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Molecular diagnostics is a rapidly advancing field in
which insights into disease mechanisms are being elu-
cidated by use of new gene-based biomarkers. Until
recently, diagnostic and prognostic assessment of dis-
eased tissues and tumors relied heavily on indirect
indicators that permitted only general classifications
into broad histologic or morphologic subtypes and did
not take into account the alterations in individual gene
expression. Global expression analysis using microar-
rays now allows for simultaneous interrogation of the
expression of thousands of genes in a high-throughput
fashion and offers unprecedented opportunities to ob-
tain molecular signatures of the state of activity of
diseased cells and patient samples. Microarray analysis
may provide invaluable information on disease pathol-
ogy, progression, resistance to treatment, and response
to cellular microenvironments and ultimately may lead
to improved early diagnosis and innovative therapeutic
approaches for cancer.

© 2002 American Association for Clinical Chemistry

Microarray Technology
Microarray methods were initially developed to study
differential gene expression using complex populations of
RNA (1). Refinements of these methods now permit the
analysis of copy number imbalances and gene amplifica-
tion of DNA (2) and have recently been applied to the
systematic analysis of expression at the protein level (3).
Many of the guiding principles of global analysis using
microarrays are, in principle, applicable at the RNA,
DNA, or protein level. In this review we focus our
attention on microarray technologies applied to the anal-
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ysis of RNA, with emphasis on the study of gene ex-
pression changes in tumors. Discussion covering details
concerning the methods outlined below, and a glossary
of terms commonly used in microarray analysis are
provided in supplementary materials to this article
(www.utoronto.ca/cancyto/CLINCHEM). Any microar-
ray study typically involves six steps (see Fig. 1), and the
next sections will summarize some of the critical param-
eters in the general design and optimization of microarray
analysis of RNA for the study of gene expression.

MANUFACTURING OF MICROARRAYS

Spotted arrays are manufactured using xyz robots that use
hollow pins to deposit cDNA (PCR products) or short
oligonucleotides onto specially coated glass microscope
slides (4). Spot sizes range between 80 and 150 um in
diameter, and arrays that contain up to 80 000 spots can be
obtained. Gene sequences to be arrayed are selected from
several public databases, which contain resources to ac-
cess well-characterized genes and expressed sequence
tags (ESTs)” representative of genes of unknown function.
The clones chosen are amplified from appropriate cDNA
libraries by PCR and purified before spotting on the solid
support.

In addition to their lower price and flexibility in
design, spotted arrays offer the advantage of allowing the
simultaneous expression analysis of two biological sam-
ples, such as test and control samples. This direct com-
parison of expression profiles of two biological samples,
such as untreated cells compared with treated cells or
healthy tissue compared with cancer, is an enormous
advantage for any pairwise analysis. Furthermore, be-
cause these arrays can be spotted with thousands of
sequenced expressed genes and ESTs of unknown func-
tion, they offer the potential for the discovery of new
genes and defining their role in disease. One disadvan-
tage of spotted arrays is that they provide information

° Nonstandard abbreviations: EST, expressed sequence tag; EOC, epithelial
ovarian cancer; CGH, comparative genomic hybridization; ISH, in situ hybrid-
ization; and IHC, immunohistochemistry.
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Fig. 1. The six steps in a microarray experiment.
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Following standard nomenclature for microarray procedures (44), in this review we refer to the nucleic acids bound to the microarrays as the “probe” and the

fluorescently labeled or radiolabeled cDNA hybridized to the array as the “target”.

only on the relative gene expression between specific cells
or tissue samples as opposed to direct quantification of
RNA expression.

