## **Dissertation Defense**

**Distributed Sparse** Computing and Communication for **Big Graph Analytics** and Deep Learning

by

#### Mohammad Hasanzadeh Mofrad

Date: Friday, October 30, 2020 Time: 9:30 AM EST

Committee:

Dr. Rami Melhem (advisor), Univ. of PittsburghDr. Alexandros Labrinidis, Univ. of PittsburghDr. John Lange, Univ. of PittsburghDr. Balaji Palanisamy, Univ. of PittsburghDr. Mohammad Hammoud, CMU-Qatar



#### Overview: Distribute Sparse Computing and Communication



### Motivation: Graph Analytics

- **Big data** is a multi-billion-dollar industry
  - \$230 Billion by 2025 www.prnewswire.com
- Relational data represented by graphs is dominating the big data industry
- Graphs are ubiquitous
  - Google PageRank
    - Internet graph
  - Uber routing's engine
    - Commute graph
  - Amazon item recommendation
    - Bipartite items/users' graph
  - Facebook friend suggestion
    - Relationship graph
- Majority of these graphs are sparse



#### Background: Duality Between Graphs & Sparse Matrices

- The relational data represented by graphs is often hyper-sparse
- Linear algebra primitives backed by sparse matrix formats are new alternatives to their graph-based versions
- 1. Compressed Sparse Column (CSC)
- 2. Compressed Sparse Row (CSR)
- 3. Doubly Compressed Sparse Column (DCSC)
- 4. Doubly Compressed Sparse Column (DCSR)
- 5. Gather, Apply, and Scatter (GAS) abstraction
- 6. Sparse Matrix Vector (SpMV)

| 0.1<br>0.2<br>0.2<br>0.4<br>0.9<br>0.3<br>0.9<br>0.5 | Src       Dst       Wgt         1       1       0.1         1       3       0.2         1       4       0.4         2       3       0.3         2       4       0.5         4       1       0.9         5       1       0.3         5       4       0.8 | 0       1       2       3       4       5         0       -       -       -       -         1       .1       .2       .4       -         2       -       -       -       -         3       -       -       -       -         4       .9       -       -       -         5       .3       -       .8       - |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graph <b>G</b> ( <i>n</i> vertice                    | es) Adjacency List                                                                                                                                                                                                                                      | Adjacency Matrix <b>A</b> <sub>nxn</sub>                                                                                                                                                                                                                                                                    |
|                                                      | Graph Theory                                                                                                                                                                                                                                            | Linear Algebra                                                                                                                                                                                                                                                                                              |
| Representation                                       | Graph                                                                                                                                                                                                                                                   | Adjacency Matrix                                                                                                                                                                                                                                                                                            |
| Data structure                                       | Adjacency List                                                                                                                                                                                                                                          | CSC <sup>1</sup> , CSR <sup>2</sup> , DCSC <sup>3</sup> , DCSR <sup>4</sup>                                                                                                                                                                                                                                 |
| Computing Model                                      | Fan-in/ Fan-out<br>Operations                                                                                                                                                                                                                           | GAS <sup>5</sup>                                                                                                                                                                                                                                                                                            |
| Primitive                                            |                                                                                                                                                                                                                                                         | SpMV <sup>6</sup>                                                                                                                                                                                                                                                                                           |
| Scalability                                          | Graph Partitioning                                                                                                                                                                                                                                      | Sparse Matrix Partitioning $4$                                                                                                                                                                                                                                                                              |

### State-of-the-art Comparison: Graph Analytics

| System   | Computing<br>Model | Platform  | Parallelism<br>Model | Computation &<br>Communication    | Matrix<br>Compression            | Authors                      |
|----------|--------------------|-----------|----------------------|-----------------------------------|----------------------------------|------------------------------|
| GraphPad | Linear Algebra     | HPC/Cloud | MPI+OpenMP           |                                   | DCSC                             | 2016, Intel                  |
| Gemini   | Frontier-based     | HPC       | MPI+OpenMP           | NUMA-aware CPU                    | CSR/CSC<br>( <mark>Dual</mark> ) | 2016,<br>Tsinghua University |
| CombBLAS | Linear Algebra     | HPC       | MPI+OpenMP           |                                   | DCSC                             | 2018, LBNL                   |
| LA3      | Linear Algebra     | Cloud     | MPI+OpenMP           | Optimized for cloud communication | DCSC                             | 2018, CMUQ                   |
| LAGraph  | Graph Theory       | HPC       | OpenMP               |                                   | CSR                              | 2020, Texas A&M              |

• State-of-the-art big graph analytics systems are not 100% mature yet!

