

Efficient Distributed Graph Analytics using Triply Compressed Sparse Format

by Mohammad Hasanzadeh Mofrad, Rami Melhem (University of Pittsburgh) Yousuf Ahmad and Mohammad Hammoud (Carnegie Mellon University Qatar)

> Date Wednesday, September 25, 2019

Motivation

- Background
- Sparse Compression Formats
- GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)
- Results

Motivation – Big Data

Big Data is a Big Business Healthcare, government, IT

Big data analytics revenue 2015 – 2022 [1]

- [1] <u>https://www.pcmag.com/news/368958/the-big-data-market-is-set-to-skyrocket-by-2022</u>
- [2] https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
- [3] https://buffer.com/library/social-media-sites
- [4] https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/

[5] https://www.reuters.com/article/us-uber-ipo-lyft-factbox/factbox-how-uber-and-lyft-compare-on-key-financial-metrics-idUSKCN1R0006

Relational data is dominating the raw Big Data The web, social networks, Location services

Online shopping is becoming a **norm**. Amazon has 119.9 M items (as of 2019) [2] **Social Media** is the way to engage people [3] **Facebook** has

Social Media is the way to engage people [3]. Facebook has 2.23 B monthly active users (MAUs)

Location services are becoming pervasive. Google Map has 154.4 M MAUs (as of 2018) [4], and Uber has 91 M MAUs (as of 2019) [5]

Motivation – Big Data Graph Analytics

- Structural and time relationships are scattered all over data produced by todays businesses
- **Graphs** as mathematical structure can be used to model these structures. Example **application** of graph analytics:
- A Big portion of Big Data is structured data which can be represented by Graphs, e.g., social networks and location services.

- Motivation
- Background
- Sparse Compression Formats
- GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)
- Results

Background - Duality Between Graphs and Sparse Matrices

	Graph Theory			L	Linear Algebra									
Representation	n Graph A Adjacency list S		Adjacency Matrix											
Data structure			S	Sparse matrix compression										
Primitive	Fan-in/ Fan-out operations		S	Sparse Matrix – Vector (SpMV)										
Scalability	Graph partitioning			S	Sparse matrix partitioning									
0.3 5	Src Dst	Wgt	0	1	2 3	8 4	5		0	1	2	3	4	ļ
0.4	1 1 1 3		1	.1		2.4				.1			.9	
0.8	2 3 2 4	0.4	2			3.5		2 \2		.2	.3			_
0.9	4 1 5 1	0.9 0.3	4	.9				4		.4	.5			
0.5	5 4	0.8	5	.3		.8] 5						

Sparse Matrix – Dense Vector (SpMV) Primitive

 \oplus

Add op SpMV $y = A \oplus . \otimes x$ Empty entry Empty row or col Empty row & col

Nonzero entry

 $y = A \oplus . \otimes x$

7

- Motivation
- Background
- Sparse Compression Formats
- GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)
- Results

Compressed Sparse Column (CSC)

CSC space requirement is n + 2nnz + 1 where nnz is the number of nonzero entries + Sequential column-major access (No indirection for SpMV)
Length of JA and, x and y vectors equals n

CSC SpMV Diagram ($y = A \oplus . \otimes x$)

CSC Data Structures

Doubly Compressed Sparse Column (DCSC)

CSC space requirement is *n* + 2*nnz* + 1 where nnz is the number of nonzero entries + Sequential column-major access (No indirection for SpMV) - Length of JA and, x and y vectors equals n

DCSC Space requirement is **2***nzc* **+ 2***nnz* **+ 1** where *nzc* is the number of nonzero columns + One indirection for SpMV ($n \rightarrow nzc$) + Length of JA equals nzc - Length of x and y vectors equals n

4

.8

Comparison of Space Requirements

- Simpler forms of Space requirements*:
 - CSC SpMV: 3n
 - DCSC SpMV: 2n + 2(n z) = 4n 2z
 - TCSC SpMSpV²: 3(n-z) + 2(n-z) = 5n 5z

 Observation: If more than 40% of rows/columns (z = 0.4 n) are empty TCSC can save space.

Distributed SpMV vs SpMSpV²

 ✓ Matrix size translates into computation
 ✓ Compact loops and more indirections increases the computation time
 ✓ (especially for synthetic graphs)

SpMV is a compute-intensive & memory-intensive primitive.

- ✓ Vector sizes translates into communication
- Larger vectors increases the communication time
- ✓ (especially for real-world graphs)

In a distributed setting:

- Motivation
- Background
- Sparse Compression Formats
- GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)
- Results

GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)

- GraphTap uses sparse matrix compression to store each tile
 - It incorporates TCSC as its core compression format.
- GraphTap is a new distributed graph analytics system
 - It uses matrix partitioning to break a 2D matrix into square tiles
 - It uses process placement to distribute tiles among processes (machines)
- **GraphTap** uses a variant of GAS (Gather, scatter, and Apply) graph computing model that can be overload with user-defined code.
 - Scatter-gather, combine, and apply computing model.

