
Efficient Distributed Graph
Analytics using Triply

Compressed Sparse Format

by
Mohammad Hasanzadeh Mofrad, Rami Melhem

(University of Pittsburgh)
Yousuf Ahmad and Mohammad Hammoud

(Carnegie Mellon University Qatar)

Date
Wednesday, September 25, 2019

Outline

• Motivation

• Background

• Sparse Compression Formats

• GraphTap: Distributed Graph Analytics using Triply Compressed
Sparse Column (TCSC)

• Results

2

Motivation – Big Data

3

Big Data is a Big Business
Healthcare, government, IT

Big data analytics revenue 2015 – 2022 [1]
[1] https://www.pcmag.com/news/368958/the-big-data-market-is-set-to-skyrocket-by-2022
[2] https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
[3] https://buffer.com/library/social-media-sites
[4] https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
[5] https://www.reuters.com/article/us-uber-ipo-lyft-factbox/factbox-how-uber-and-lyft-compare-on-key-financial-metrics-idUSKCN1RO006

Relational data is dominating the raw Big Data
The web, social networks, Location services

Online shopping is becoming a norm. Amazon has 119.9 M
items (as of 2019) [2]
Social Media is the way to engage people [3]. Facebook has
2.23 B monthly active users (MAUs)
Location services are becoming pervasive. Google Map has
154.4 M MAUs (as of 2018) [4], and Uber has 91 M MAUs
(as of 2019) [5]

~300B

https://www.pcmag.com/news/368958/the-big-data-market-is-set-to-skyrocket-by-2022
https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
https://buffer.com/library/social-media-sites
https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
https://www.reuters.com/article/us-uber-ipo-lyft-factbox/factbox-how-uber-and-lyft-compare-on-key-financial-metrics-idUSKCN1RO006

Motivation – Big Data Graph Analytics

• Structural and time relationships are scattered all over data produced by todays
businesses

• Graphs as mathematical structure can be used to model these structures.
Example application of graph analytics:

• A Big portion of Big Data is structured data which can be represented by Graphs,
e.g., social networks and location services.

4

Partitioning SearchClustering Shortest/widest path PageRankConnected component

These applications require distributed solutions

G
ra

p
h

 A
p

p
lic

at
io

n
s

Outline

• Motivation

• Background

• Sparse Compression Formats

• GraphTap: Distributed Graph Analytics using Triply Compressed
Sparse Column (TCSC)

• Results

5

Background - Duality Between Graphs and Sparse
Matrices

6

Graph Theory Linear Algebra

Representation Graph Adjacency Matrix

Data structure Adjacency list Sparse matrix compression

Primitive Fan-in/ Fan-out operations Sparse Matrix – Vector (SpMV)

Scalability Graph partitioning Sparse matrix partitioning

Adjacency List Transposed Adjacency Matrix A

Src Dst Wgt
1
1
1
2
2
4
5
5

1
3
4
3
4
1
1
4

0.1
0.2
0.4
0.3
0.5
0.9
0.3
0.8

0 1 2 3 4 5

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

0 1 2 3 4 5

0

1 .1 .2 .4

2 .3 .5

3

4 .9

5 .3 .8

Adjacency Matrix

1

3

2 4

5

0.1

0.2

0.3

0.3

0.8

0.4

0.9

0.5

Graph G

Sparse Matrix – Dense Vector (SpMV)
Primitive

7

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

2

1

3

5

4

87

6

9

Graph G Adjacency matrix of G, A

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Legend

⊗ Multiply op

⊕ Add op
SpMV y = A ⊕ .⊗ x

Empty entry

Empty row or col

Empty row & col

Nonzero entry

0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

⊗⊕=

Sparse matrix AOutput vector y Input
vector x

SpMV+1

+1

+1

+1

+2
+1

+2

y = A⊕ .⊗ x

Outline

• Motivation

• Background

• Sparse Compression Formats

• GraphTap: Distributed Graph Analytics using Triply Compressed
Sparse Column (TCSC)