### Motivation: Deep Learning

- Deep Neural Networks (DNNs) are pervasive
  - Speech processing
  - Post Translation
  - Autonomous driving
  - Knowledge Discovery



- The core kernel behind inference/training of DNNs is **Dense matrix-matrix** multiplication ( $C_{m \times n} = A_{m \times n} \times B_{n \times n}$ )
- Sparse DNNs are new alternative to dense DNNs with
  - Less time and space complexities
  - Better or comparable accuracy
  - Avoids overfitting
- Sparse DNNs core kernel is Sparse Matrix-matrix Multiplication (SpMM)

# Background: Duality Between Linear Algebra & Deep Learning

- Neural networks connections
  - Triplet format graph theory: (*i*, *j*, *w*<sub>*ij*</sub>)
- Primitive: Matrix-matrix multiplication
  - $C = A \times B$
- Iterative matrix-matrix multiplication for DNN
  - $C_{l+1} = h(A_l \times B_l + b)$
- For Sparse neural networks, the primitive is
  - **SpMM** (Sparse Matrix-matrix multiplication)



#### State-of-the-art Comparison: Deep Learning

| System     | Computing<br>Model | Platform                              | Parallelism<br>Model                                 | Computation & Communication  | Matrix<br>Compression | Authors                      |
|------------|--------------------|---------------------------------------|------------------------------------------------------|------------------------------|-----------------------|------------------------------|
| TensorFlow | Linear Algebra     | Commodity/<br>HPC/ <mark>Cloud</mark> | Data parallelism<br>(Keras + CPU/GPU/TPU)            | Horovod                      | Dense                 | 2015 – present,<br>Google    |
| PyTorch    | Linear Algebra     | Commodity/ HPC                        | Data parallelism<br>(MPI/ Gloo + OpenMP/<br>CUDA)    | Horovod                      | Dense                 | 2016 – present,<br>Facebook  |
| MXNet      | Linear Algebra     | Commodity/ HPC                        | Data parallelism<br>(MPI4Py/ Gloo +<br>OpenMP/ CUDA) | Horovod/<br>TCP/IP socket    | Dense                 | 2020 – present,<br>Amazon    |
| DeepSpeed  | Linear Algebra     | Commodity/<br>HPC/ Cloud              | Data parallelism<br>(MPI/ NCCL + X/ CUDA)            | Communication<br>Overlapping | Sparse                | 2019 – present,<br>Microsoft |

• Deep Learning frameworks are still evolving ...



#### Scalability

|             |                                                       |                                                      | <ul><li>(1) A distributed sparse data<br/>structure &amp; algorithm</li></ul> |
|-------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|
| Distributed | GraphTap, Cluster 2019 (1)<br>Graphite, VLDB 2020 (2) | DistSpDNN, HPEC 2020 (3)<br>DistSpDNN, HPEC 2020 (4) | (2) A new parallelism model suitable for comp./comm<br>intensive analytics    |
|             |                                                       |                                                      | (3) Hashing for accelerating DNN inference                                    |
| Multicore   | GraphTap, Cluster 2019 (1)                            | SpDNN, HPEC 2019 (3)                                 | (4) A new parallelism for mitigating the straggler effect                     |
|             | <i>SpMV</i> (Graph Analytics)                         | <i>SpMM</i> (Deep Learning)                          | Operator (application)                                                        |



|             | SpMV (Graph Analytics)                        | SpMM (Deep Learning)                         |                          |
|-------------|-----------------------------------------------|----------------------------------------------|--------------------------|
| Multicore   | GraphTap, Cluster 2019                        | SpDNN, HPEC 2019                             | • Operator (application) |
| Distributed | GraphTap, Cluster 2019<br>Graphite, VLDB 2020 | DistSpDNN, HPEC 2020<br>DistSpDNN, HPEC 2020 |                          |

## Compressed Sparse Column (CSC)





#### Doubly Compressed Sparse Column (DCSC)





DCSC SpMV Diagram ( $y = \overline{A} \oplus . \otimes x$ )