Affymetrix GeneChips™ are produced by synthesiz-
ing tens of thousands of short oligonucleotides in situ
onto glass wafers, one nucleotide at a time, using a
modification of semiconductor photolithography technol-
ogy (1, 5). Generally, GeneChips are designed with 16-20
oligonucleotides representing each gene on the array.
Each oligonucleotide on the chip is matched with an
almost identical one, differing only by a central, single
base mismatch. This allows determination of the degree of
nonspecific binding by comparison of target binding
intensity between the two partner oligonucleotides. The
main advantage of Affymetrix GeneChips is their ability
to measure the absolute expression of genes in cells or
tissues. Their disadvantages, in addition to their higher

costs, include their current inability to simultaneously
compare, on the same array, the degree of expression of
two related biological samples. In addition, oligonucleo-
tide-based microarrays require a priori knowledge of the
gene sequences and require complex computational ma-
nipulation to convert the 40 feature signals into an actual
expression value. More recently, oligonucleotide arrays
have been developed that combine some the flexibilities
and qualitative advantages associated with the use of
synthetic probe arrays with the benefits of simultaneous
analysis afforded by spotted glass array (6).

In our laboratories, we use the cDNA microarrays
spotted with 1700 or 19 200 genes and ESTs manufactured
at the University Health Network Microarray Centre
(http:/ /www.microarrays.ca) to study tumor progression
and patient response to treatment in several human solid
tumors.
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EXPERIMENTAL DESIGN AND CHOICE OF REFERENCE
Careful design at the outset is crucial to the success of
microarray experiments. In cancer research, case—control,
blocked, and random profile designs predominate. In a
case—control study, two samples from a single individual,
e.g., tumor tissue and healthy tissue, are compared di-
rectly. Because patient variability and genetic heterogene-
ity are key issues in microarray data analysis, the case—
control design is an excellent solution when feasible.

Blocked designs are typically used to study the effect of
a treatment or growth condition on a sample such as a cell
line. They have been successfully used to examine cell
lines grown under different conditions (e.g., cultured in
the presence or absence of an anticancer drug) or different
related cell lines (e.g., wild type vs mutant, nontransfected
cells vs transfected cells). Random profile designs are
widely used in microarray experiments when cell lines or
patient samples are selected and profiled. Most of the
“profiling papers” have used this design, which offers the
ability to use data from many different individuals but
offers no intrinsic control for bias in the patient popula-
tions or cell populations used.

In both the blocked and randomized profile designs,
the sample is typically compared with a common or
“universal” reference, which should have adequate rep-
resentation of the majority of genes on the array being
profiled and be easily available. Commercially available
reference RNA is often a good choice because of wide
gene representation (e.g., Stratagene and Clontech). The
use of a common reference also offers the advantage of
allowing longitudinal comparative analysis among sev-
eral microarray projects between different research
groups interested in a common aspect of cancer research,
such as tumor progression or resistance to anticancer
drugs. We have recently used a pool of 9 cell lines to
establish the expression profiles of a series of 15 ovarian
cancer samples (7).

The importance of replicates cannot be overempha-
sized because variability can be very high in microarray
experiments. Many groups, including ours, also choose to
carry out so-called “dye reversals”, in which one replicate
array is hybridized with the experimental sample labeled
with one fluorophore and the reference sample with the
other dye. The corresponding duplicate array is then
hybridized with experimental samples and reference sam-
ples labeled with the opposite fluorophores. This strategy
generates replicate data while balancing the possible
differential efficiency of dye incorporation among RNA
samples.

TARGET PREPARATION AND HYBRIDIZATION

Both total RNA and mRNA can be used for microarray
experiments and allow the attainment of high-quality
data with a high degree of confidence. High-quality RNA
is crucial for successful microarray experiments. Different
standard RNA extraction methodologies have been used
successfully, and the choice of protocol is largely a ques-
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tion of personal experience. Quantitative and qualitative
evaluation of the RNA obtained can be carried out by
standard techniques, such as agarose gel electrophoresis,
but is limited by the relatively large amounts of sample
required. More recently, assessment of RNA quality and
quantity has been greatly facilitated by the use of micro-
capillary-based devices such as the Agilent Bioanalyzer
(Agilent Technologies), which can be used with as little as
5 ng of total RNA.