• Results

8

Compressed Sparse Column
(CSC)

9

0 1 2 3 4 5

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

A
n x n

0

1

2

3

4

5

⊕=

⊗

x
n x 1

y
n x 1

JA 0 0 3 5 5 6 8

IA 1 3 4 3 4 1 1 4

VA .1 .2 .4 .3 .5 .9 .3 .8

CSC SpMV Diagram (y = A ⊕ .⊗ x) CSC Data Structures

The column (or row) compressed
sparse formats store and traverse a
2D matrix using a set of 1D arrays.
Compressed Sparse Column (CSC) is
the vanilla compressions (Matlab &
SciPy).

CSC space requirement is n + 2nnz + 1 where
nnz is the number of nonzero entries
+ Sequential column-major access (No
indirection for SpMV)
- Length of JA and, x and y vectors equals n

Doubly Compressed Sparse
Column (DCSC)

10

0 1 2 3

0

1 .1 .9 .3

2

3 .2 .3

4 .4 .5 .8

5

ҧ𝐴
n x nzc

0

1

2

3

4

5

⊕=

⊗

y
n x 1

JA 0 3 5 6 8

IA 1 3 4 3 4 1 1 4

VA .1 .2 .4 .3 .5 .9 .3 .8

DCSC SpMV Diagram (y = ҧ𝐴 ⊕ .⊗ x) DCSC Data Structures

JC 1 2 4 5

x
n x 1

Doubly Compressed Sparse Column
(DCSC) is a flavor that removes
nonzero columns (PETSc &

CombBLAS).

CSC space requirement is n + 2nnz + 1 where
nnz is the number of nonzero entries
+ Sequential column-major access (No
indirection for SpMV)
- Length of JA and, x and y vectors equals n

DCSC Space requirement is 2nzc + 2nnz + 1
where nzc is the number of nonzero columns
+ One indirection for SpMV (n→ nzc)
+ Length of JA equals nzc
- Length of x and y vectors equals n

Triply Compressed Sparse
Column (TCSC)

11

0 1 2 3

0 .1 .9 .3

1 .2 .3

2 .4 .5 .8

Ӗ𝐴
nzr x nzc

1

3

4

⊕=

⊗

ҧ𝑥
nzc x 1

ത𝑦
nzr x 1

JA 0 3 5 6 8

IA 0 1 2 1 2 0 0 2

VA .1 .2 .4 .3 .5 .9 .3 .8

TCSC SpMSpV2 Diagram (ത𝑦 = Ӗ𝐴⊕ .⊗ ҧ𝑥) TCSC Data Structures

JC 1 2 4 5

IR 1 3 4

CSC space requirement is n + 2nnz + 1 where
nnz is the number of nonzero entries
+ Sequential column-major access (No
indirection for SpMV)
- Length of JA and, x and y vectors equals n

TCSC Space requirement is 2nzc+ nzr+ 2nnz+1
where nzr is the number of nonzero rows
+ No indirection for SpMSpV2

+ Length of JA equals nzc
+ Length of x and y vectors equals nzc and nzr

Conventional formats compress the matrix independent of the vectors.
Triply Compressed Sparse Column (TCSC) is a new flavor that removes both
nonzero columns and rows and co-compresses the matrix and vectors
TCSC runs Sparse Matrix – Sparse input and output Vectors (SpMSpV2)

DCSC Space requirement is 2nzc + 2nnz + 1
where nzc is the number of nonzero columns
+ One indirection for SpMV (n→ nzc)
+ Length of JA equals nzc
- Length of x and y vectors equals n

Comparison of Space Requirements

• Simpler forms of Space requirements*:
• CSC SpMV: 3n

• DCSC SpMV: 2n + 2(n – z) = 4n – 2z

• TCSC SpMSpV2: 3(n – z) + 2(n – z) = 5n – 5z

• Observation: If more than 40% of rows/columns (z = 0.4 n) are empty
TCSC can save space.

