Accelerating Distributed Inference of Sparse Deep Neural Networks via Mitigating the Straggler Effect

Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad and Mohammad Hammoud Github Repository: https://github.com/hmofrad/DistSparseDNN

Carnegie Mellon University Qatar

IEEE HPEC

Dense and Sparse Neural Networks

- Deep Neural Networks (DNNs) are pervasive
 - Speech processing
 - Friend suggestion
 - Autonomous driving
 - Item recommendation

- The core kernel behind inference/training of DNNs is Dense matrix-matrix multiplication
 - $C_{m \times n} = A_{m \times n} \times B_{n \times n}$
- Sparse DNNs are new alternative to dense DNNs with
 - Less time and space complexities
 - Comparable accuracy
- Sparse DNNs core kernel is Sparse Matrix-matrix Multiplication (SpMM)

Multithreaded Single Machine (Sparse) DNN Inference

Data Parallelism

- Horizontal 1D-Row partitioning of input (A)
 - *t* input partitions where *t* is the number of threads
- + No synchronization, stragglers, bad L3 utilization

Model Parallelism

- Vertical 1D-Column partitioning of network (B)
 - t network partitions
- - Strict synchronization, + better L1 and L3 utilization
- Manager-worker (single queue of m*t i.e. m>>t)
- Work-Stealing (t queues of m tiles)
- SpMM algorithm: Two-step right SpMM with CSC

Distributed (Sparse) DNN Inference

Data * Data parallelism

- Horizontal 1D-Row partitioning of input (A)
- *p.t* input partitions
- *p* is the number of processes

Data * Model Parallelism

- vertical 1D-Column partitioning of network (B)
- *p.t* network partitions
- Data * Manager-worker, and Data * Work-stealing
- Network is replicated for each process
- No communication is happening among processes

Data-then-model Parallelism

- Due to imbalance Data parallelism suffers from straggler effect
- Imperfect solution is hashing
- Switch from data to model parallelism and turning idle threads into additional processing power to mitigate the effect of stragglers
- Lazy load balancing by reusing idle threads
- Zero data movement
- No contention
- Less synchronization cost

Experiments

Dataset (RadixNet Sparse DNN, MNIST)					
Input		Network			
Size _{m x n}	NNZ	Each Layer		All Layers	
		Size _{n x n}	NNZ	L	NNZ
60K x 1K	6.3M			120	3.9M
		1K x 1K	32K	480	15.7M
				1920	62.9M
60K x 4K	25M	4K x 4K	131K	120	15.7M
				480	62.7M
				1920	251M
60K x 16K	99M	16K x 16K	524K	120	62.9M
				480	251M
				1920	1B
60K x 65K	392M	65K x 65K	21 M	120	251M
				480	1B
				1920	4B

Node Specification (16)

CPU 28-core @ 2.6 GHZ

Memory 192 GB

OS Linux

MPI Intel

Network Intel Omni-path Fabric

Parallelisms

Data Parallelism

Model Parallelism

Data-then-model Parallelism

Manager-worker Parallelism

Work-stealing Parallelism

Experiments: Data-then-model Parallelism Thread Scheduling Algorithms

Locking Mechanism Runtime

- Threads are either
 - Worker (active) or helper (newly idle)
- An idle thread enlists into an idle queue
- A working thread probes the idle queue
 - Helper threads get recruited by a working one

Advantages

- Overloadable with scheduling strategies
 - Earliest first, slower first, and faster first
- + Fully decentralized and asynchronous
- Minimal lock contention
 - condition variables + locks
- Elastic: adding/removing threads on the fly
 - zero data movement

Experiments: Scalability

Questions?