X

0

1

2

3

Δ

5

*n* x 1

**DCSC Data Structures** 

#### Triply Compressed Sparse Column (TCSC)

CSC space requirement is n + 2nnz + 1 where
nnz is the number of nonzero entries
+ Sequential column-major access (No indirection for SpMV)
- Length of JA and, x and y vectors equals n



# GraphTap: Distributed SpMSpV<sup>2</sup> Using TCSC for Graph Analytics

- Graph computing model: GAS
  - Gather (input vector), Apply (SpMspV<sup>2</sup>), and Scatter (output vector)
- Scalability: 2D matrix partitioning
  - Tile size translates into computation volume
  - Vector size translates into communication volume
- Compression: TCSC
  - TCSC's less indirections means less computation time
  - TCSC's smaller vectors means less accumulation time
- Communication:
  - TCSC's smaller vectors means less communication time



#### Experiments

| Graph Processing Systems |                        |     |                       |                         |                | Dataset | t        |           |
|--------------------------|------------------------|-----|-----------------------|-------------------------|----------------|---------|----------|-----------|
|                          | System                 | Сс  | Compression Primitive |                         | Graph          | V       | <i>E</i> | Туре      |
| Graphite                 |                        | TCS | 5C                    | SpMSpV <sup>2</sup> GAS | UK'05 (UK5)    | 39.4 M  | 0.93 B   | Web       |
| LA3 (VLD                 | B, 2018)               | DCS | SC                    | SpMV GAS                | IT'04 (IT4)    | 41.2 M  | 1.15 B   | Web       |
| GraphPad (IPDPS, 2016)   |                        | CSC |                       | SpMV GAS                | Twitter (TWT)  | 41.6 M  | 1.46 B   | Social    |
|                          |                        |     |                       |                         | GSH'15 (G15)   | 68.6 M  | 1.8 B    | Web       |
| Nod                      | le Specification (32)  |     | Grap                  | h Applications          | UK'06 (UK6)    | 80.6 M  | 2.48 B   | Web       |
| CPU                      | 28-core @ 2.6 GHZ      |     | PageRank (Pl          | R)                      | UK Union (UKU) | 133 M   | 5.5 B    | Web       |
| Memory                   | 192 GB                 |     | Single Source         | e Shortest Path (SSSP)  | Rmat26 (R26)   | 67.1 M  | 1.07 B   | Synthetic |
| OS                       | Linux                  |     | Breadth First         | : Search (BFS)          | Rmat27 (R27)   | 134 M   | 2.14 B   | Synthetic |
| MPI                      | Intel                  |     | Connected C           | omponent (CC)           | Rmat28 (R28)   | 268 M   | 4.29 B   | Synthetic |
| Network                  | Intel Omni-path Fabric | 2   |                       |                         | Rmat29 (R29)   | 536 M   | 8.58 B   | Synthetic |
|                          | •                      |     |                       |                         | Rmat30 (R30)   | 1.07 B  | 17.1 B   | Synthetic |

#### Experiments: CSC, DCSC, and TCSC Comparison



#### Experiments: GraphTap, GraphPad, and LA3 Comparison (weak scaling)





18

R28



#### MPI+X Parallelism Model vs. the New MPI\*X Parallelism Model

- MPI+X uses process-based partitioning and hence
  - When computing each tile, multiple threads are forked & joined
  - Only MPI processes are the communication endpoints
  - Synchronization points are designed for MPI processes

- MPI\*X uses thread-based partitioning and so
  - Threads stay alive
  - Communication is done by threads (better overlapping)
  - Synchronization is done by threads



20

The Process-based 2D Matrix Partitioning and Placement for scalability (e.g., *p*=4)

- **Processed-based 2D partitioning**: Given *p* processes, a matrix is partitioned into a *p* x *p* grid of tiles
  - Each process **computes** *p* tiles
- **2D cyclic placement (GraphPad, IPDPS 16)**: Given *p* processes,  $\sqrt{p}$  processes are placed in each row/column group
  - Process **communication** is not part of the placement
- **2D Staggered partitioning (LA3, VLDB 18)**: Like 2D cyclic, however, unique processes are placed in diagonal tiles
  - Process communication is democratized by diagonal processes (O(2p)+O(p^2) time)