*Term 2nnz + 1 can be eliminated from all space formulas , and nzr ≈ nz and nz = n – z 12

0n

3n

6n

9n

0 0.4n n

Sp
ac

e

Z

CSC SpMV

DCSC SpMV

TCSC SpMSpV2

Distributed
SpMV

vs
SpMSpV2

13

PageRank on Twitter with 1.46B edges

0

20

40

60

80

CSC SpMV DCSC SpMV TCSC SpMSpV2

Ti
m

e
(s

)

Communication Computation

✓Matrix size translates into computation
✓Compact loops and more indirections

increases the computation time
✓ (especially for synthetic graphs)

SpMV is a
compute-intensive

&
memory-intensive

primitive.

In a distributed
setting:

✓Vector sizes translates into communication
✓ Larger vectors increases the

communication time
✓ (especially for real-world graphs)

Outline

• Motivation

• Background

• Sparse Compression Formats

• GraphTap: Distributed Graph Analytics using Triply Compressed
Sparse Column (TCSC)

• Results

14

GraphTap: Distributed Graph Analytics using
Triply Compressed Sparse Column (TCSC)

• GraphTap is a new distributed graph analytics system
• It uses matrix partitioning to break a 2D matrix into square tiles

• It uses process placement to distribute tiles among processes (machines)

15

• GraphTap uses sparse matrix compression to store each tile
• It incorporates TCSC as its core compression format.

• GraphTap uses a variant of GAS (Gather, scatter, and Apply) graph
computing model that can be overload with user-defined code.
• Scatter-gather, combine, and apply computing model.

Matrix Partitioning and Process Placement for
Scalability
• 2D Partitioning: Given p processes create a p x p grid of tiles

• Process Placement: 2D-Staggered is used for process placement (2D-
Cyclic + unique process at diagonal tiles)

• Leaders are diagonal tiles and followers are non-diagonal tiles

• Leaders are owners of the corresponding row/column group of tiles

16

P0 P1 P0 P1

P2 P3 P2 P3

P2 P3 P2 P3

P0 P1 P0 P1

P0

P3

P2

P1

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

s0

s1

s2

s3

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

P0

P1

P2

P3

2D partitioning 2D-Cyclic placement 2D-Staggered placement

Sw
ap

p
ed

Le
ad

e
r

Fo
llo

w
er

Row
group

Column
group

Segment

Computing Model

• Scatter-gather
• Scatter: Leaders construct and send new ҧ𝑥

segments

• Gather: Followers receive the new ҧ𝑥 segments

• Combine
• All processes execute the SpMSpV2 primitive

• Per row group, leaders receive partial results ത𝑦
from followers and accumulate with their ത𝑦

• Apply
• Leaders construct and store new values v from ത𝑦

17

P0 P1 P0 P1

P2 P3 P2 P3

P2 P3 P2 P3

P0 P1 P0 P1

P0

P3

P2

P1

P0 P3 P2 P1ҧ𝑥

Ӗ𝐴ത𝑦

P0

P3

P2

P1

v

⊗

⊕=

ത𝑦 = Ӗ𝐴⊕ .⊗ ҧ𝑥

Outline

• Motivation

• Background

• Sparse Compression Formats

• GraphTap: Distributed Graph Analytics using Triply Compressed
Sparse Column (TCSC)

• Results

18

Distributed

• A cluster of 32 machines each
with 28-core, 192 GB RAM and
Intel Omni-path network

• Compared GraphTap (TCSC),
GraphPad (DCSC), and LA3
(DCSC) systems

• Graph applications:
• PageRank (PR)
• Single Source Shortest Path (SSSP)
• Breadth First Search (BFS)
• Connected Component (CC)

Experimental Settings to evaluate TCSC

Single Thread

• A machine with 12-core and 512
GB RAM

• Compared CSC, DCSC, and TCSC

• Graph applications
• PageRank (PR)

