Graphite: A NUMA-

aware HPC System for Graph
Analytics Based on a new
MPI+X Parallelism Model

Mohammad Hasanzadeh Mofrad, Rami Melhem,
Yousuf Ahmad, and Mohammad Hammoud

Github Repository: https://github.com/hmofrad/Graphite

Carnegie
Mellon
University
Qatar

https://github.com/hmofrad/Graphite

Motivation: Big Graph Analytics

* Graphs are ubiquitous
* Google PageRank
* Uber routing’s engine
item recommendation
* Facebook friend suggestion

Graphite HPC Graph Analytics System — VLDB 2020

Background: The Duality
Between Graphs and
Sparse Matrices

* The relational data represented
by graphs is often hyper-sparse

* Linear algebra primitives
backed by sparse matrix
formats are new alternatives to
their graph-based versions

Graph Theory Linear Algebra
Representation Graph Adjacency Matrix
Data structure Adjacency List Compressed Sparse Format,
e.g., CSC
Primitive Fan-in/ Fan-out Sparse Matrix—Vector
Operations (SpMV) with GAS!

Scalability

Graph Partitioning Sparse Matrix Partitioning

1. Gather, Apply, and Scatter (GAS) abstraction

. o, . — A
2D Process-based Matrix Partitioning and we [[_[a.[a, 4,
Placement for scalability (e.g., p=4) Ao\ A | A | Asy
AZO A21 A22 A23
* Processed-based 2D partitioning: Given p processes, a matrix is Asg|As1| Az | Ass

partitioned into a pxp grid of tiles pXp

2D-process-based partitioning

* Each process computes p tiles

Po | PiI| Po | Py
: : P, | P Py | Py
e 2D cyclic placement (GraphPad, IPDPS 16): Given p processes, =
\/p processes are placed in each row/column group PO'P1 Po | Py
* Process communication is not part of the placement Py | P3| Py | Py

2D-Cyclic Placement

e 2D Staggered partitioning (LA3, VLDB 18): Like 2D cyclic, P, | P, | Py | P,
however, unique processes are placed in diagonal tiles plp P, | P,
* Process communication is democratized by diagonal processes Ararar
(O(p"2) time)
PO Pl PO Pl
Graphite HPC Graph Analytics System — VLDB 2020

MPI+X Parallelism Model for
Multicore HPC Systems (e.g., p=4)

* MPI+X parallelism model utilizes
* MPI to achieve horizontal scaling —— A

* One MPI process per machine
* Athreading library (X), e.g, Pthread, to achieve vertical scaling nip Po ! Po Py
PZ P3 PZ P3
AZOO
L A
* MPI+X uses process-based partitioning & > P, | P | P | P
placement Aom | ——
PO Pl PO Pl
pxp

MPI+X with Processed-based 2D-Staggered

m is the number of sub-partitions

Graphite HPC Graph Analytics System — VLDB 2020 5

The New 2D Thread-based Matrix
Partitioning and Placement for scalability

(e.g., p=4, t=2)

* Thread-based 2D partitioning: Given p processes & t
threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles

* Each global thread computes t tiles

Graphite HPC Graph Analytics System — VLDB 2020

o
> > > > I> > > D>
&
R
&

[y
[y
[y
N

DD DD IDDDD

DD DD IDDDD
SN

[y
(2}

N
[y
N
N
N
w
N
»
N
Ul

w
=
w
N
w
w
w
s

o
=
o
N
o
)
o
S
o
]

(9
(NN
(9]
N
9]
w
u
B
9]
(9]

D DD IDIDD D
()]

DD (DD IDD D
~N

()]
=
()}
N
()}
w
(e}
B
(o)}
(¥

> > (D> D>dD DdD[(Dd|>|D>
> > (D> D> D>D[(D>d|>|D>

A76 A77
(p.t) x (p.t)

2D Thread-based Partitioning

~
[y
~
N
~
w
~
N
~
(9]

The New 2D Thread-based Matrix
Partitioning and Placement for scalability

(e.g., p=4, t=2)

* Thread-based 2D partitioning: Given p processes & t
threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles

* Each global thread computes t tiles

 New Thread-based 2D Staggered placement (2DT-
Staggereed):
* p.t global threads; t local threads per process

* Thread communication is democratized by diagonal threads
(O(2(p.t) time)

Graphite HPC Graph Analytics System — VLDB 2020

o
ot
o
ot
o
ot
o
ot

o
ot
ot
ot
ot
ot
ot
ot

~
ot
~
ot
=
o3
~
ot

ot
S
ot
S
ot
S
ot
S

o
ot
ot
ot
ot
ot
ot
ot

~
ot
~
ot
~
o3
~
ot

ot
S
ot
S
ot
S
ot
S

o
ot
o
ot
o
ot

TO
(p.t) x (p.t)

2D Thread-based Placement (Global Thread Ids)

ot

The New MPI*X Parallelism Model
(e.g., p=4 and t=2)

 MPI*X parallelism model utilizes

* Threads to achieve diagonal scaling A
* tglobal threads are grouped together to form a process PoTolP,ToPoTolP1TolPoTolP1ToPoTolP:To
* One MPI process per CPU socket and one thread per core P TP, TP, ToPsToP, Ty P TP, TP T,

