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ABSTRACT

Motivation: Novel methods, both molecular and statistical,
are urgently needed to take advantage of recent advances
in biotechnology and the human genome project for disease
diagnosis and prognosis. Mass spectrometry (MS) holds great
promise for biomarker identification and genome-wide protein
profiling. It has been demonstrated in the literature that bio-
markers can be identified to distinguish normal individuals
from cancer patients using MS data. Such progress is espe-
cially exciting for the detection of early-stage ovarian cancer
patients. Although various statistical methods have been util-
ized to identify biomarkers from MS data, there has been
no systematic comparison among these approaches in their
relative ability to analyze MS data.

Results: We compare the performance of several classes of
statistical methods for the classification of cancer based on MS
spectra. These methods include: linear discriminant analysis,
quadratic discriminant analysis, k-nearest neighbor classi-
fier, bagging and boosting classification trees, support vector
machine, and random forest (RF). The methods are applied to
ovarian cancer and control serum samples from the National
Ovarian Cancer Early Detection Program clinic at Northwest-
ern University Hospital. We found that RF outperforms other
methods in the analysis of MS data.

Contact: hongyu.zhao@yale.edu

Supplementary information: http://bioinformatics.med.yale.
edu/proteomics/BioSuppl.html

1 INTRODUCTION

In the past several years, microarray technology has attracte
tremendous interest as it provides the potential ability to

chip. Thus, researchers can generate a ‘snap shot’ view of
the expression level of thousands of genes simultaneously
(Nature Genetics, 1999). However, microarray technology
is inherently limited. It is directed at analyzing mRNA rather
than the actual biological effector, which usually is the res-
ulting protein molecule; it is blind to the array of protein
post-translational modifications (e.g., phosphorylation) which
often modulate protein function; levels of mMRNA expression
often correlate poorly with the actuah vivo protein con-
centration due to differential rates of mMRNA translation and
varying protein half-lives.

Proteins, which carry out and modulate the vast majority of
chemical reactions which together constitute ‘life’, are really
our targets of interest. Proteomics is an integral part of the
process of understanding biological systems, pursuing drug
discovery, and uncovering disease mechanisms. Because of
their importance and very high level of variability and com-
plexity, the analysis of protein expression and protein : protein
interactions is as potentially exciting as itis a challenging task
inlife science research (Science, 2001). Comparative profiling
of protein extracts from normal versus experimental cells and
tissues enables us to potentially discover novel proteins that
play important roles in disease pathology, response to stimuli,
and developmental regulation. However, to conduct massively
parallel analysis of thousands of proteins, over a large number
of samples, in areproducible manner so that logical decisions
can be made based on qualitative and quantitative differences
in protein content is an extremely challenging endeavor.

Mass spectrometry (MS) is increasingly being used for rapid
identification and characterization of protein populations. The
lative ease of operation of matrix assisted laser desorption
onization (MALDI) coupled with time-of-flight detection and

