β

d(i)
k

�jp
(k)
j β

d(j)

k

If εk = 0,εk ≥ 1
2, re-initializep

(k+1)
i = 1/n.

(5) After K steps, {T1, . . . ,TK} are combined using
weighted voting withTk having weight log(βk).

Algorithm 3, Arc-x4 details

(1) Same asArc-fs

(2) Same asArc-fs

(3) RunS down tree classifierTk and letm(i) be the num-
ber of misclassifications theith case by{T1, . . . ,Tk}.

(4) Updatek + 1 step probabilities defined byp(k+1)
i =

p
(k)
i (1 + m(i)4)/�jp

(k)
j (1 + m(j)4)

(5) After K steps, {T1, . . . ,TK} are combined by
un-weighted voting.

Support vector machine (SVM). The observedm/z ratio
for the ith subjectXi can be thought of as a point inRp.
An intuitive binary classifier would be to construct a hyper-
plane separating cancer subjects from normal subjects in
this R

p space. But for most problems, there is no hyper-
plane which can successfully separate different classes. The
idea of SVM is to map the data into a higher dimension
space and separate them there. For technical details, please

see Vapnik (1998) and Burges (1998). The algorithm used
here is described at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
index.html

Random forest (RF). RF (Breiman, 2001) combines two
powerful ideas in machine learning techniques: bagging and
random feature selection. Bagging, as described above, stands
for bootstrap aggregating, which uses resampling to pro-
duce pseudo-replicates to improve predictive accuracy. By
using random feature selections, we can significantly improve
our predictive accuracy. Here we use the RF program from
(Breiman, 2001), and it works as follows.

Algorithm 4, RF

(1) Sample with replacement to formN bootstrap samples
{B1, . . . ,BN }.

(2) Use each sampleBk to construct a Tree classifierTk to
predict those samples that are not inBk (calledout-of-
bag samples). These predictions are calledout-of-bag
estimators.

(3) Before usingTk to predictout-of-bag samples, if we
randomly permute the value for one variable for these
out-of-bag samples, intuitively the prediction error is
going to increase. And the amount of increase will
reflect the importance of this variable.

(4) When constructingTk, at each node splitting we first
randomly selectm variables, then we choose one best
split from thesem variables.

(5) Final prediction is the average ofout-of-bag estimators
over all Bootstrap samples.

3 DATA SET AND PRE-PROCESSING
3.1 Data set
We have obtained ovarian cancer and control serum
samples from the National Ovarian Cancer Early Detection
Program at Northwestern University Hospital. The Keck
Laboratory then subjected these samples to automated desalt-
ing and MALDI-MS on a Micromass M@LDI-R instru-
ment http://www.micromass.co.uk as described generally
at http://info.med.yale.edu/wmkeck/prochem/biomarker.htm.
This data set consists of MS spectra that extend from 800
to 3500 Da and that were obtained on serum samples from
47 patients with ovarian cancer and 44 normal patients. Based
on our evaluation, two of the normal spectra are of poor quality
and are excluded in our analyses. Figure 2 shows the overall
case and control median log intensities based on 89 samples.

3.2 Pre-processing
Due to the noisy nature of the data set, pre-processing is an
important step in the analysis of MS data. The raw intensities
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Fig. 2. Median log intensity for 89 samples.

Fig. 3. Median log intensity after pre-processing.

have a wide dynamic range. Taking the log of the intensit-
ies decreases the magnitude and variation within this range.
Before we submit the data set to our classifiers, we have to
carry out some pre-processing (e.g. background subtraction
to remove the effect of chemical and electronic noise, peak
identification, etc.) which will be described in a subsequent
publication. Figure 3 shows the median intensities after all
pre-processing.