2D-process-based partitioning



**2D-Cyclic Placement** 



#### MPI+X Parallelism Model for Multicore HPC Systems (e.g., p=4)

- MPI+X parallelism model utilizes
  - MPI to achieve horizontal scaling
    - One MPI process per machine
  - A threading library (X), e.g, OpenMP, or Pthread to achieve **vertical scaling**

 MPI+X uses process-based partitioning & placement



*p* x *p* (4x4)

**MPI+X with Processed-based 2D-Staggered** 

*m* is the number of sub-partitions

## The New Thread-based 2D Matrix Partitioning and Placement for scalability (e.g., *p*=4, *t*=2)

- Thread-based 2D partitioning: Given *p* processes & *t* threads, a matrix is partitioned into a (*p.t*)x(*p.t*) grid of tiles
  - *p.t* global threads
  - Each global thread **computes** *t* tiles



*n*/(p.t)

 $(p.t) \ge (p.t) (8 \ge 8)$ 

2D Thread-based Partitioning

## The New Thread-based 2D Matrix Partitioning and Placement for scalability (e.g., *p*=4, *t*=2)

- Thread-based 2D partitioning: Given *p* processes & *t* threads, a matrix is partitioned into a (*p.t*)x(*p.t*) grid of tiles
  - *p.t* global threads
  - Each global thread **computes** *t* tiles
- New Thread-based 2D Staggered placement (2DT-Staggereed):
  - Thread communication is democratized by diagonal threads (O(2p.t) time)

| A                     |                       |       |                       |                       |                       |                       |                       |
|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $T_0$                 | $T_1$                 | $T_0$ | $T_1$                 | $T_0$                 | $T_1$                 | $T_0$                 | $T_1$                 |
| <i>t</i> <sub>2</sub> | $T_3$                 | $T_2$ | <b>T</b> <sub>3</sub> | <i>†</i> <sub>2</sub> | <b>T</b> <sub>3</sub> | <i>T</i> <sub>2</sub> | <b>T</b> <sub>3</sub> |
| $t_4$                 | $t_{5}$               | $T_4$ | $t_{5}$               | $t_4$                 | $T_5$                 | $T_4$                 | $T_5$                 |
| $t_6$                 | <b>t</b> 77           | $T_6$ | <b>†</b> 7            | $T_6$                 | <b>†</b> 7            | $T_6$                 | $t_7$                 |
| <i>t</i> <sub>2</sub> | $T_{3}$               | $T_2$ | $T_3$                 | $t_2$                 | $T_3$                 | $T_2$                 | $T_3$                 |
| $t_4$                 | $t_{5}$               | $t_4$ | $t_{5}$               | $t_4$                 | $t_{5}$               | $t_4$                 | $t_{5}$               |
| $T_6$                 | <b>†</b> <sub>7</sub> | $T_6$ | <b>†</b> 7            | $T_6$                 | <b>Ť</b> <sub>7</sub> | $T_6$                 | Ť <sub>7</sub>        |
| $T_0$                 | $t_1$                 | $T_0$ | $t_1$                 | $t_0$                 | $T_1$                 | $T_0$                 | $T_1$                 |

 $(p.t) \ge (p.t) (8 \ge 8)$ 

2D Thread-based Placement (Global Thread Ids)

#### The New MPI\*X Parallelism Model (e.g., *p*=4 and *t*=2)

#### • MPI\*X parallelism model utilizes

- Threads to achieve diagonal scaling
  - t global threads are grouped together to form a process
- Global thread ids are combined to form process and local thread assignments
- One MPI process per CPU socket and one thread per core
  - NUMA-aware

