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Dense and Sparse Neural Networks

* Deep Neural Networks (DNNs) are pervasive
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* The core kernel behind inference/training of DNNs is Dense matrix-matrix
multiplication
* men=Aman ann
e Sparse DNNs are new alternative to dense DNNs with

* Less time and space complexities
e Comparable accuracy

e Sparse DNNs core kernel is Sparse Matrix-matrix Multiplication (SpMM)



Single Machine (Sparse) DNN

Inference

Data Parallelism
* Horizontal 1D-Row partitioning of input (A)
e tinput partitions where t is the number of threads
 + No synchronization, stragglers, bad L3 utilization

Model Parallelism

e Vertical 1D-Column partitioning of network (B)
* tnetwork partitions
e  Strict synchronization, + better L1 and L3 utilization

* Manager-worker (single queue of m*ti.e. m>>t)
Work-Stealing (t queues of m tiles)

SpMM algorithm: Two-step right SpMM with CSC
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(Sparse) DNN Inference

e Data * Data parallelism

* Horizontal 1D-Row partitioning of input (A)
* p.t input partitions
* pis the number of processes

 Data * Model Parallelism

e vertical 1D-Column partitioning of network (B)
e p.t network partitions

Data * Manager-worker, and Data * Work-stealing

Network is replicated for each process

No communication is happening among processes
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Data-then-model Parallelism

e Switch from data to model

Lazy load balancing by reusing idle

parallelism and turning idle threads
threads into additional » Zero data movement
processing power to mitigate the + No contention
effect of stragglers e Less synchronization cost
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Experiments

Dataset (RadixNet Sparse DNN, MNIST)

Node Specification (16)

CPU 28-core @ 2.6 GHZ
Memory 192 GB

(ON) Linux

MPI Intel

Network Intel Omni-path Fabric

Parallelisms

Input Network
Sze  NNZ Each Layer All Layers
Size,,, NNZ| L \\V4
120 3.9M
60K x 1K 6.3M | 1Kx1K 32K (480 15.7M
1920 62.9M
120 15.7M
60K x4K 25M | 4Kx4K 131K (480 62.7M
1920 251M
120 62.9M
60K x 16K 99M | 16K x 16K 524K |480 251M
1920 1B
120 251M
60K x 65K 392M [ 65K x 65K 21 M (480 1B
1920 4B

Data Parallelism

Model Parallelism
Data-then-model Parallelism
Manager-worker Parallelism

Work-stealing Parallelism



Experiments: Data-then-model Parallelism Thread
Scheduling Algorithms

Advantages

Locking Mechanism Runtime
Overloadable with scheduling strategies

y Threads are either * Earliest first, slower first, and faster first
» Worker (active) or helper (newly idle) Fully decentralized and asynchronous
* An idle thread enlists into an idle queue Minimal lock contention
. : * condition variables + locks
* A working thread probes the idle queue Elastic: adding/removing threads on the fly
* Helper threads get recruited by a working one * zero data movement
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Experiments: Scalability
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Weak Scaling
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Strong Cluster Scaling (392M, 4B)
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