
Graphite: A NUMA-
aware HPC System for Graph

Analytics Based on a new
MPI∗X Parallelism Model

Mohammad Hasanzadeh Mofrad, Rami Melhem,

Yousuf Ahmad, and Mohammad Hammoud

Github Repository: https://github.com/hmofrad/Graphite

https://github.com/hmofrad/Graphite

Motivation: Big Graph Analytics

• Graphs are ubiquitous

• Google PageRank

• Uber routing’s engine

• Amazon item recommendation

• Facebook friend suggestion

2Graphite HPC Graph Analytics System – VLDB 2020

Background: The Duality
Between Graphs and
Sparse Matrices

• The relational data represented
by graphs is often hyper-sparse

• Linear algebra primitives
backed by sparse matrix
formats are new alternatives to
their graph-based versions

Graph Theory Linear Algebra

Representation Graph Adjacency Matrix

Data structure Adjacency List Compressed Sparse Format,
e.g., CSC

Primitive Fan-in/ Fan-out
Operations

Sparse Matrix–Vector
(SpMV) with GAS1

Scalability Graph Partitioning Sparse Matrix Partitioning

3Graphite HPC Graph Analytics System – VLDB 2020 1. Gather, Apply, and Scatter (GAS) abstraction

2D Process-based Matrix Partitioning and
Placement for scalability (e.g., p=4)

• Processed-based 2D partitioning: Given p processes, a matrix is
partitioned into a pxp grid of tiles
• Each process computes p tiles

• 2D cyclic placement (GraphPad, IPDPS 16): Given p processes,
√p processes are placed in each row/column group
• Process communication is not part of the placement

• 2D Staggered partitioning (LA3, VLDB 18): Like 2D cyclic,
however, unique processes are placed in diagonal tiles
• Process communication is democratized by diagonal processes

(O(p^2) time)

Graphite HPC Graph Analytics System – VLDB 2020 4

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

n/p

p x p

n/p

A

2D-process-based partitioning

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

2D-Cyclic Placement

P0 P1 P0 P1

P2 P3 P2 P3

P2 P3 P2 P3

P0 P1 P0 P1

2D-Staggered Placement

MPI+X Parallelism Model for
Multicore HPC Systems (e.g., p=4)

• MPI+X parallelism model utilizes
• MPI to achieve horizontal scaling

• One MPI process per machine

• A threading library (X), e.g, Pthread, to achieve vertical scaling

• MPI+X uses process-based partitioning &
placement

Graphite HPC Graph Analytics System – VLDB 2020 55

P0 P1 P0 P1

P2 P3 P2 P3

P2 P3 P2 P3

P0 P1 P0 P1

A
n/p

n/p

m is the number of sub-partitions

MPI+X with Processed-based 2D-Staggered

p x p

A200

A201

…
A20m

The New 2D Thread-based Matrix
Partitioning and Placement for scalability
(e.g., p=4, t=2)
• Thread-based 2D partitioning: Given p processes & t

threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles
• Each global thread computes t tiles

Graphite HPC Graph Analytics System – VLDB 2020 66

A00 A01 A02 A03 A04 A05 A06 A07

A10 A11 A12 A13 A14 A15 A16 A17

A20 A21 A22 A23 A24 A25 A26 A27

A30 A31 A32 A33 A34 A35 A36 A37

A40 A41 A42 A43 A44 A45 A46 A47

A50 A51 A52 A53 A54 A55 A56 A57

A60 A61 A62 A63 A64 A65 A66 A67

A70 A71 A72 A73 A74 A75 A76 A77

n/(p.t)

(p.t) x (p.t)

n/(p.t)

A

2D Thread-based Partitioning

The New 2D Thread-based Matrix
Partitioning and Placement for scalability
(e.g., p=4, t=2)
• Thread-based 2D partitioning: Given p processes & t

threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles
• Each global thread computes t tiles

• New Thread-based 2D Staggered placement (2DT-
Staggereed):
• p.t global threads; t local threads per process

• Thread communication is democratized by diagonal threads
(O(2(p.t) time)

Graphite HPC Graph Analytics System – VLDB 2020 77

T0̂ T1̂ T0̂ T1̂ T0̂ T1̂ T̂0 T1̂

T2̂ T3̂ T2̂ T3̂ T2̂ T3̂ T̂2 T3̂

T4̂ T5̂ T4̂ T5̂ T4̂ T5̂ T̂4 T5̂

T6̂ T7̂ T6̂ T7̂ T6̂ T7̂ T̂6 T7̂

T2̂ T3̂ T2̂ T3̂ T2̂ T3̂ T̂2 T3̂

T4̂ T5̂ T4̂ T5̂ T4̂ T5̂ T̂4 T5̂

T6̂ T7̂ T6̂ T7̂ T6̂ T7̂ T̂6 T7̂

T0̂ T1̂ T0̂ T1̂ T0̂ T1̂ T̂0 T1̂

(p.t) x (p.t)

A

2D Thread-based Placement (Global Thread Ids)

The New MPI*X Parallelism Model
(e.g., p=4 and t=2)

• MPI*X parallelism model utilizes
• Threads to achieve diagonal scaling

• t global threads are grouped together to form a process

• One MPI process per CPU socket and one thread per core
• NUMA-aware

Graphite HPC Graph Analytics System – VLDB 2020 88

(p.t) x (p.t)

A

2D Thread-based Placement (Local Thread Ids)