3.3 Peptide/protein marker selection
For some discriminant analysis methods discussed above, the
number of features that can be handled has to be smaller than
the number of observations, e.g. the LDA and QDA meth-
ods. Therefore, we cannot use all the intensity values from
an MS data set for these classification methods. Instead, we
have to identify certainm/z ratios as inputs to these methods,
and it is apparent that this feature selection step is critical in
the analysis of MS data and comparison of various methods.
To make the comparison as valid as possible, we feed the
same set ofm/z ratios to all classification methods and com-
pare their performance on our data. This practice will likely
penalize those methods that can utilize as many features as
possible in classifications. In our analysis, we use two meth-
ods to selectm/z ratios used in classification analysis. For
the first method, we rank the variables, i.e.m/z ratios, based
on normalized difference between two groups (cancer group
and normal group), which is the T-statistic, and then we select
variables based on the absolute values of thet-statistics. In our
study, we evaluate the effects of selecting 15 and 25 markers.
In order to evaluate the effects of LDA and QDA, we must
verify that there is a sufficient number of samples. So there
is a practical limit on the number of markers that we can use.
For the second method of choosing variables in classification
analysis, we use the by-product of the RF program. The RF
program outputs a variable importance measure. This measure
is derived from assessing the decrease in prediction accuracy
after random permutation of each variable in the feature set.
The idea is that if we randomly permute the observed values of
an important variable, this will result in substantially decreas-
ing our ability to classify each individual in the sample set. In
our analysis, we also select 15 and 25 markers from a custom-
ized RF algorithm which will be described in a subsequent
publication. We also compare marker selection based on RF
and the normalized difference between groups.

3.4 Study design
Here we want to compare the performance of the classifiers
discussed above based on their prediction error rate. Since
a test data set was not available, cross-validation within the
original data set was utilized to provide a nearly unbiased
estimate of the prediction error rate. Breiman and Spector
(1992) demonstrated that leave-one-out cross-validation has
high variance if the prediction rule is unstable, because the
leave-one-out training sets are too similar to the full data set.
5-fold or 10-fold cross-validation displayed lower variance.
Efron and Tibershirani (1997) proposed a 0.632+ bootstrap
method, which is a bootstrap smoothing version of cross-
validation and has less variation. We applied both methods to
LDA, QDA and NN classifiers. We ran 100 cycles of 10-fold
cross-validation and 0.632+ bootstrap error rate estimation.
In the 0.632+ rule, we used 100 bootstrap samples. In estimat-
ing the 0.632+ error of QDA, bootstrap samples often caused
the covariance matrix to be singular if we used 25 markers,
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Fig. 4. Error summary for T-statistics marker selection.

so we calculated the 0.632+ error rate of QDA only for
15 markers.

For bagging and boosting, we used a random split to parti-
tion the observed data into a training set (59 samples) and a
testing set (30 samples) to estimate error rate. We repeated this
100 times, and the RF prediction error estimate is based on out-
of-bag estimation, which we believe is reasonably accurate.
To assess the error rate variation, we repeated the whole pro-
cedure 100 times, with each error estimate based on 100 trees.

These calculations were carried out for selected markers
using RF and the normalized difference between groups.

4 RESULTS
4.1 Prediction error rates
We use boxplots to summarize the error rates. Figure 4 sum-
marizes the errors for using T-statistics to select markers and
Figure 5 summarizes the errors for using RF to select markers.
In these plots, the postfix ‘cv10’ means estimating error using
10-fold cross-validation, ‘0.632+’ means estimating error

Fig. 5. Error summary for RF marker selection.

using 0.632+ bootstrap method, NN1 fork-nearest neighbor
with k = 1, NN3 fork-nearest neighbor withk = 3.

First, for the estimates of error rates based on different
methods (cross-validation or 0.632+ rule), we can see that
the 0.632+ rule provides a more stable estimate of the error
rate than 10-fold cross-validation for LDA, QDA, kNN, and
SVM classifiers. The error results for bagging and boosting
trees are highly variable. Although the variance of the error
estimates for RF is not as small as those based on the 0.632+
rule, it is certainly quite comparable and much less than those
based on bagging and boosting.

