Accelerating Distributed Inference of
Sparse Deep Neural Networks via
Mitigating the Straggler Effect

Mohammad Hasanzadeh Mofrad, Rami Melhem,
Yousuf Ahmad and Mohammad Hammoud
Github Repository:

https://github.com/hmofrad/DistSparseDNN

Dense and Sparse Neural Networks

* Deep Neural Networks (DNNs) are pervasive

L R

* The core kernel behind inference/training of DNNs is Dense matrix-matrix
multiplication
* men=Aman ann
e Sparse DNNs are new alternative to dense DNNs with

* Less time and space complexities
e Comparable accuracy

e Sparse DNNs core kernel is Sparse Matrix-matrix Multiplication (SpMM)

Single Machine (Sparse) DNN

Inference

Data Parallelism
* Horizontal 1D-Row partitioning of input (A)
e tinput partitions where t is the number of threads
 + No synchronization, stragglers, bad L3 utilization

Model Parallelism

e Vertical 1D-Column partitioning of network (B)
* tnetwork partitions
e Strict synchronization, + better L1 and L3 utilization

* Manager-worker (single queue of m*ti.e. m>>t)
Work-Stealing (t queues of m tiles)

SpMM algorithm: Two-step right SpMM with CSC

m/tI

X X
Bynxn
n/t
<>
X Ty T; X%
B

(Sparse) DNN Inference

e Data * Data parallelism

* Horizontal 1D-Row partitioning of input (A)
* p.t input partitions
* pis the number of processes

 Data * Model Parallelism

e vertical 1D-Column partitioning of network (B)
e p.t network partitions

Data * Manager-worker, and Data * Work-stealing

Network is replicated for each process

No communication is happening among processes

m/| (p.l’)]: P,T,
P, X
Pol,
PiT,
P, X
P,T,
m X n input
o
P, P
m/p| P, X TZ Tcl)
P, P,
& : To Ta
m x n input

X ..

n x n layers

X ..

n x n layers

X ..

n x n layers

X ..

n x n layers

4

Data-then-model Parallelism

e Switch from data to model

Lazy load balancing by reusing idle

parallelism and turning idle threads
threads into additional » Zero data movement
processing power to mitigate the + No contention
effect of stragglers e Less synchronization cost
©
(q0)
Q
= Ty X . X x T, o X T
I—
A B, B, , B, Synchronization B,, Synch.
in X . X % X T, . X T,
A BO BL-l BX BL-l
Data parallelism Model parallelism ULE

Data-then-model parallelism

Experiments

Dataset (RadixNet Sparse DNN, MNIST)

Node Specification (16)

CPU 28-core @ 2.6 GHZ
Memory 192 GB

(ON) Linux

MPI Intel

Network Intel Omni-path Fabric

Parallelisms

Input Network
Sze NNZ Each Layer All Layers
Size,,, NNZ| L \\V4
120 3.9M
60K x 1K 6.3M | 1Kx1K 32K (480 15.7M
1920 62.9M
120 15.7M
60K x4K 25M | 4Kx4K 131K (480 62.7M
1920 251M
120 62.9M
60K x 16K 99M | 16K x 16K 524K |480 251M
1920 1B
120 251M
60K x 65K 392M [65K x 65K 21 M (480 1B
1920 4B

Data Parallelism

Model Parallelism
Data-then-model Parallelism
Manager-worker Parallelism

Work-stealing Parallelism

Experiments: Data-then-model Parallelism Thread
Scheduling Algorithms

Advantages

Locking Mechanism Runtime
Overloadable with scheduling strategies

y Threads are either * Earliest first, slower first, and faster first
» Worker (active) or helper (newly idle) Fully decentralized and asynchronous
* An idle thread enlists into an idle queue Minimal lock contention
. : * condition variables + locks
* A working thread probes the idle queue Elastic: adding/removing threads on the fly
* Helper threads get recruited by a working one * zero data movement
28
j’:‘L o B?EZ‘EQ?HS?? ;O:it (unhashed)
LY D/M-Slower First (unhashed)

D/M-Faster First (unhashed)
Data (hashed)

---------- D/M-Earliest First (hashed)
D/M-Slower First (hashed)
D/M-Faster First (hashed)

D/M-EF (H) = 185

#Threads Running Data Parallelism

0

0 100 200 300 400 500 7 600

Results are for a SpDNN with 4B parameters Time (s)

Experiments: Scalability

250

200

[
(%
o

Time (s)

[EY
o
o

50

Weak Scaling

Data*Work-Sharing
Data*Work-Stealing

Data*Model
Data*Data
—e— Data*Data/Model
(@
(6.3M,62.9M), (25M,251M), (98.8M,1B), (392M,4B),
(2) (4) t) (16)

(#Input Nonzeros, #Layers Nonzeros), (#Nodes)

1500

1200

900

Time (s)

600

300

Strong Cluster Scaling (392M, 4B)

Data*Work-Sharing
Data*Work-Stealing

Data*Model
Data*Data
—e— Data*Data/Model
(28), (56), (112), (224), (448),
(1) (2) (4) (8) (16)
(#Cores), (#Nodes)
Strong Data Scaling

Data*Work-Sharing

Data*Work-Stealing

Data*Model

Data*Data

—e— Data*Data/Model
(6.3M,62.9M), (25M,251M), (98.8M,1B), (392Mm,4B),
(16) (16) (16) (16)

(#Input Nonzeros, #Layers Nonzeros), (#Nodes)