Matrix Partitioning and Process Placement for Scalability

- 2D Partitioning: Given p processes create a p x p grid of tiles
- Process Placement: 2D-Staggered is used for process placement (2D-Cyclic + unique process at diagonal tiles)
- Leaders are diagonal tiles and followers are non-diagonal tiles
- Leaders are owners of the corresponding row/column group of tiles.

Leade

Computing Model

Scatter-gather

- Scatter: Leaders construct and send new \bar{x} segments
- Gather: Followers receive the new \bar{x} segments

Combine

- All processes execute the SpMSpV² primitive
- Per row group, leaders receive partial results $\hat{\overline{y}}$ from followers and accumulate with their \overline{y}
- Apply
 - Leaders construct and store new values v from \overline{y}

- Motivation
- Background
- Sparse Compression Formats
- GraphTap: Distributed Graph Analytics using Triply Compressed Sparse Column (TCSC)
- Results

Experimental Settings to evaluate TCSC

Single Thread

- A machine with 12-core and 512 GB RAM
- Compared CSC, DCSC, and TCSC
- Graph applications
 - PageRank (PR)

Distributed

- A cluster of 32 machines each with 28-core, 192 GB RAM and Intel Omni-path network
- Compared GraphTap (TCSC), GraphPad (DCSC), and LA3 (DCSC) systems
- Graph applications:
 - PageRank (PR)
 - Single Source Shortest Path (SSSP)
 - Breadth First Search (BFS)
 - Connected Component (CC)

Datasets___

	Graph	<i>V</i>	<i>E</i>	Z _c	Z _r	Т	Ν
	UK'05 (UK5)	39.4 M	0.93 B	0	0.12	Web	4
	IT'04 (IT4)	41.2 M	1.15 B	0	0.13	Web	4
Real-world datasets	Twitter (TWT)	41.6 M	1.46 B	0.09	0.14	Soc	8
I – 5.5 B	GSH'15 (G15)	68.6 M	1.8 B	0	0.19	Web	8
	UK'06 (UK6)	80.6 M	2.48 B	0.01	0.14	Web	16
	UK Union (UKU)	133 M	5.5 B	0.05	0.09	Web	24
	Rmat26 (R6)	67.1 M	1.07 B	0.55	0.72	Syn	4
	Rmat27 (R27)	134 M	2.14 B	0.57	0.73	Syn	8
Synthetic datasets 1 – 17 B	Rmat28 (R28)	268 M	4.29 B	0.59	0.74	Syn	16
	Rmat29 (R29)	536 M	8.58 B	0.61	0.75	Syn	24
	Rmat30 (R30)	1.07 B	17.1 B	0.62	0.76	Syn	32

Results – Single Thread PR

- Speedup
 - TCSC has 2.2 11 x speedup compared to CSC and DCSC
 - No indirections avoid polluting L1 cache
 - Smaller vectors fit in L2 cache
 - SpMSpV² primitive is cache friendly
 - TCSC is space efficient

Results – Single Thread PR

- Space
 - TCSC requires 45 75% less space compared to CSC and 15 - 25% compared to DCSC
 - Smaller vectors
- Cache misses
 - TCSC has 20 40% less cache misses compared to CSC and DCSC.
 - Less indirections

■CSC ■DCSC ■TCSC

Results – Distributed PR (GraphTap)

- Speedup
 - TCSC is up to 5.7x faster than CSC & DCSC $\frac{1}{2}$
 - Co-compressing matrix & vectors

 TCSC is more scalable in process scalability test (16 processes per machine on Rmat29 with 2 → 32 #machines on Rmat29)

Results – GraphTap Versus GraphPad & LA3

- GraphTap is more cache friendly than GraphPad and LA3 because of TCSC SpMSpV² primitive
- GraphTap is more scalable than GraphPad and LA3 because, TCSC has less communication volume

Summary & Conclusion

- We proposed a co-compression technique called Triply Compressed Sparse Column (TCSC) which compresses matrix and vectors cooperatively and runs atop Sparse Matrix – Sparse input and output Vectors (SpMSpV²) primitive.
- Compared to CSC and DCSC, TCSC is:
 - more space efficient because it inherently compresses vectors¹
 - cache friendly because it has less indirections
 - faster because it offers an efficient SpMSpV² primitive
- GraphTap (our new distributed graph analytics) outperforms GraphPad and LA3
 - TCSC performs significantly better compared to CSC and DCSC due to its computation and communication efficiencies.

Thank You!

Want to know more about me! Checkout my homepage <u>http://cs.pitt.edu/~moh18</u>