As for error rate, RF consistently performs well among all
the scenarios considered. When a total of 15 markers selected
throught-statistics are used, SVM has the lowest error rate
among all classifiers, whereas the error rate based on LDA
is the second lowest one among all the classifiers. The error
rate based on RF closely follows the top two methods. As
the number of markers selected increases from 15 to 25, the
relative advantage of LDA over RF no longer holds. SVM
has the lowest error rate and RF has close performance. In
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Fig. 6. Variable ranking comparison.

addition, error rates based on RF have consistent low vari-
ation, which suggests that the error rate from RF is very
reliable.

When the variables selected are derived from importance
measures based on RF, it is not surprising that RF outper-
forms all other methods. Based on these sets of variables, the
relative performance of LDA stays the same. But the QDA
becomes worse when 25 markers are used, which is due to the
unstable estimate of the covariance matrix in QDA. Because
all variables, instead of a pre-selected subset of variables, can
be utilized in RF as well as bagging and boosting methods
considered here, the ability to incorporate many more vari-
ables to build classifiers represents a distinct advantage over
the methods that are limited by the number of variables that
can be considered in an analysis. As a result, the error rate
based on RF using the variables selected by RF has lower
prediction error rate than the minimum error rate achieved
using variables selected through T-statistics.

4.2 Choice of predictor variables
LDA and QDA are not stable using a large number of variables.
In using bootstrap to estimate the error rate, the covariance
matrix for the bootstrap samples was often singular.

4.3 Variables identified from T-statistics and RF
Here we compare the variable selection based on T-statistics
and RF program. Figure 6 plots the ranking measures of selec-
ted peaks based on T-statistics and the importance measures
from RF. We can see that both measures will be able to capture
a common set of variables, i.e. the variables corresponding
to the points in the upper tight region of this figure. How-
ever, there do exist discrepancies between these two measures,
resulting in different performance of various classifiers based
on the selected variables.

5 DISCUSSION
In this report, we have compared results obtained with several
well-known classification methods to distinguish ovarian can-
cer patients from normal individuals based on MS data
obtained on serum samples. Overall, we have found that the
RF approach both leads to an overall lower misclassification
rate as well as to a more stable assessment of classification
errors. Therefore, our preliminary analyses suggest that RF
and methods similar in nature to RF may be more useful than
other methods to classify samples based on MS data. This con-
clusion has been confirmed by applying these classification
methods to a completely different data set on autism which
yielded similar results (data not shown). Compared to LDA
and QDA methods, RF has the advantage of not requiring the
number of variables used to be less than the number of sub-
jects in the study, which is a clear advantage for the analysis
of MS data as the number ofm/z versus intensity data points
is very large. In addition, RF is able to handle interactions
among variables. Although many methods have been com-
pared in this report, there also are some additional methods,
e.g. neural networks, that we have not yet compared. This is
an ongoing endeavor, and we are in the process of evaluating
these other methods as well.

The pre-processing of MS outputs is a very critical step
in the overall analysis of MS data set. Peak identification,
spectrum alignment, as well as normalization undoubtedly all
affect the performance of classifications. Because the focus of
this report is on comparing various classifiers, and we believe
it is likely that the relative performance of these classifiers
will not be differentially affected by pre-processing the data,
we have not discussed in detail the specific steps we have
taken to pre-process MS data. The effects of pre-processing
on classification analysis and biomarker identification will be
reported elsewhere.

In this report, we use T-statistics to pre-select a set of
variables as inputs for various classifiers. There are some
limitations to this approach as it does not take into account
interactions among variables, and more importantly, it is not
stable when sample sizes are relatively small. We could con-
sider a more robust form of variation estimation, and utilize the
global variation to improve the variance estimates. Variance
shrinkage is a very good strategy to improve the estimation
of variance (Longet al., 2001). As our current sample size is
relatively small, we are considering a more robust approach
to estimation of variations. Although NN, RF and other tree-
based methods are able to analyze many variables, we still
believe variable selection is a critical issue. For example, the
m/z ratios corresponding to background levels should not be
considered in classification analysis, and keeping these back-
ground noises in the data will likely reduce the performance
of any classifier. Therefore, in addition to data pre-processing,
variable selection for classification analysis may represent
another challenge for MS data analysis.
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