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Motivation: Big Graph Analytics

• Graphs are ubiquitous

• Google PageRank

• Uber routing’s engine

• Amazon item recommendation

• Facebook friend suggestion
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Background: The Duality 
Between Graphs and 
Sparse Matrices

• The relational data represented 
by graphs is often hyper-sparse

• Linear algebra primitives 
backed by sparse matrix 
formats are new alternatives to 
their graph-based versions 

Graph Theory Linear Algebra

Representation Graph Adjacency Matrix

Data structure Adjacency List Compressed Sparse Format, 
e.g., CSC

Primitive Fan-in/ Fan-out 
Operations

Sparse Matrix–Vector 
(SpMV) with GAS1

Scalability Graph Partitioning Sparse Matrix Partitioning
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2D Process-based Matrix Partitioning and 
Placement for scalability (e.g., p=4) 

• Processed-based 2D partitioning: Given p processes, a matrix is 
partitioned into a pxp grid of tiles
• Each process computes p tiles 

• 2D cyclic placement (GraphPad, IPDPS 16): Given p processes, 
√p processes are placed in each row/column group
• Process communication is not part of the placement

• 2D Staggered partitioning (LA3, VLDB 18): Like 2D cyclic, 
however, unique processes are placed in diagonal tiles
• Process communication is democratized by diagonal processes 

(O(p^2) time)
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MPI+X Parallelism Model for 
Multicore HPC Systems (e.g., p=4) 

• MPI+X parallelism model utilizes
• MPI to achieve horizontal scaling

• One MPI process per machine

• A threading library (X), e.g, Pthread, to achieve vertical scaling

• MPI+X uses process-based partitioning & 
placement
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The New 2D Thread-based Matrix 
Partitioning and Placement for scalability 
(e.g., p=4, t=2) 
• Thread-based 2D partitioning: Given p processes & t 

threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles
• Each global thread computes t tiles
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The New 2D Thread-based Matrix 
Partitioning and Placement for scalability 
(e.g., p=4, t=2) 
• Thread-based 2D partitioning: Given p processes & t 

threads, a matrix is partitioned into a (p.t)x(p.t) grid of tiles
• Each global thread computes t tiles

• New Thread-based 2D Staggered placement (2DT-
Staggereed): 
• p.t global threads; t local threads per process

• Thread communication is democratized by diagonal threads 
(O(2(p.t) time)
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The New MPI*X Parallelism Model 
(e.g., p=4 and t=2) 

• MPI*X parallelism model utilizes
• Threads to achieve diagonal scaling

• t global threads are grouped together to form a process

• One MPI process per CPU socket and one thread per core
• NUMA-aware
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MPI+X Parallelism Model (e.g., p=4) 
Versus the New MPI*X Parallelism 
Model (e.g., p=4 and p=2) 
• MPI+X uses process-based partitioning and hence

• When computing each tile, multiple threads are 
forked & joined

• Only MPI processes are the communication endpoints

• Synchronization points are designed for MPI processes

• MPI*X uses thread-based partitioning and so

• Threads stay alive

• Communication is done by threads (better 
overlapping)

• Synchronization is done by threads
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The Graphite HPC Graph Analytics System

• MPI*X
• Thread-based partitioning & placement

• Diagonal scaling

• NUMA-aware
• Computation (CPU and memory affinity)

• Communication (MPI shared-memory transport)

• Asynchronous computation & communication
• Broadcasting (log(p) time) when possible

• TCSC (Triply Compressed Sparse Column) (GraphTap, Cluster 19)
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Experimental Settings
Graph Processing Systems

Parallelism Model Unit Partitioning NUMA-aware Compression Primitive
Graphite MPI*X Threads 2DT-Staggered CPU/Memory TCSC SpMSpV2 GAS
LA3 (VLDB, 2018) MPI+X Processes 2D-Staggered N/A CSC1 SpMV GAS
GraphPad (IPDPS, 2016) MPI+X Processes 2D-Cyclic N/A CSC2 SpMV GAS
Gemini (USENIX, 2016) MPI+X Processes 1D-Row Memory CSC/CSR Fan in/out
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1. Compressed Sparse Column (CSC) 
2. Compressed Sparse Row (CSR)

Datasets
Graph |V| |E| Type #Machines

UK’05 (UK5) 39.4 M 0.93 B Web 4
IT’04 (IT4) 41.2 M 1.15 B Web 4
Twitter (TWT) 41.6 M 1.46 B Social 8
GSH’15 (G15) 68.6 M 1.8 B Web 8
UK’06 (UK6) 80.6 M 2.48 B Web 16
UK Union (UKU) 133 M 5.5 B Web 20
Rmat26 (R6) 67.1 M 1.07 B Synthetic 4
Rmat27 (R27) 134 M 2.14 B Synthetic 8
Rmat28 (R28) 268 M 4.29 B Synthetic 16
Rmat29 (R29) 536 M 8.58 B Synthetic 20

Graph Applications
PageRank (PR)
Single Source Shortest Path (SSSP)
Breadth First Search (BFS)
Connected Component (CC)

Node Specification
CPU 28-core @ 2.6 GHZ
Memory 192 GB
OS Linux
MPI Intel
Network Intel Omni-path Fabric



Results (Weak Scaling)

• Graphite is up to 3x faster than others 
which is due to its several good properties
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MPI*X versus MPI+X Strong 
Cluster and Data Scaling 

• Graphite has superior cluster & data 
scalability because of MPI*X

• LA3, GraphPad, and Gemini are less 
scalable due to MPI+X
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“I tried to come up with a joke about   

sparse matrices, but I’m just too dense” 
@DocSparse

Stay Safe Everyone!

Thank you! 
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