* NUMA-aware
POTl P1T1 POTl P1T1 POTl P1T1 POTl P1T1

PoTo|P3Ty\PyT4|PsTyPoTy|P3Ty Py T4|PsT,

PaTo|P3To P2 TolP3To/PaTolP3 TP, ToPsTo

PoTa|P1T4\PoT4|P1T1|PoTy|P1T4\PoT4|P1T,

PaTo|P3Ty\PyT4|PsTy|PoTy|P3Ty Py T4|PsT,

POTOPlTOPOTO’DlTOPOTOPlTOPOTOPlTO
(p.t) x (p.t)

2D Thread-based Placement (Local Thread Ids)

Graphite HPC Graph Analytics System — VLDB 2020 8

MPI+X Parallelism Model (e.g., p=4)
Versus the New MPI*X Parallelism
Model (e.g., p=4 and p=2) Vertices

\4

uonesal|

/e = PR e L E [E
e 3 a0 |8 i =N 5| .S 1|8| | S
* MPI+X uses process-based partitioning and hence ® Aooo Ik Aoz E R =R
= Aco1 = Ao Sl 2! Shsg |2
* When computing each tile, multiple threads are = = = = =l gﬁ 2
forked & joined Y oA 8|5 A |85 (52152
LS I () M I)
* Only MPI processes are the communication endpoints —_ e —
(% X
e Synchronization points are designed for MPI processes & @Q\)e o
o " ,\j‘
MPI+X (Process 0)
e MPI*X uses thread-based partitioning and so Vertices

* Threads stay alive /(o) |~ i i E_E-i [k E'E'i o d

« Communication is done by threads (better 2f| Foo 06 | S a8 < A9 B

. L1 L1 o

overlapping) s ry °|>g.

* Synchronization is done by threads Q&Q’,@% Q/{? >

x X .
(P&v&b S &
Y N

MPI*X (Process 0, Thread 0)

Graphite HPC Graph Analytics System — VLDB 2020

The Graphite HPC Graph Analytics System

e MPI*X
* Thread-based partitioning & placement
* Diagonal scaling

* NUMA-aware

* Computation (CPU and memory affinity)
 Communication (MPI shared-memory transport)

* Asynchronous computation & communication
* Broadcasting (log(p) time) when possible

* TCSC (Triply Compressed Sparse Column) (GraphTap, Cluster 19)

Graphite HPC Graph Analytics System — VLDB 2020 10

Experimental Settings

Parallelism Model Unit Partitioning NUMA-aware Compression Primitive
Graphite MPI*¥X Threads 2DT-Staggered CPU/Memory TCSC SpMSpV? GAS
LA3 (VLDB, 2018) MPI+X Processes 2D-Staggered N/A CSCt SpMV GAS
GraphPad (IPDPS, 2016) MPI+X Processes 2D-Cyclic N/A CSC? SpMV GAS
Gemini (USENIX, 2016) MPI+X Processes 1D-Row Memory CSC/CSR Fan in/out
PageRank (PR) 28-core @ 2.6 GHZ Graph W4 |E| Type #Machines
Single Source Shortest Path (SSSP) Memory 192 GB UK’05 (UK5) 39.4M 0.93B Web 4
Breadth First Search (BFS) Linux IT’04 (1T4) 41.2M 1.15B Web 4
Connected Component (CC) MPI Intel Twitter (TWT) 41.6 M 1.46B Social 8
Network Intel Omni-path Fabric GSH’15(G15) 686M 1.8B Web 8
UK’06 (UK6) 80.6M 2.48B Web 16
UK Union (UKU) 133M 5.5B Web 20
Rmat26 (R6) 67.1 M 1.07 B Synthetic 4
Rmat27 (R27) 134 M 2.14 B Synthetic 8
Rmat28 (R28) 268 M 4.29 B Synthetic 16
Rmat29 (R29) 536 M 8.58 B Synthetic 20

Graphite HPC Graph Analytics System — VLDB 2020

1. Compressed Sparse Column (CSC)
2. Compressed Sparse Row (CSR)

11

Results (Weak Scaling)

* Graphite is up to 3x faster than others
which is due to its several good properties

B Graphite [AGraphPad [Gemini [1LA3
311

gl

UKS IT4

Graphite HPC Graph Analytics System — VLDB 2020 12

MPI*X versus MPI+X Strong
Cluster and Data Scaling

* Graphite has superior cluster & data
scalability because of MPI*X

* LA3, GraphPad, and Gemini are less
scalable due to MPI+X

Graphite HPC Graph Analytics System — VLDB 2020

[EEN
= o
o o

Time (s) (log-scale)

=

100

=
o

Time (s) (log-scale)

—

\

\
—8—LA3 (MPI+X) —
—&— GraphPad (MPI+X)

Gemini (MPI+X)
—&— Graphite (MPI*X)

1 2 4 8 16
Number of machines

Cluster Scaling (PR)

20

—o—LA3 (MPI+X)
—a— GraphPad (MPI+X)

Gemini (MPI+X)
+Gry

R26 R27 R28
Dataset size

Data Scaling (PR)

13

«
[tried to come up with a joke about

. . 9
sparse matrices, but I'm just too dense

(@DocSparse

Stay Safe Everyone!
Thank you! :-)