One of the current limitations in the routine application
of microarray technology to patient samples is sufficient
RNA availability. Thus, there has been considerable inter-
est in the development of RNA amplification strategies
that facilitate RNA extraction from laser capture micro-
dissected (LCM) samples, such as fine-needle biopsies.
For standard microarray experiments, the isolated RNA is
reverse-transcribed into target cDNA in the presence of
fluorescent (generally Cy3-dNTP or Cy5-dNTP) or radio-
labeled deoxynucleotides ([*°P]- or [**P]-a-dCTP). After
purification and denaturation, the labeled targets are
hybridized to the microarrays at a temperature deter-
mined by the hybridization buffer used. After hybridiza-
tion, the arrays are washed under stringent conditions to
remove nonspecific target binding and are air-dried.

IMAGE ACQUISITION AND QUANTIFICATION

Microarray image processing uses differential excitation
and emission wavelengths of the two fluors to obtain a
scan of the array for each emission wavelength, typically
as two 16-bit grayscale TIFF images. These images are
then analyzed to identify the spots, calculate their associ-
ated signal intensities, and assess local background noise.
Most image acquisition software packages also contain
basic filtering tools to flag spots such as extremely low-
intensity spots, ghosts spots (where background is higher
than spot intensity), or damaged spots (e.g., dust arti-
facts). These results allow an initial ratio of the evaluated
channel/reference channel intensity to be calculated for
every spot on the chip. The products of the image acqui-
sition are the TIFF image pairing and a quantified data file
that has not yet been normalized. An excellent assessment
of different image analysis methods can be found at
http://oz.berkeley.edu/tech-reports/.

DATABASES AND NORMALIZATION

The quantity of data generated in a microarray experi-
ment typically requires a dedicated database system to
store and organize the microarray data and images. The
first role of a local microarray database is the storage and
annotation (description of experimental parameters) of
microarray experiments by the investigator who designed
and carried out the microarray experiments. In addition,
there is currently an increasing global interest in making
microarray data sets publicly available in a standardized
format. This would allow other investigators to reproduce
published microarray experiments, to thereby indepen-
dently verify them, to compare data sets across different
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microarray platforms, and importantly, to interrogate
published microarray data sets by use of various bioin-
formatics tools to explore different biological problems.
To answer this need, the Minimal Information about a
Microarray Experiment, or MIAME standard, has been
proposed by the MGED (http://www.mged.org) organi-
zation as a series of criteria that should be used when
defining microarray experiment parameters. In our
group, we enter all microarray data into a local microar-
ray database (GeneTraffic; Iobion Informatics), which
holds all of the microarray data files and TIFF images, as
well as a MIAME supportive annotation of our experi-
ments.

Once data have been loaded into the database, they are
normalized, and aggregate statistics are calculated. Nor-
malization is a process that scales spot intensities such
that the normalized ratios provide an approximation of
the ratio of gene expression between the two samples.
Discussion of the different strategies for normalization of
microarray data is beyond the scope of this review article,
but the choice of a robust and adequate normalization
method is as crucial for the quality of the data obtained as
the experimental design of the microarray experiment
itself. A discussion of normalization methods is provided
in supplementary materials to this article (www.utoronto.
ca/cancyto/CLINCHEM).