monitor the expression of an entire genome on a Smgl‘i"ts characteristic generation of (mostly) singly charged peptide
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and protein ions makes this MS platform the current method
of choice for disease biomarker discovery. MALDI-MS uses
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anitrogen UV laser (337 nm) to generate ions from high mass, Raw Intensity
non-volatile samples such as peptides and proteins. The key to
this technique, which was discovered several years ago, is thag—
in the presence of an energy absorbing matrixdikeyano-4-
hydroxy cinnamic acid (CHCA), large molecules like peptides
ionize instead of decomposing. In this technique, purified or =_|
partially purified proteins are mixed with a crystal-forming [ u
matrix, placed on an inert metal target, and subjected to a§_— I h Ll
pulsed laser beam to produce gas phase ions that traverse a
field-free flight tube and then are separated according to theirg
mass/charge ration/z). The key is that the time is propor-
tional to the square root of /z. Since MALDI has the inherent
advantage that most ions are singly charged, the mass of th
analyte usually is equal t@ /z and each analyte usually pro-
duces only a single ion type. By recording the time-of-flight
we can measure the mass of the peptide/protein ions. The res=
ulting data format is very simple: paired mass/charge ratio ono o e s om0
versus intensities. (See http://info.med.yale.edu/wmkeck/ iz
prochem/procmald.htm for more information on MS.)
MS data sets are increasingly used for protein profiling inFig. 1. MALDI-MS sample plots.
cancer research. An important goal of this endeavor is the
ability to predict cancer on the basis of peptide/protein intenswhich can be reasonably easily adapted to the analysis of MS
ities. The identification of phenotypic expression patterns thatlata sets. It is our ongoing endeavor to evaluate their relat-
correlate strongly to a defined pathological condition mightive performance in analyzing MS data sets. Although it is a
well represent a significant step towards early detection and/arery important aspect of biomarker discovery, this report does
the development of novel therapies in which these moleculesot cover various options for biomarker selections. Rather,
might serve as clinical targets (Fuegal., 2000). we will compare two criteria for biomarker selection and
As MS is increasingly used for protein profiling, signific- then use selected biomarkers to compare several classification
ant challenges have arisen with regard to analyzing the dataethods. We review below some classification methods and
sets. These include peak identification and alignment, M@sssess their performance on an ovarian cancer MALDI-MS
spectrum normalization, and data set visualization, amongdata set obtained by the Keck Laboratory at Yale University
others. These pre-processing steps are arguably critical arfHttp://info.med.yale.edu/wmkeck/) as described in Section 4.
we are currently evaluating them carefully. The final and mosFigure 1 shows the MALDI-MS data from one cancer and one
important step is the classification of disease status based @rmal serum sample.
MS data. Recent publications on cancer classification using
MS data sets have mainly focused on identifying biomarkersz MATERIALS AND METHODS
in serum to distinguish between cancer and normal samples. o
Basically these studies first use approximate criteriato select&l ~Discriminant methods
subset of variables acquired on a ‘training set’ of samples, stafor our following discussion, we can summarize our MS
istical methods are then applied to this subset to identify thelata set fom samples in gp x (n + 1) matrix: (mz,X) =
most important variables as biomarkers. Finally, the perform{mz, X1, ..., X,) where p is the number ofm/z ratios
ance of these biomarkers is determined based on their abilitybserved,mz is a column vector denoting the measured
to classify samples. The statistical methods used to seleet/z ratios, and the&l; are the corresponding intensities for the
biomarkers include T-statistics (Guoetral., 2002), classific- ith sample. We also have a vec¥o= (yy, ..., y,) to denote
ation methods such as trees (Bao-Let@l., 2002), genetic the sample cancer status. Our goal is to predidiased on
algorithms and self-organizing-maps (SOM) (Petricgial.,  the intensity profileX; = (x1;,x2;,...,xp;). For our ovarian
2002), and artificial neural network (Ba al., 2002). There cancer data set, there are two classes, cancer or normal, and
is a rapidly growing literature on the use of MS to identify the class labelg; can be defined as 1 or 2, respectively. Gener-
peptide and protein biomarkers. Virtually all of these reportsally we can haveg classes, and the goal of statistical analysis
are based on MS data obtained via surface enhanced lagsrto use the class information to reveal the structures of the
desorption ionization (SELDI) and the use of only a singledata. A predictor or classifier partitions the spXcef protein
methodology to identify the biomarkers. Here we utilize intensity profiles into two disjoint subsetd; and A, such
MALDI MS to obtain the data set and then use it to comparethat for a sample with intensity profile = (x1,...,x,) € A;
the performance of several well-known classification methodshe predicted class it
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Classifiers are built from observations with known theBayes rule minimizes
classes, which comprise the learning se§)(L = {(X1,
YDs+++1(Xn,» yu,)}. Classifiers can then be applied to atest Z¢ = —2 log(p(x|c)) — 2 log(c)
set TS T = {X1,..., Xy}, 10 predict the class for each = (x — u) =7 — )T +log(|=]) — 2log(,)
observation. If the true classesre known, they can be com-
pared with the predicted classes to estimate the error rate dihe difference between th@, for two classes is a quad-
the classifiers. ratic function ofx, so the method is known as QDA and the
We denote a classifier built from a learning sdty C(-, L); boundaries of the decision regions are quadratic surfaces in
the predicted class for an observatioris C(x, L). Below thex space. LDA s a special case of QDA where classes have
we briefly review several well-known discrimination methods COmmon covariance matrix.
which are compared in our study. Most of the methods dis- k-Nearest neighbor (KNN). KNN classifiers are based on
cussed below have also been compared in the context of usifding thek nearest examples in some reference set, and tak-
microarray data to distinguish various cancer types (Dudoitnd & majority vote among the classes of thésexamples,
et al., 2002). General references on the topic of discriminan®r, equivalently, estimating the posterior probabilityc|x)
analysis include Mardiet al. (1979), McLachlan (1992), and by the proportions of the classes among trexamples. We
Ripley (1996). can measure ‘nearest’ by Euclidean distance or by one minus
Linear discriminant analysis(LDA), quadraticdiscriminant ~ correlation. Here we consider usikg= 1, 3 under Euclidean
analysis (QDA). LDA (linear discriminant analysis) was first distance.
described by Fisher (1936). It seeks a linear combinaticof Bagging, boosting classification trees. Constructing
the sample intensitX = (x1,...,x,) which has a maximal classification trees may be seen as a type of variable selection.
ratio of the separation of the class means to the within-clasBossible interactions between variables are handled automa-
variance, that is, maximizing the ratid Ba/a"Wa, where tically, and so is monotonic transformation of the variables.
W denotes the within-class covariance matrix, i.e. the covaril hese issues are reduced to which variables to divide on,
ance matrix of the variables centered on the class mean, ahd how to achieve the split in building a classification tree.
B denotes the between-classes covariance matrix. These twapecifically we construct trees by recursive splits of subsets
matrices can be calculated as follows. étbe then x p of the samples into two child subsets, starting with all the
matrix of class means, an@ be then x g matrix of class samples. Each terminal node is assigned a class label and the
indicator variables (sg;; = 1 <= case is assigned to resulting partition corresponds to a final classifier. There are
classj). Let X be the means of the variables over the wholeseveral forms of trees. Here we use @&RT—classification