19

Datasets

20

Graph |V| |E| Zc Zr T N

UK’05 (UK5) 39.4 M 0.93 B 0 0.12 Web 4

IT’04 (IT4) 41.2 M 1.15 B 0 0.13 Web 4

Twitter (TWT) 41.6 M 1.46 B 0.09 0.14 Soc 8

GSH’15 (G15) 68.6 M 1.8 B 0 0.19 Web 8

UK’06 (UK6) 80.6 M 2.48 B 0.01 0.14 Web 16

UK Union (UKU) 133 M 5.5 B 0.05 0.09 Web 24

Rmat26 (R6) 67.1 M 1.07 B 0.55 0.72 Syn 4

Rmat27 (R27) 134 M 2.14 B 0.57 0.73 Syn 8

Rmat28 (R28) 268 M 4.29 B 0.59 0.74 Syn 16

Rmat29 (R29) 536 M 8.58 B 0.61 0.75 Syn 24

Rmat30 (R30) 1.07 B 17.1 B 0.62 0.76 Syn 32

Real-world datasets
1 – 5.5 B

Synthetic datasets
1 – 17 B

Number of machines 4
– 32 machines

0

0.5

1

1.5

2

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ee

d
u

p

CSC DCSC TCSC
4.9 10.9

Results – Single Thread PR

• Speedup
• TCSC has 2.2 – 11 x speedup compared to CSC and DCSC

• No indirections avoid polluting L1 cache

• Smaller vectors fit in L2 cache

• SpMSpV2 primitive is cache friendly

• TCSC is space efficient

21

Results – Single Thread PR

• Space
• TCSC requires 45 - 75% less space

compared to CSC and 15 - 25%
compared to DCSC

• Smaller vectors

• Cache misses
• TCSC has 20 - 40% less cache misses

compared to CSC and DCSC.

• Less indirections

22

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

C
ac

h
e

m
is

se
s

CSC DCSC TCSC

0

0.2

0.4

0.6

0.8

1

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ac

e

CSC DCSC TCSC

Results – Distributed PR
(GraphTap)

23

0

1

2

3

4

UK5 IT4 TWT G15 UK6 UKU R26 R27 R28 R29 R30

Sp
ee

d
u

p

CSC DCSC TCSC

0

50

100

150

200

250

300

350

2 4 8 16 32

Ti
m

e
(s

)

#Machines per cluster

CSC DCSC TCSC

• Speedup
• TCSC is up to 5.7x faster than CSC & DCSC

• Co-compressing matrix & vectors

• TCSC is more scalable in process
scalability test (16 processes per
machine on Rmat29 with 2 → 32
#machines on Rmat29)

5.7

Results – GraphTap Versus GraphPad & LA3

• GraphTap is more
cache friendly than
GraphPad and LA3
because of TCSC
SpMSpV2 primitive

• GraphTap is more
scalable than
GraphPad and LA3
because, TCSC has
less communication
volume

24

0

10

20

30

40

50

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

0

1

2

3

4

5

6

7

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

11.9 11.2

0

1

2

3

4

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

0

2

4

6

8

10

12

14

UK5 IT4 TWT G15 R26 R27 R28

Ti
m

e
(s

)

GraphPad LA3 GraphTap

PR SSSP

CCBFS

Up to 7x Up to 3x

Up to 4.5xUp to 3x

Summary & Conclusion

• We proposed a co-compression technique called Triply Compressed Sparse
Column (TCSC) which compresses matrix and vectors cooperatively and
runs atop Sparse Matrix – Sparse input and output Vectors (SpMSpV2)
primitive.

• Compared to CSC and DCSC, TCSC is:
• more space efficient because it inherently compresses vectors1

• cache friendly because it has less indirections
• faster because it offers an efficient SpMSpV2 primitive

• GraphTap (our new distributed graph analytics) outperforms GraphPad
and LA3
• TCSC performs significantly better compared to CSC and DCSC due to its computation

and communication efficiencies.

1. Often, compressed vectors are shown using pairs of (index, value) or bitvector accompanying with a full-length value vector 25

26

Want to know more about me! Checkout my homepage
http://cs.pitt.edu/~moh18

http://cs.pitt.edu/~moh18