STATISTICAL ANALYSIS AND DATA MINING
Analysis of large gene expression data sets is a new area
of data analysis with its own unique challenges. Data
mining methods typically fall into one of two classes:
supervised and unsupervised. In unsupervised analysis,
the data are organized without the benefit of external
classification information. Hierarchical clustering (8), K-
means clustering (9, 10), or self-organizing maps (11) are
examples of unsupervised clustering approaches that
have been widely used in microarray analysis (8, 12-15).
Supervised analysis uses some external information,
such as the disease status of the samples studied. Super-
vised analysis involves choosing from the entire data set a
training set and a testing set and also involves construc-
tion of classifiers, which assign predefined classes to
expression profiles. Once the classifier has been trained on
the training set and tested on the testing set, it can then be
applied to data with unknown classification. Supervised
methods include k-nearest neighbor classification, sup-
port vector machines, and neural nets. Golub et al. (16)
used a k-nearest neighbor strategy to classify the expres-
sion profiles of leukemia samples into two classes: acute
myeloid leukemia and acute lymphocytic leukemia. Re-
cently Su et al. (17) used large-scale RNA profiling and
supervised machine learning algorithms to construct a
molecular classification for 10 carcinomas (prostate, lung,
ovary, colorectum, kidney, liver, pancreas, bladder/ure-
ter, and gastroesophagus). Similarly, neural network anal-
ysis has been used by Khan et al. (18) to delineate
consistent patterns of gene expression in cancer.
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Tusher et al. (19) recently proposed a strategy called
SAM (significance analysis of microarrays), which allows
the determination of significantly differentially expressed
genes between groups of samples analyzed by expression
arrays. We have used this approach to narrow down the
analysis to a subset of genes that were also shown to be
differentially expressed when analyzed by conventional
two-dimensional hierarchical clustering. As discussed be-
low, we have recently identified genes that show differ-
ential expression between early-stage epithelial ovarian
cancer (EOC), late-stage EOC, and healthy ovary (Fig. 2).

Expression Profiling Applied to Cancer Biology
Cancer is caused by the accumulation of genetic and
epigenetic changes resulting from the altered sequence or
expression of cancer-related genes, such as oncogenes or
tumor suppressor genes, as well as genes involved in cell
cycle control, apoptosis, adhesion, DNA repair, and an-
giogenesis. Because gene expression profiles provide a
snapshot of cell functions and processes at the time of
sample preparation, comprehensive combinatorial analy-
sis of the gene expression patterns of thousands of genes
in tumor cells and comparison to the expression profile
obtained with healthy cells should provide insights con-
cerning consistent changes in gene expression that are
associated with tumor cellular dysfunction and any con-
comitant regulatory pathways. Microarray technology
has been widely used in the past 3 years to investigate
tumor classification, cancer progression, and chemother-
apy resistance and sensitivity. In this section we provide
three examples to demonstrate that expression arrays can
be used to gain a better understanding of the basic
biology, diagnosis, and treatment of cancer.

MOLECULAR TUMOR CLASSIFICATION

Improvements in tumor classification are central to the
development of novel and individualized therapeutic
approaches. Histologically indistinguishable tumors often
show significant differences in clinical behavior, and
subclassification of these tumors based on their molecular
profiles may help explain why these tumors respond so
differently to treatment. In a landmark study, Golub et al.

q " |Normal

Fig. 2. Two-dimensional hierarchical clustering of microarray data
obtained with 22 ovarian tissue samples.
Samples include 15 early- or late-stage serous EOC and 7 healthy ovaries. A-E

represent distinct clusters of genes whose expression permits distinction among
early EOC, late EOC, and healthy ovary (Normal).
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(16) applied microarray technology to develop innovative
classifications of leukemias, using microarray analysis
based on “neighborhood analysis” and the utilization of
tumor class predictors. This strategy was able to distin-
guish between acute myeloid leukemia and acute lym-
phocytic leukemia without supervisory analysis. Other
groups have also used gene expression pattern analysis to
classify, at the molecular level, breast tumors (20, 21),
B-cell lymphoma (14), cutaneous melanoma (22), and
lung adenocarcinoma (23, 24). Likewise, in a recent study
analyzing molecular profiles of 50 nonneoplastic and
neoplastic prostate samples, Dhanasekaran et al. (25)
established signature expression profiles of healthy pros-
tate, benign prostatic neoplasia, localized prostate cancer,
and metastatic prostate cancer. These studies established
the feasibility of combining large-scale molecular analysis
of expression profiles with classic morphologic and clin-
ical methods of staging and grading cancer for better
diagnosis and outcome prediction.