|              |                                             |                                             |                                             | 4                                           |                                             |                                             |                                             |
|--------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| $P_0T_0$     | $P_1T_0$                                    | $P_0T_0$                                    | <i>P</i> <sub>1</sub> <i>T</i> <sub>0</sub> | $P_0T_0$                                    | <i>P</i> <sub>1</sub> <i>T</i> <sub>0</sub> | $P_0T_0$                                    | $P_1T_0$                                    |
| $P_2T_0$     | $P_{3}T_{0}$                                | $P_{2}T_{0}$                                | $P_{3}T_{0}$                                | $P_{2}T_{0}$                                | <i>P</i> <sub>3</sub> <i>T</i> <sub>0</sub> | $P_{2}T_{0}$                                | $P_3T_0$                                    |
| $P_0 T_1$    | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> |
| $P_{2}T_{1}$ | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> |
| $P_{2}T_{0}$ | $P_{3}T_{0}$                                | $P_{2}T_{0}$                                | $P_{3}T_{0}$                                | $P_{2}T_{0}$                                | $P_{3}T_{0}$                                | $P_{2}T_{0}$                                | $P_{3}T_{0}$                                |
| $P_{0}T_{1}$ | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>0</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>1</sub> <i>T</i> <sub>1</sub> |
| $P_{2}T_{1}$ | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>2</sub> <i>T</i> <sub>1</sub> | <i>P</i> <sub>3</sub> <i>T</i> <sub>1</sub> |
| $P_0T_0$     | $P_1T_0$                                    | $P_0T_0$                                    | <i>P</i> <sub>1</sub> <i>T</i> <sub>0</sub> | $P_0T_0$                                    | $P_1T_0$                                    | $P_0T_0$                                    | $P_1T_0$                                    |

 $(p.t) \times (p.t) \ (8 \times 8)$ 

2D Thread-based Placement (Local Thread Ids)

#### The **Graphite** HPC Graph Analytics System

#### • MPI\*X

- Thread-based partitioning & placement (O(2*pt*) time versus previous O(*p*^2))
- Diagonal scaling
- TCSC (Triply Compressed Sparse Column) (GraphTap, Cluster 19)

#### NUMA-aware

- Computation (CPU and memory affinity)
- Communication (MPI shared-memory transport)
- Asynchronous computation & communication
  - Broadcasting (log(*p*) time) when possible

#### Experiments

|                        | Graph Processing Systems |           |               |            |             |                         |  |  |
|------------------------|--------------------------|-----------|---------------|------------|-------------|-------------------------|--|--|
| System                 | Parallelism              | Unit      | Partitioning  | NUMA-aware | Compression | Primitive               |  |  |
| Graphite               | MPI*X                    | Threads   | 2DT-Staggered | CPU/Memory | TCSC        | SpMSpV <sup>2</sup> GAS |  |  |
| LA3 (VLDB, 2018)       | MPI+X                    | Processes | 2D-Staggered  | N/A        | DCSC        | SpMV GAS                |  |  |
| GraphPad (IPDPS, 2016) | MPI+X                    | Processes | 2D-Cyclic     | N/A        | CSC         | SpMV GAS                |  |  |
| Gemini (USENIX, 2016)  | MPI+X                    | Processes | 1D-Row        | Memory     | CSC/CSR     | Push/Pull               |  |  |

| Nod     | e Specification (20)   | Graph Applications                 | Datasets       |          |          |           |  |
|---------|------------------------|------------------------------------|----------------|----------|----------|-----------|--|
| CPU     | 28-core @ 2.6 GHZ      | PageRank (PR)                      | Graph          | <i>V</i> | <i>E</i> | Туре      |  |
|         |                        |                                    | UK'05 (UK5)    | 39.4 M   | 0.93 B   | Web       |  |
| Memory  | 192 GB                 | Single Source Shortest Path (SSSP) | IT'04 (IT4)    | 41.2 M   | 1.15 B   | Web       |  |
| OS      | Linux                  | Breadth First Search (BFS)         | Twitter (TWT)  | 41.6 M   | 1.46 B   | Social    |  |
|         |                        |                                    | GSH'15 (G15)   | 68.6 M   | 1.8 B    | Web       |  |
| MPI     | Intel                  | Connected Component (CC)           | UK'06 (UK6)    | 80.6 M   | 2.48 B   | Web       |  |
| Network | Intel Omni-path Fabric |                                    | UK Union (UKU) | 133 M    | 5.5 B    | Web       |  |
|         |                        |                                    | Rmat26 (R26)   | 67.1 M   | 1.07 B   | Synthetic |  |
|         |                        |                                    | Rmat27 (R27)   | 134 M    | 2.14 B   | Synthetic |  |
|         |                        |                                    | Rmat28 (R28)   | 268 M    | 4.29 B   | Synthetic |  |
|         |                        |                                    | Rmat29 (R29)   | 536 M    | 8.58 B   | Synthetic |  |

