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Motivation – Big Data

3

Big Data is a Big Business
Healthcare, government, IT

Big data analytics revenue 2015 – 2022 [1]
[1] https://www.pcmag.com/news/368958/the-big-data-market-is-set-to-skyrocket-by-2022
[2] https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
[3] https://buffer.com/library/social-media-sites
[4] https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
[5] https://www.reuters.com/article/us-uber-ipo-lyft-factbox/factbox-how-uber-and-lyft-compare-on-key-financial-metrics-idUSKCN1RO006

Relational data is dominating the raw Big Data
The web, social networks, Location services

Online shopping is becoming a norm. Amazon has 119.9 M 
items (as of 2019) [2]
Social Media is the way to engage people [3]. Facebook has 
2.23 B monthly active users (MAUs)
Location services are becoming pervasive. Google Map has 
154.4 M MAUs (as of 2018) [4], and Uber has 91 M MAUs 
(as of 2019) [5]

~300B

https://www.pcmag.com/news/368958/the-big-data-market-is-set-to-skyrocket-by-2022
https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
https://buffer.com/library/social-media-sites
https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
https://www.reuters.com/article/us-uber-ipo-lyft-factbox/factbox-how-uber-and-lyft-compare-on-key-financial-metrics-idUSKCN1RO006


Motivation – Big Data Graph Analytics 

• Structural and time relationships are scattered all over data produced by todays 
businesses 

• Graphs as mathematical structure can be used to model these structures. 
Example application of graph analytics: 

• A Big portion of Big Data is structured data which can be represented by Graphs, 
e.g., social networks and location services.
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Background - Duality Between Graphs and Sparse 
Matrices
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Graph Theory Linear Algebra

Representation Graph Adjacency Matrix

Data structure Adjacency list Sparse matrix compression

Primitive Fan-in/ Fan-out operations Sparse Matrix – Vector (SpMV)

Scalability Graph partitioning Sparse matrix partitioning
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Sparse Matrix – Dense Vector (SpMV) 
Primitive
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Compressed Sparse Column
(CSC)
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CSC SpMV Diagram (y = A ⊕ .⊗ x) CSC Data Structures

The column (or row ) compressed 
sparse formats store and traverse a 
2D matrix using a set of 1D arrays. 
Compressed Sparse Column (CSC) is 
the vanilla compressions (Matlab & 
SciPy).

CSC space requirement is n + 2nnz + 1 where 
nnz is the number of nonzero entries
+ Sequential column-major access (No 
indirection for SpMV)
- Length of JA and, x and y vectors equals n



Doubly Compressed Sparse 
Column (DCSC)
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x
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Doubly Compressed Sparse Column 
(DCSC) is a flavor that removes 
nonzero columns (PETSc &

CombBLAS).

CSC space requirement is n + 2nnz + 1 where 
nnz is the number of nonzero entries
+ Sequential column-major access (No 
indirection for SpMV)
- Length of JA and, x and y vectors equals n

DCSC Space requirement is 2nzc + 2nnz + 1 
where nzc is the number of nonzero columns
+ One indirection for SpMV (n→ nzc)
+ Length of JA equals nzc
- Length of x and y vectors equals n



Triply Compressed Sparse 
Column (TCSC)
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CSC space requirement is n + 2nnz + 1 where 
nnz is the number of nonzero entries
+ Sequential column-major access (No 
indirection for SpMV)
- Length of JA and, x and y vectors equals n

TCSC Space requirement is 2nzc+ nzr+ 2nnz+1 
where nzr is the number of nonzero rows
+ No indirection for SpMSpV2

+ Length of JA equals nzc
+ Length of x and y vectors equals nzc and nzr

Conventional formats compress the matrix independent of the vectors. 
Triply Compressed Sparse Column (TCSC) is a new flavor that removes both 
nonzero columns and rows and co-compresses the matrix and vectors
TCSC runs Sparse Matrix – Sparse input and output Vectors (SpMSpV2)

DCSC Space requirement is 2nzc + 2nnz + 1 
where nzc is the number of nonzero columns
+ One indirection for SpMV (n→ nzc)
+ Length of JA equals nzc
- Length of x and y vectors equals n



Comparison of Space Requirements 

• Simpler forms of Space requirements*:
• CSC SpMV: 3n

• DCSC SpMV: 2n + 2(n – z) = 4n – 2z

• TCSC SpMSpV2: 3(n – z) + 2(n – z) = 5n – 5z

• Observation: If more than 40% of rows/columns (z = 0.4 n) are empty 
TCSC can save space.

*Term 2nnz + 1 can be eliminated from all space formulas , and nzr ≈ nz and nz = n – z 12
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Distributed 
SpMV

vs
SpMSpV2
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Communication Computation

✓Matrix size translates into computation
✓Compact loops and more indirections

increases the computation time
✓ (especially for synthetic graphs)

SpMV is a 
compute-intensive

&
memory-intensive 

primitive.