DRUG SENSITIVITY

Despite considerable advances in cancer treatment, ac-
quired resistance to chemotherapeutic drugs continues to
be a major obstacle in patient treatment and overall
outcome. Anticancer drug resistance is thought to occur
through numerous mechanisms, and microarrays offer a
new approach to studying the cellular pathways impli-
cated in these mechanisms and in predicting drug sensi-
tivity and unexpected side effects. Most array studies
have been carried out using cancer cell lines that are
rendered resistant to commonly used anticancer drugs.
For example, Kudoh et al. (26) monitored the expression
profiles of doxorubicin-induced and -resistant cancer cells
in an attempt to obtain molecular fingerprinting of anti-
cancer drugs in cancer cells. Scherf et al. (27) analyzed a
subset of 1400 genes from a study reported by Ross et al.
(28) and studied the correlation between expression pro-
files and drug mechanism of action of a panel of 118
anticancer drugs. Obtaining further insights into the
mechanism of action of anticancer drugs and the diverse
pathways involved in drug resistance may eventually be
invaluable for design of more strategic treatments that are
most appropriate for an individual tumor.

IDENTIFICATION OF TUMOR-SPECIFIC MOLECULAR
MARKERS

Several research groups have focused on identifying
subsets of genes that show differential expression be-
tween healthy tissues or cell lines and their tumor coun-
terparts to identify biomarkers for several solid tumors,
including ovarian carcinomas (7, 29-32), oral cancer (33),
melanoma (34 ), colorectal cancer (35), and prostate cancer
(36). In our recent study (7) carried out on a cohort of 13
patients with EOC, we identified a subset of genes that
show differential expression between healthy ovaries and
ovarian tumors (Fig. 2). Some of these genes, such as
metallothionein 1G, which was found to be up-regulated
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in tumor samples, are implicated in resistance to the
anticancer drug cisplatin and might be an indicator of
pretreatment resistance of these tumors to cisplatin. Other
genes identified in our study, such as the osteopontin
gene, which was strongly up-regulated in some tumors
samples and which has been shown (37) to be secreted in
the serum of patients with metastatic cancer, might be an
excellent candidate for biomarkers of tumor progression
in EOC. One of the most important challenges facing
investigators using microarray analysis is determining
which of the plethora of new differentially expressed
genes is biologically relevant to the tumor system being
studied. Even when rigorous efforts are made to minimize
the number of variables in a microarray study, there may
be an unmanageable number of differentially expressed
genes that will contribute excessive background values.
Therefore, combining expression microarray analysis
with other approaches, particularly cytogenetics tech-
niques, such as spectral karyotyping and chromosome
and array comparative genomic hybridization (CGH) (2),
offers the possibility to focus on significantly smaller
subsets of genes of direct relevance to tumor biology (7).
Monni et al. (38) and Barlund et al. (39) recently used a
combination of expression arrays and CGH array tech-
niques on breast cancer cell lines and have identified a
limited number of genes that are both amplified and
overexpressed. [For a review, see Monni et al. (40), as
illustrated in Fig. 3].

Finally, validation of the relative expression obtained
from genome-wide microarray analysis is critical. Several
approaches can be chosen, from basic Northern analysis
or semiquantitative reverse transcription-PCR to in situ
hybridization (ISH) using tissue microarrays. Mousses et
al. (41) recently analyzed the expression of several candi-
date genes associated with prostate cancer that they had
previously identified by cDNA microarray analysis. Tis-
sue microarrays constructed from 544 histologic biopsies
were analyzed by ISH using RNA probes and/or by
immunohistochemistry (IHC) using antibodies. There
was excellent correlation between the cDNA microarray
results and the results obtained with ISH and Northern
blot analysis. In addition, protein expression assessed by
IHC was also consistent with RNA expression. Similarly,
Dhanasekaran et al. (25) used comparable technologies to
confirm overexpression of hepsin and PIM-1 in prostate
cancer (Fig. 4).