## Experiments: MPI\*X and MPI+X comparison (scalability)



#### Results (Weak Scaling)



29

#### GraphTap & Graphite vs. State-of-the-art

| System   | Computing<br>Model | Platform  | Parallelism<br>Model | Computation &<br>Communication                           | Matrix<br>Compression            | Authors                      |
|----------|--------------------|-----------|----------------------|----------------------------------------------------------|----------------------------------|------------------------------|
| GraphPad | Linear Algebra     | HPC/Cloud | MPI+OpenMP           |                                                          | DCSC <sup>2</sup>                | 2016, Intel                  |
| Gemini   | Frontier-based     | HPC       | MPI+OpenMP           | NUMA-aware CPU                                           | CSR/CSC<br>( <mark>Dual</mark> ) | 2016,<br>Tsinghua University |
| CombBLAS | Linear Algebra     | HPC       | MPI+OpenMP           |                                                          | DCSC                             | 2018, LBNL                   |
| LA3      | Linear Algebra     | Cloud     | MPI+OpenMP           | Optimized for cloud communication                        | DCSC                             | 2018, CMUQ                   |
| LAGraph  | Graph Theory       | НРС       | OpenMP               |                                                          | CSR                              | 2020, Texas A&M              |
| GraphTap | Linear Algebra     | HPC       | MPI                  |                                                          | CSC/DCSC/<br>TCSC                | 2019, UPitt                  |
| Graphite | Linear Algebra     | HPC       | MPI*X                | Asynchronous Comm.<br>Overlapping of Comm.<br>NUMA-aware | TCSC                             | 2020, UPitt                  |



## Sources of Sparsity in DNNs<sub>1</sub>

A. Input can be sparse

- B. Network can be sparse
  - Being pruned during/after training
  - Following a predefined sparse architecture
    - TensorFlow Model Optimization
  - Propagating weights can create sparsity  $\frac{1}{2}$
  - Due to either input/network sparsity
  - Due to the activation function



Datasets

CIFAR-10 CIFAR-100

NNZ Distribution

Zero

IMDB

Nonzero

Ratio (%) 5<sup>.0</sup>

0

MNIST

Fashion

MNIST



## Multithreaded Single Machine (Sparse) DNN Inference

#### Data Parallelism

- Horizontal 1D-Row partitioning of input (A)
  - *t* input partitions where *t* is the number of threads
- + No synchronization, stragglers, bad L3 utilization



#### Model Parallelism

- Vertical 1D-Column partitioning of network (B)
  - *t* network partitions
- Strict synchronization, + better L1 & L3 utilization
- Each tile is stored using a compressed sparse format



### **Distributed** (Sparse) DNN Inference

- Data \* Data parallelism
  - Horizontal 1D-Row partitioning of input (A)
  - *p.t* input partitions
  - *p* is the number of processes
- Data \* Model Parallelism
  - vertical 1D-Column partitioning of network (B)
  - *p.t* network partitions
- Network is replicated for each process
- No communication is happening among processes



## Neural Network Hashing to Achieve Load Balance & Locality

nput (A

- Hashing mitigates data parallelism stragglers
- Input hashing:
  - Hashes rows of A
  - + Load balance in data parallelism
- Network hashing:
  - Hashes columns of A & rows of B
  - + Better access pattern in model parallelism in favor of the cache
- Input + network hashing:
  - Hashes rows of A
  - Hashes columns of A & rows of B
  - Hashes columns of B
  - + Both above advantages
  - + Pseudo sequential access pattern (log(n))