In a distributed 
setting:

✓Vector sizes translates into communication
✓ Larger vectors increases the 

communication time
✓ (especially for real-world graphs)
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GraphTap: Distributed Graph Analytics using 
Triply Compressed Sparse Column (TCSC)

• GraphTap is a new distributed graph analytics system
• It uses matrix partitioning to break a 2D matrix into square tiles

• It uses process placement to distribute tiles among processes (machines)

15

• GraphTap uses sparse matrix compression to store each tile
• It incorporates TCSC as its core compression format.

• GraphTap uses a variant of GAS (Gather, scatter, and Apply) graph 
computing model that can be overload with user-defined code. 
• Scatter-gather, combine, and apply computing model.



Matrix Partitioning and Process Placement for 
Scalability
• 2D Partitioning: Given p processes create a p x p grid of tiles

• Process Placement: 2D-Staggered is used for process placement (2D-
Cyclic  + unique process at diagonal tiles) 

• Leaders are diagonal tiles and followers are non-diagonal tiles

• Leaders are owners of the corresponding row/column group of tiles
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Computing Model

• Scatter-gather
• Scatter: Leaders construct and send new ҧ𝑥

segments

• Gather: Followers receive the new ҧ𝑥 segments

• Combine
• All processes execute the SpMSpV2 primitive

• Per row group, leaders receive partial results ത𝑦
from followers and accumulate with their ത𝑦

• Apply 
• Leaders construct and store new values v from ത𝑦
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Distributed

• A cluster of 32 machines each 
with 28-core, 192 GB RAM and 
Intel Omni-path network

• Compared GraphTap (TCSC), 
GraphPad (DCSC), and LA3 
(DCSC) systems

• Graph applications:
• PageRank (PR)
• Single Source Shortest Path (SSSP)
• Breadth First Search (BFS)
• Connected Component (CC)

Experimental Settings to evaluate TCSC

Single Thread

• A machine with 12-core and 512 
GB RAM

• Compared CSC, DCSC, and TCSC

• Graph applications
• PageRank (PR)

19



Datasets

20

Graph |V| |E| Zc Zr T N

UK’05 (UK5) 39.4 M 0.93 B 0 0.12 Web 4

IT’04 (IT4) 41.2 M 1.15 B 0 0.13 Web 4

Twitter (TWT) 41.6 M 1.46 B 0.09 0.14 Soc 8

GSH’15 (G15) 68.6 M 1.8 B 0 0.19 Web 8

UK’06 (UK6) 80.6 M 2.48 B 0.01 0.14 Web 16

UK Union (UKU) 133 M 5.5 B 0.05 0.09 Web 24

Rmat26 (R6) 67.1 M 1.07 B 0.55 0.72 Syn 4

Rmat27 (R27) 134 M 2.14 B 0.57 0.73 Syn 8

Rmat28 (R28) 268 M 4.29 B 0.59 0.74 Syn 16

Rmat29 (R29) 536 M 8.58 B 0.61 0.75 Syn 24

Rmat30 (R30) 1.07 B 17.1 B 0.62 0.76 Syn 32

Real-world datasets 
1 – 5.5 B

Synthetic datasets  
1 – 17 B

Number of machines 4 
– 32 machines
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Results – Single Thread PR 

• Speedup
• TCSC has 2.2 – 11 x speedup compared to CSC and DCSC

• No indirections avoid polluting L1 cache

• Smaller vectors fit in L2 cache

• SpMSpV2 primitive is cache friendly

• TCSC is space efficient
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Results – Single Thread PR 

• Space
• TCSC requires 45 - 75% less space 

compared to CSC and 15 - 25% 
compared to DCSC

• Smaller vectors

• Cache misses
• TCSC has 20 - 40% less cache misses 

compared to CSC and DCSC.

• Less indirections

22

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

C
ac

h
e 

m
is

se
s

CSC DCSC TCSC

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ac

e

CSC DCSC TCSC



Results – Distributed PR
(GraphTap)
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• Speedup
• TCSC is up to 5.7x faster than CSC & DCSC

• Co-compressing matrix & vectors

• TCSC is more scalable in process 
scalability test (16 processes per 
machine on Rmat29 with 2 → 32 
#machines on Rmat29)
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Results – GraphTap Versus GraphPad & LA3

• GraphTap is more 
cache friendly than 
GraphPad and LA3 
because of TCSC 
SpMSpV2 primitive

• GraphTap is more 
scalable than 
GraphPad and LA3 
because, TCSC has 
less communication 
volume
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Summary & Conclusion

• We proposed a co-compression technique called Triply Compressed Sparse 
Column (TCSC) which compresses matrix and vectors cooperatively and 
runs atop Sparse Matrix – Sparse input and output Vectors (SpMSpV2) 
primitive.

• Compared to CSC and DCSC, TCSC is:
• more space efficient because it inherently compresses vectors1

• cache friendly because it has less indirections
• faster because it offers an efficient SpMSpV2 primitive

• GraphTap (our new distributed graph analytics ) outperforms GraphPad 
and LA3
• TCSC performs significantly better compared to CSC and DCSC due to its computation 

and communication efficiencies. 

1. Often, compressed vectors are shown using pairs of (index, value) or bitvector accompanying with a full-length value vector 25



26

Want to know more about me! Checkout my homepage
http://cs.pitt.edu/~moh18

http://cs.pitt.edu/~moh18