sample, then the sample covariance matrices are and regression trees. For a detailed technical discussion of
CART, see Breimarmt al. (1983).
X-GM)"(X —GM) Aggregating classifiers could dramatically improve predict-
W= n—g ive accuracy (Breiman, 1996, 1998). In classification, the

(GM — 15T (GM — 19) multiple classifiers are aggregated by majority votes, i.e. the
— final class is the one predicted by the majority of the predictors.

g—1 Breiman (1998) studied the bias and variance properties of
the aggregated predictors. The key is the possible instability

Different denominators have been used in covarlanc%f the prediction method, i.e. whether small changes in the

matrices. Here we follow the notation in Venables and Rlpleylearning set result in large changes in the predictor, CART is

(2002). The criterion used in LDA is very intuitive. LDA is a o : .
. . . an unstable classifier that can benefit from aggregation. Here
non-parametric method that is also a special form of a max-

imum likelihood discriminant rule for multivariate normal ' o aggregate trees which are grown until they perfectly fit

class densities with the same covariance matrix. An altern t_he data. The simplest form of bagging is using bootstrap

tive approach to discrimination is via probability models. Let 0 produce pseudo-replicates. In our study, we ag.gregated
. i 50 bootstrap samples to produce a pool of classification trees.
7. denote the prior probabilities of the classes, and c) the . : : :
. RN . This algorithm works in the following way (suppose our
densities of distributions of the observations for clasbhen sample iss havingn samples):
the posterior distribution of the classes after obserwimng P 9 pies):

B

(clx) = e p(x|c) <o) Algorithm 1, Bagging
P = p(x) o Trebtxie (1) Sample with replacementto forMbootstrap samples
{B1,...,Bn}.
The allocation rule which makes the smallest expected number(z) Use B, to construct Tree classifief;, and predicts
of errors chooses the class with maxirpét|x); this is known using .

as theBayes rule. Now suppose the distribution for clasis

N . ; (3) Final prediction is un-weighted average.
multivariate normal with meagp,. and covariance&,.. Then
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Boosting was first proposed by Freund and Schapire (1997)see Vapnik (1998) and Burges (1998). The algorithm used
and it was also called arcing and studied by Breiman (1998ere is described at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
The basic idea is to adaptively resample the original data smdex.html
that the weights are increased for those most frequently mis- Random forest (RF). RF (Breiman, 2001) combines two
classified samples. The final prediction is based on weightedowerful ideas in machine learning techniques: bagging and
or un-weighted voting. It is conjectured that boosting is arandom feature selection. Bagging, as described above, stands
special form of RF (Breiman, 2001) (see below). Here wefor bootstrap aggregating, which uses resampling to pro-
consider two special forms doosting: arc-x4 andarc-fs,  duce pseudo-replicates to improve predictive accuracy. By
following the descriptions of Breiman (1998). using random feature selections, we can significantly improve
our predictive accuracy. Here we use the RF program from
(Breiman, 2001), and it works as follows.