#### Experiments

|                | Datase                | t (Radix | Net Sparse            | DNN, I | MNIST | )     |
|----------------|-----------------------|----------|-----------------------|--------|-------|-------|
|                | Input                 |          |                       | Netwo  | ork   |       |
| #              | Sizo                  |          | Each La               | yer    | All I | ayers |
| #              | 512e <sub>m x n</sub> | ININZ    | Size <sub>n x n</sub> | NNZ    | L     | NNZ   |
| $A_0$          |                       |          |                       |        | 120   | 3.9M  |
| $A_1$          | 60K x 1K              | 6.3M     | 1K x 1K               | 32K    | 480   | 15.7M |
| $A_2$          |                       |          |                       |        | 1920  | 62.9M |
| $B_0$          |                       |          |                       |        | 120   | 15.7M |
| $B_1$          | 60K x 4K              | 25M      | 4K x 4K               | 131K   | 480   | 62.7M |
| B <sub>2</sub> |                       |          |                       |        | 1920  | 251M  |
| C <sub>0</sub> |                       |          |                       |        | 120   | 62.9M |
| $C_1$          | 60K x 16K             | 99M      | 16K x 16K             | 524K   | 480   | 251M  |
| C <sub>2</sub> |                       |          |                       |        | 1920  | 1B    |
| $D_0$          |                       |          |                       |        | 120   | 251M  |
| $D_1$          | 60K x 65K             | 392M     | 65K x 65K             | 21 M   | 480   | 1B    |
| $D_2$          |                       |          |                       |        | 1920  | 4B    |

| Parallelism/ |             | Right Multiplication | Left Multiplication |
|--------------|-------------|----------------------|---------------------|
| Network      | Intel Omn   | i-path Fabric        |                     |
| MPI          | Intel       |                      |                     |
| OS           | Linux       |                      |                     |
| Memory       | 192 GB      |                      |                     |
| CPU          | 28-core @   | 2.6 GHZ              |                     |
| Nod          | e Specifica | tion (32)            |                     |

| Parallelism/<br>Multiplication | Right Multiplication<br>(CSC) | Left Multiplication<br>(CSR) |
|--------------------------------|-------------------------------|------------------------------|
| Data Parallelism               | Yes                           | Yes                          |
| Model Parallelism              | Yes                           | N/A                          |

### Experiments: Comparison of SpMMs (Single)



Runtime Variation (No Hashing)



L1 & L3 Utilization (Input + DNN Hashing)





Results are for D<sub>2</sub>

#### Experiments: Comparison of SpMMs (Distributed)

Strong Cluster Scaling



Results are for D<sub>2</sub>



#### Motivation: Data Versus Model Parallelism

- Due to imbalance Data parallelism suffers from straggler effect
  - Hashing alleviates the imbalance problem of data parallelism



#### Data-then-model Parallelism

- Switch from data to model parallelism and turning idle threads into additional processing power to mitigate the effect of stragglers
- Lazy load balancing by reusing idle threads
- Less synchronization cost





## Experiments

|                | Datase                | t (Radix | Net Sparse            | DNN, I | MNIST      | )     |
|----------------|-----------------------|----------|-----------------------|--------|------------|-------|
| Input          |                       |          | DNN                   |        |            |       |
| #              | Sizo                  | n NNZ    | Each Layer            |        | All Layers |       |
| #              | # SIZe <sub>mxn</sub> |          | Size <sub>n x n</sub> | NNZ    | L          | NNZ   |
| $A_0$          |                       |          |                       |        | 120        | 3.9M  |
| $A_1$          | 60K x 1K              | 6.3M     | 1K x 1K               | 32K    | 480        | 15.7M |
| $A_2$          |                       |          |                       |        | 1920       | 62.9M |
| B <sub>0</sub> |                       |          |                       |        | 120        | 15.7M |
| $B_1$          | 60K x 4K              | 25M      | 4K x 4K               | 131K   | 480        | 62.7M |
| B <sub>2</sub> |                       |          |                       |        | 1920       | 251M  |
| C <sub>0</sub> |                       |          |                       |        | 120        | 62.9M |
| $C_1$          | 60K x 16K             | 99M      | 16K x 16K             | 524K   | 480        | 251M  |
| C <sub>2</sub> |                       |          |                       |        | 1920       | 1B    |
| $D_0$          |                       |          |                       |        | 120        | 251M  |
| $D_1$          | 60K x 65K             | 392M     | 65K x 65K             | 21 M   | 480        | 1B    |
| $D_2$          |                       |          |                       |        | 1920       | 4B    |