PRACTICAL AND FUTURE APPLICATIONS OF
MICROARRAY TECHNOLOGY

The numbers of microarray-based studies identifying new
genes or molecular pathways involved in tumor classifi-
cation, cancer progression, or patient outcome are grow-
ing exponentially. We are now approaching what is being
referred to as the “postgenomic era”, during which the
diagnostic, prognostic, and treatment response biomarker
genes identified by microarray screening will be interro-
gated to provide personalized management of patients.
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Fig. 3. Detection of amplified and overexpressed genes by cDNA and CGH microarray techniques in the MCF7 breast cancer cell line.

(a), copy number ratio profile for chromosome 17 obtained from conventional CGH analysis indicates a large region of high-level amplification at 17923. (b), CGH
microarray (top) and cDNA microarray (bottom) analyses of the MCF7 breast cancer cell line. The same cDNA microarray format containing chromosome 17-specific
genes and ESTs was used for both analyses. After hybridization with red-labeled tumor DNA (CGH microarray; top) or cDNA (cDNA microarray; bottom) against a
green-labeled reference specimen, genes that are amplified and overexpressed are visualized as red dots. The insets show three regions on the cDNA microarray at
a higher maghnification, visualizing the amplification (left panels) and overexpression (right panels) of three genes, MUL, RPS6KB1, and APPBP2, that are located at
17923 by fluorescence ISH. This corresponds to the same region in which amplification was seen by CGH. (d), high-level RPS6KB1 amplification in MCF7 cells as
visualized by interphase fluorescence ISH. From Monni et al. (40).

NAP PCA

A

* Hepsin

Fig. 4. Hepsin is overexpressed in prostate cancer.

(A), Northern blot analysis of human hepsin and normalization with GAPDH. NAP, normal adjacent prostate; PCA, localized prostate cancer. (B), tissue microarrays used
for hepsin analysis (stained with hematoxylin and eosin). (C), representative elements of a tissue microarray stained with anti-hepsin antibody. IHC demonstrates
absent or weak staining of benign prostate and strong staining in localized prostate cancer. (D), benign prostate glands demonstrate strong basal cell staining (panel
1) but weak expression in the secretory luminal cells (panel 2). From Dhanasekaran et al. (25).
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Clinicians will be able to use microarrays during early
clinical trials to confirm the mechanisms of action of
drugs and to assess drug sensitivity and toxicity. Coupled
with more conventional biochemical analysis such as IHC
and ELISA, microarrays will be used for diagnostic and
prognostic purposes. A recent example of such a potential
“bench to bedside” translation was published by Kim et
al. (42). The osteopontin gene, which encodes a calcium-
binding glycophosphoprotein, had been identified by
c¢DNA microarray analysis as being up-regulated in ovar-
ian cancer (43). In their study, Kim et al. (42) showed that
screening of plasma samples from ovarian cancer patients
revealed that osteopontin protein concentrations in
plasma were significantly higher in a majority of patients
with ovarian cancer compared with healthy controls. This
study demonstrated the potential value of cDNA microar-
ray analysis in identifying biomarker genes in cancer and
the feasibility of subsequently testing these genes at the
protein level by conventional biochemical assays. Al-
though the major limiting factors for routine use in a
clinical setting at present are cost and access to the
microarray technology, it is likely that costs will decrease
in the near future and that the technology will become
increasingly user friendly and automated.

Conclusion

The range of applications of microarray technology is
enormous. Recent studies in human cancer have demon-
strated that microarrays can be used to develop a new
molecular taxonomy of cancer, including clustering of
cancers according to prognostic groups on the basis of
gene expression profiles. The list of potential uses of this
technique is not limited to cancer research. For example,
the temporal impact on gene expression by drugs, envi-
ronmental toxins, or oncogenes may be elucidated, and
regulatory networks and coexpression patterns can then
be deciphered. In the 6 years since its inception, microar-
ray technology has become a major tool for the investiga-
tion of global gene expression of all aspects of human
disease and in biomedical research.

We thank Dr. Jim Woodgett and Jason Gongalves for
critically reviewing this manuscript, and Monique Albert
for help in figure design and manuscript preparation.
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