Algorithm 2, Arc-fsdetails

(1) Atfirst step, initializepl.(l) =1/n.
Let D ={pil),...,p,(ll)}. )
(2) At kth step, using the current probabilitie® (1) Sample with replacementto forsbootstrap sample

. {B1,...,Bn}.
sample with replacement from sampeto get the .
training sets;, and construct tree classifigf usingSy. (2) Use each samplgx to construct a Tree classifiéy to

N aes . e predict those samples that are noBin(calledout-of-
(3) iiggfrg;\ll\;//ng]t(haenn?v::euge)rg 1ifith case is classified bag samples). These predictions are calbetiof-bag

_ © estimators.
(4) Definee, = Xip;, pr = (1 — &) /e, updatek + 1 (3) Before usingl} to predictout-of-bag samples, if we
step probabilities by

randomly permute the value for one variable for these

Algorithm 4, RF

"2

®) d(i) out-of-bag samples, intuitively the prediction error |s
*k+1) _ L’@ going to increase. And the amount of increase will
' X p;k) ﬁf(’ ) reflect the importance of this variable.
(4) When constructind@y, at each node splitting we first
If & = 0,¢x > 1, re-initialize p*“ ™ = 1/n. randomly select: variables, then we choose one best
(5) After K steps, {T1,...,Tx} are combined using split from thesen variables.
weighted voting with, having weight logg). (5) Final prediction is the averageait-of-bag estimators

over all Bootstrap samples.

Algorithm 3, Arc-x4 details

(1) Same a#&\rc-fs 3 DATA SET AND PRE-PROCESSING

(2) Same as\rc-fs 3.1 Dataset

(3) RunS down tree classifief; and letm (i) be the num- We have obtained ovarian cancer and control serum
ber of misclassifications th¢h case by Ty, ..., T }. samples from the National Ovarian Cancer Early Detection

(4) Updatek + 1 step probabilities defined Wk+1) _ Program at Northwestern University Hospital. The Keck

) a *) 4 Laboratory then subjected these samples to automated desalt-
pi (A+m@/%jp;" (A +m(j)") ing and MALDI-MS on a Micromass M@LDI-R instru-
(5) After K steps, {T1,...,Tx} are combined by  ment http://www.micromass.co.uk as described generally
un-weighted voting. at http://info.med.yale.edu/wmkeck/prochem/biomarker.htm.
This data set consists of MS spectra that extend from 800
to 3500 Da and that were obtained on serum samples from
Support vector machine (SYM). The observedn/z ratio 47 patients with ovarian cancer and 44 normal patients. Based
for the ith subjectX; can be thought of as a point IR”.  on ourevaluation, two of the normal spectra are of poor quality
An intuitive binary classifier would be to construct a hyper- and are excluded in our analyses. Figure 2 shows the overall

plane separating cancer subjects from normal subjects igase and control median log intensities based on 89 samples.
this R? space. But for most problems, there is no hyper-

plane which can successfully separate different classes. The2 Pre-processing
idea of SVM is to map the data into a higher dimensionDue to the noisy nature of the data set, pre-processing is an
space and separate them there. For technical details, pleaseportant step in the analysis of MS data. The raw intensities
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Log Intensity, without pre-processing 3.3 Peptide/protein marker selection

For some discriminant analysis methods discussed above, the
number of features that can be handled has to be smaller than
the number of observations, e.g. the LDA and QDA meth-
ods. Therefore, we cannot use all the intensity values from
= an MS data set for these classification methods. Instead, we
have to identify certaim /z ratios as inputs to these methods,
and it is apparent that this feature selection step is critical in
the analysis of MS data and comparison of various methods.
To make the comparison as valid as possible, we feed the
same set ofi /7 ratios to all classification methods and com-
pare their performance on our data. This practice will likely
penalize those methods that can utilize as many features as
possible in classifications. In our analysis, we use two meth-
ods to selectn/z ratios used in classification analysis. For