| Node Specification (16)                                  |                                                                                                             |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| CPU                                                      | 28-core @ 2.6 GHZ                                                                                           |  |  |  |
| Memory                                                   | 192 GB                                                                                                      |  |  |  |
| OS                                                       | Linux                                                                                                       |  |  |  |
| MPI                                                      | Intel                                                                                                       |  |  |  |
| Network                                                  | Intel Omni-path Fabric                                                                                      |  |  |  |
| Parallelisms                                             |                                                                                                             |  |  |  |
|                                                          | Parallelisms                                                                                                |  |  |  |
| Data Para                                                | Parallelisms<br>allelism                                                                                    |  |  |  |
| Data Para<br>Model Pa                                    | Parallelisms<br>allelism<br>arallelism                                                                      |  |  |  |
| Data Para<br>Model Pa<br>Data-the                        | Parallelisms<br>allelism<br>arallelism<br>n-model Parallelism                                               |  |  |  |
| Data Para<br>Model Pa<br>Data-the<br>Manager             | Parallelisms<br>allelism<br>arallelism<br>n-model Parallelism<br>r-worker Parallelism                       |  |  |  |
| Data Para<br>Model Pa<br>Data-the<br>Manager<br>Work-ste | Parallelisms<br>allelism<br>arallelism<br>n-model Parallelism<br>r-worker Parallelism<br>ealing Parallelism |  |  |  |

#### Experiments: Data-then-model Parallelism Thread Scheduling Algorithms

#### • Locking Mechanism Runtime

- Threads are either
  - Worker (active) or helper (newly idle)
- An idle thread enlists into an idle queue
- A working thread probes the idle queue
  - Helper threads get recruited by a working one

#### • Advantages

- + Overloadable with scheduling strategies
  - Earliest first, slower first, and faster first
- + Fully decentralized and asynchronous
- + Minimal lock contention
  - condition variables + locks
- + Elastic: adding/removing threads on the fly
  - zero data movement



#### Scalability Experiment



Weak Scaling







## SpDNN & DistSpDNN vs. State-of-the-art

| System     | Computing<br>Model | Platform                              | Parallelism<br>Model                                 | Computation & Communication            | Matrix<br>Compression  | Authors                      |
|------------|--------------------|---------------------------------------|------------------------------------------------------|----------------------------------------|------------------------|------------------------------|
| TensorFlow | Linear Algebra     | Commodity/<br>HPC/ <mark>Cloud</mark> | Data parallelism<br>(Keras + CPU/GPU/TPU)            | Horovod                                | Dense                  | 2015 – present,<br>Google    |
| PyTorch    | Linear Algebra     | Commodity/ HPC                        | Data parallelism<br>(MPI/ Gloo + OpenMP/<br>CUDA)    | Horovod                                | Dense                  | 2016 – present,<br>Facebook  |
| MXNet      | Linear Algebra     | Commodity/ HPC                        | Data parallelism<br>(MPI4Py/ Gloo +<br>OpenMP/ CUDA) | Horovod/<br>TCP/IP socket              | Dense                  | 2020 – present,<br>Amazon    |
| DeepSpeed  | Linear Algebra     | Commodity/<br>HPC/ Cloud              | Data parallelism<br>(MPI/ NCCL + X/ CUDA)            | Communication overlapping              | Sparse                 | 2019 – present,<br>Microsoft |
| SpDNN      | Linear Algebra     | Multicore                             | Model (OpenMP)                                       |                                        | Sparse                 | 2019, UPitt                  |
| DistSpDNN  | Linear Algebra     | HPC                                   | Data-then-model<br>(MPI*OpenMP)                      | NUMA-aware<br>Memory<br>re(allocation) | Sparse,<br>2-step SpMM | 2020, UPitt                  |

## Summary & Conclusion (1)

- Sparse Matrix Vector (SpMV)
  - **TCSC** that reduces time, space, and communication complexities (GraphTap, Cluster 2019)
    - Co-compression reduces the communication volume
  - MPI\*X that deems threads as basic unit of computation, computation, and synchronization (Graphite, VLDB 2020)
    - Better scalability requires laying out the computation/communication path beforehand
- Sparse Matrix Matrix Multiplication (SpMM)
  - Neural network hashing for alleviating the load imbalance and offering cache locality (DistSpDNN, HPEC 2020)
    - Proper hashing can offer super-linear speedup (log(n) time)
  - Data-then-model parallelism for mitigating the straggler effect (DistSpDNN, HPEC 2020)
    - Sparse computations require new parallelism that takes account of the runtime imbalance

#### Summary & Conclusion (2)



Implementations are available at <a href="https://github.com/hmofrad">https://github.com/hmofrad</a>

Acknowledgment!

Questions?