P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0

P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0

P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1

P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1

P2T0 P3T0 P2T0 P3T0 P2T0 P3T0 P2T0 P3T0

P0T1 P1T1 P0T1 P1T1 P0T1 P1T1 P0T1 P1T1

P2T1 P3T1 P2T1 P3T1 P2T1 P3T1 P2T1 P3T1

P0T0 P1T0 P0T0 P1T0 P0T0 P1T0 P0T0 P1T0

MPI+X Parallelism Model (e.g., p=4)
Versus the New MPI*X Parallelism
Model (e.g., p=4 and p=2)
• MPI+X uses process-based partitioning and hence

• When computing each tile, multiple threads are
forked & joined

• Only MPI processes are the communication endpoints

• Synchronization points are designed for MPI processes

• MPI*X uses thread-based partitioning and so

• Threads stay alive

• Communication is done by threads (better
overlapping)

• Synchronization is done by threads

Graphite HPC Graph Analytics System – VLDB 2020 99

n/(p.t)
A06

…

Fo
rk A00

Iteratio
n

… …

C
o

m

Vertices

A
cc

Sy
n

c

Jo
in

A
cc

Sy
n

c

C
o

m

MPI*X (Process 0, Thread 0)

Vertices

Iteratio
n

n/p

C
o

m
m

u
n

ic
at

io
n

…

Fo
rk

 t
h

re
ad

s

…

MPI+X (Process 0)

A020

A021

…
A02m Jo

in
 t

h
re

ad
s

Fo
rk

 t
h

re
ad

s

A000

A001

…
A00m Jo

in
 t

h
re

ad
s

A
cc

u
m

u
la

ti
o

n

Fo
rk

 t
h

re
ad

s

Jo
in

 t
h

re
ad

s

Sy
n

ch
ro

n
iz

at
io

n

The Graphite HPC Graph Analytics System

• MPI*X
• Thread-based partitioning & placement

• Diagonal scaling

• NUMA-aware
• Computation (CPU and memory affinity)

• Communication (MPI shared-memory transport)

• Asynchronous computation & communication
• Broadcasting (log(p) time) when possible

• TCSC (Triply Compressed Sparse Column) (GraphTap, Cluster 19)

Graphite HPC Graph Analytics System – VLDB 2020 10

Experimental Settings
Graph Processing Systems

Parallelism Model Unit Partitioning NUMA-aware Compression Primitive
Graphite MPI*X Threads 2DT-Staggered CPU/Memory TCSC SpMSpV2 GAS
LA3 (VLDB, 2018) MPI+X Processes 2D-Staggered N/A CSC1 SpMV GAS
GraphPad (IPDPS, 2016) MPI+X Processes 2D-Cyclic N/A CSC2 SpMV GAS
Gemini (USENIX, 2016) MPI+X Processes 1D-Row Memory CSC/CSR Fan in/out

Graphite HPC Graph Analytics System – VLDB 2020 11

1. Compressed Sparse Column (CSC)
2. Compressed Sparse Row (CSR)

Datasets
Graph |V| |E| Type #Machines

UK’05 (UK5) 39.4 M 0.93 B Web 4
IT’04 (IT4) 41.2 M 1.15 B Web 4
Twitter (TWT) 41.6 M 1.46 B Social 8
GSH’15 (G15) 68.6 M 1.8 B Web 8
UK’06 (UK6) 80.6 M 2.48 B Web 16
UK Union (UKU) 133 M 5.5 B Web 20
Rmat26 (R6) 67.1 M 1.07 B Synthetic 4
Rmat27 (R27) 134 M 2.14 B Synthetic 8
Rmat28 (R28) 268 M 4.29 B Synthetic 16
Rmat29 (R29) 536 M 8.58 B Synthetic 20

Graph Applications
PageRank (PR)
Single Source Shortest Path (SSSP)
Breadth First Search (BFS)
Connected Component (CC)

Node Specification
CPU 28-core @ 2.6 GHZ
Memory 192 GB
OS Linux
MPI Intel
Network Intel Omni-path Fabric

Results (Weak Scaling)

• Graphite is up to 3x faster than others
which is due to its several good properties

Graphite HPC Graph Analytics System – VLDB 2020 12

0

10

20

Ti
m

e
(s

)

Graphite GraphPad Gemini LA3
31.1

0

3

6

Ti
m

e
(s

)

11

0

1

2

Ti
m

e
(s

)

3.1

0

5

10

UK5 IT4 TWT G15 R26 R27 R28 GM

Ti
m

e(
s)

PR SSSP

BFS CC

MPI*X versus MPI+X Strong
Cluster and Data Scaling

• Graphite has superior cluster & data
scalability because of MPI*X

• LA3, GraphPad, and Gemini are less
scalable due to MPI+X

Graphite HPC Graph Analytics System – VLDB 2020 13

1

10

100

1 2 4 8 16 20

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Number of machines

LA3 (MPI+X)

GraphPad (MPI+X)

Gemini (MPI+X)

Graphite (MPI*X)

1

10

100

R26 R27 R28

Ti
m

e
(s

)
(l

o
g-

sc
al

e)

Dataset size

LA3 (MPI+X)
GraphPad (MPI+X)
Gemini (MPI+X)
Graphite (MPI*X)

Cluster Scaling (PR)

Data Scaling (PR)

“I tried to come up with a joke about

sparse matrices, but I’m just too dense”
@DocSparse

Stay Safe Everyone!

Thank you!

Graphite HPC Graph Analytics System – VLDB 2020 14

:-)