Case Median

I
Median Difference  Control Median

:' the first method, we rank the variables, ihe/z ratios, based
= I I I I I on normalized difference between two groups (cancer group
1000 1500 2000 . 2500 3000 and normal group), which is the T-statistic, and then we select
I,

variables based on the absolute values of thimtistics. In our
study, we evaluate the effects of selecting 15 and 25 markers.
Fig. 2. Median log intensity for 89 samples. In order to evaluate the effects of LDA and QDA, we must
verify that there is a sufficient number of samples. So there
is a practical limit on the number of markers that we can use.
For the second method of choosing variables in classification
analysis, we use the by-product of the RF program. The RF
program outputs a variable importance measure. This measure
is derived from assessing the decrease in prediction accuracy
after random permutation of each variable in the feature set.
The ideais thatif we randomly permute the observed values of
an important variable, this will result in substantially decreas-
ing our ability to classify each individual in the sample set. In
our analysis, we also select 15 and 25 markers from a custom-
ized RF algorithm which will be described in a subsequent
publication. We also compare marker selection based on RF
and the normalized difference between groups.

3.4 Study design

Here we want to compare the performance of the classifiers
discussed above based on their prediction error rate. Since

| | | | | a test data set was not available, cross-validation within the
1000 1500 2000 2500 3000 original data set was utilized to provide a nearly unbiased

miz - . .
estimate of the prediction error rate. Breiman and Spector

(1992) demonstrated that leave-one-out cross-validation has
high variance if the prediction rule is unstable, because the
leave-one-out training sets are too similar to the full data set.
5-fold or 10-fold cross-validation displayed lower variance.
have a wide dynamic range. Taking the log of the intensit-Efron and Tibershirani (1997) proposed a 0.632o0otstrap
ies decreases the magnitude and variation within this rangenethod, which is a bootstrap smoothing version of cross-
Before we submit the data set to our classifiers, we have twalidation and has less variation. We applied both methods to
carry out some pre-processing (e.g. background subtractidnDA, QDA and NN classifiers. We ran 100 cycles of 10-fold
to remove the effect of chemical and electronic noise, peakross-validation and 0.632bootstrap error rate estimation.
identification, etc.) which will be described in a subsequentn the 0.632- rule, we used 100 bootstrap samples. In estimat-
publication. Figure 3 shows the median intensities after aling the 0.632- error of QDA, bootstrap samples often caused
pre-processing. the covariance matrix to be singular if we used 25 markers,

Log Intensity, after pre-processing

1.5

1.0

U]

Caze Median

1]

05 1.0 1.4

1]

O -0F 0 03

Median Difference  Control Median

Fig. 3. Median log intensity after pre-processing.
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Fig. 4. Error summary for T-statistics marker selection. Fig. 5. Error summary for RF marker selection.

so we calculated the 0.632error rate of QDA only for using 0.632- bootstrap method, NN1 fdr-nearest neighbor
15 markers. with £ = 1, NN3 for k-nearest neighbor with = 3.

For bagging and boosting, we used a random split to parti- First, for the estimates of error rates based on different
tion the observed data into a training set (59 samples) and @ethods (cross-validation or 0.682ule), we can see that
testing set (30 samples) to estimate error rate. We repeated thlke 0.632- rule provides a more stable estimate of the error
100times, and the RF prediction error estimate is based on outate than 10-fold cross-validation for LDA, QDA, kNN, and
of-bag estimation, which we believe is reasonably accurateSVM classifiers. The error results for bagging and boosting
To assess the error rate variation, we repeated the whole priiees are highly variable. Although the variance of the error
cedure 100 times, with each error estimate based on 100 tree@stimates for RF is not as small as those based on the-8.632

These calculations were carried out for selected markerglle, itis certainly quite comparable and much less than those
using RF and the normalized difference between groups. ~based on bagging and boosting.

As for error rate, RF consistently performs well among all

the scenarios considered. When a total of 15 markers selected
4 RESULTS e
o throughz-statistics are used, SVM has the lowest error rate
4.1 Prediction error rates among all classifiers, whereas the error rate based on LDA

We use boxplots to summarize the error rates. Figure 4 sums the second lowest one among all the classifiers. The error
marizes the errors for using T-statistics to select markers andhte based on RF closely follows the top two methods. As
Figure 5 summarizes the errors for using RF to select markershe number of markers selected increases from 15 to 25, the
In these plots, the postfix ‘cv10’ means estimating error usingelative advantage of LDA over RF no longer holds. SVM
10-fold cross-validation, ‘0.632' means estimating error has the lowest error rate and RF has close performance. In
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5 DISCUSSION

In this report, we have compared results obtained with several
well-known classification methods to distinguish ovarian can-
cer patients from normal individuals based on MS data
obtained on serum samples. Overall, we have found that the
RF approach both leads to an overall lower misclassification
rate as well as to a more stable assessment of classification
errors. Therefore, our preliminary analyses suggest that RF
and methods similar in nature to RF may be more useful than
other methods to classify samples based on MS data. This con-
clusion has been confirmed by applying these classification
methods to a completely different data set on autism which

yielded similar results (data not shown). Compared to LDA
and QDA methods, RF has the advantage of not requiring the
number of variables used to be less than the number of sub-
jects in the study, which is a clear advantage for the analysis
of MS data as the number of/z versus intensity data points
is very large. In addition, RF is able to handle interactions
addition, error rates based on RF have consistent low varamong variables. Although many methods have been com-
ation, which suggests that the error rate from RF is veryared in this report, there also are some additional methods,
reliable. e.g. neural networks, that we have not yet compared. This is
When the variables selected are derived from importancan ongoing endeavor, and we are in the process of evaluating
measures based on RF, it is not surprising that RF outpethese other methods as well.
forms all other methods. Based on these sets of variables, theThe pre-processing of MS outputs is a very critical step
relative performance of LDA stays the same. But the QDAIn the overall analysis of MS data set. Peak identification,
becomes worse when 25 markers are used, which is due to tBpectrum alignment, as well as normalization undoubtedly all
unstable estimate of the covariance matrix in QDA. Becausaffect the performance of classifications. Because the focus of
all variables, instead of a pre-selected subset of variables, cahis report is on comparing various classifiers, and we believe
be utilized in RF as well as bagging and boosting methodst is likely that the relative performance of these classifiers
considered here, the ability to incorporate many more variwill not be differentially affected by pre-processing the data,
ables to build classifiers represents a distinct advantage ovefe have not discussed in detail the specific steps we have
the methods that are limited by the number of variables thataken to pre-process MS data. The effects of pre-processing
can be considered in an analysis. As a result, the error raten classification analysis and biomarker identification will be
based on RF using the variables selected by RF has loweeported elsewhere.
prediction error rate than the minimum error rate achieved In this report, we use T-statistics to pre-select a set of
using variables selected through T-statistics. variables as inputs for various classifiers. There are some
limitations to this approach as it does not take into account
interactions among variables, and more importantly, it is not

4.2 Choiceof predictor variables bl wh o ativel LW »
. . stable when sample sizes are relatively sma ‘e could con-
LDAand QDAare notstable using alarge number of vanablesslder amore robust form of variation estimation, and utilize the

In using bootstrap to estimate the error ratg, the Covarlar]CSIobaI variation to improve the variance estimates. Variance
matrix for the bootstrap samples was often singular.

shrinkage is a very good strategy to improve the estimation
of variance (Longet al., 2001). As our current sample size is
4.3 Variablesidentified from T-statisticsand RF relatively small, we are considering a more robust approach
Here we compare the variable selection based on T-statistid® estimation of variations. Although NN, RF and other tree-
and RF program. Figure 6 plots the ranking measures of selefased methods are able to analyze many variables, we still
ted peaks based on T-statistics and the importance measufeglieve variable selection is a critical issue. For example, the
from RF. We can see that both measures will be able to captura/z ratios corresponding to background levels should not be
a common set of variables, i.e. the variables correspondingonsidered in classification analysis, and keeping these back-
to the points in the upper tight region of this figure. How- ground noises in the data will likely reduce the performance
ever, there do exist discrepancies between these two measur@bany classifier. Therefore, in addition to data pre-processing,

resulting in different performance of various classifiers basedariable selection for classification analysis may represent
on the selected variables. another challenge for MS data analysis.

ranking measure from T-statistics

Fig. 6. Variable ranking comparison.
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