
Analyzing CUDA Workloads Using a 
Detailed GPU Simulator

Mohammad Hasanzadeh Mofrad

University of Pittsburgh

November 14, 2017

1

CS 3580 - Advanced Topics in Parallel 
Computing



Article information

Title: Analyzing CUDA workloads using a detailed GPU simulator

Authors: Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, Tor M. 
Aamodt

Affiliation: University of British Columbia (UBC), Vancouver, Canada

Conference: 2009 IEEE International Symposium on Performance Analysis of 

Systems and Software (ISPASS 2009)

Citation (as of November 2017): 1031

https://scholar.google.com/citations?user=-TSkCDMAAAAJ&hl=en&oi=sra 2



GPGPU-Sim in a nutshell 

• Motivations
• Presenting a novel microarchitecture performance simulator for NVIDIA GPUs 

(GPGPU-Sim1) characterizing following design decisions:
• Interconnect topology of caches

• Memory controller design

• Parallel workload distribution

• Memory request coalescing

• Outcomes
• Performance is more sensitive to interconnect bisection bandwidth rather than latency

• Running fewer number of threads might improve performance by reducing contention

• Our objective in this presentation is 
• Learn what GPGPU-Sim simulates and describe how it works

https://github.com/gpgpu-sim 3



CUDA programming model

• Kernel launch = Grid of blocks of threads

• Kernel <<<# blocks, # threads>>>
• blockDim, threadIdx, blockIdx
• Example thread identifier x = blockDim.x * blockIdx.x + threadIdx.x

• Declarations
• __global__ runs on GPU, callable from CPU
• __device__ only callable from GPU

• Transfer data from CPU (host) to GPU (device)
• malloc for CPUs, and cudaMalloc for GPUs
• Copy input data from host to device 
• cudaMemcpy (Device destination address, Host source address, size, cudaMemcpyHostToDevice)
• Copy the results back from device to host
• cudaMemcpy (Host Destination address, Device source address, size, cudaMemcpyDeviceToHost)
• Free for CPUs, and cudaFree for GPUs

https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
GPGPU-Sim Tutorial (MICRO 2012) 4



CUDA programming model (continue)

• In CUDA programming model, the GPU is threated as a co-processor onto 
which an application is running on a CPU can launch a massively parallel 
kernel. 

• Revisiting the CUDA kernel
• The CUDA kernel is compromised of a grid of threads

• Within a grid, threads are groups into thread blocks

• Within a block threads have access to common fast memory e.g. shared memory or L1 
cache and can perform barrier synchronization

• Each thread is given an unique identifier which can be used to help divide up work 
among the threads. 

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 5



What GPGPU-Sim simulates

• GPGPU-Sim simulates Parallel Thread eXecution (PTX) Instruction Set 
Architecture (ISA) which is a pseudo-assembly language used in NVIDIA’s 
CUDA

• GPGPU-Sim also simulates SASS the Native ISA for NVIDIA GPUs which is 
another kind of low-level assembly language that is native to NVIDIA GPU 
hardware

• GPGPU-Sim uses PTXPlus which can represent both PTX and SASS 
instructions.

https://en.wikipedia.org/wiki/Parallel_Thread_Execution
PTX ISA Application Guide Version 6.0 NVIDIA, 2017-09-xx
A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 6

PTXCUDA program (.cu) nvcc PTXAS Binary executable



GPGPU-Sim timing model

• GPGPU-Sim simulates timing for
• CUDA cores
• Caches
• interconnection network
• Memory

• but not for
• CPU
• PCIe
• Graphics specific hardware like rasterizer

• For each kernel GPGPU-Sim
• Counts the # cycles spent running the kernel
• Excludes PCIe bus latency

• CPU may run concurrently with asynchronous kernels

GPGPU-Sim Tutorial (MICRO 2012) 7

Time

GPU HW

CPU
Async. Kernel Launch

Done

GPU HW
Done

CPU

GPU HW

Sync. Kernel Launch

Done

CPU

Blocking



Comparing thread hierarchy and GPU computing power 
hierarchy
• A CUDA kernel is equal to

• A grid of blocks of threads
• Each thread block can contain up to 1024 threads

• A Maxwell GPU microarchitecture consist of
• Four clusters of 16 Streaming Multiprocessors (SMs)
• Each SM is partitioned into four 32-CUDA cores (Streaming Processors (SPs)) processing blocks 

each with one warp scheduler1

• For example, for an NVIDIA GeForce GTX 980
• The warp size is 32 which is aligned to the number of CUDA cores
• Each SM has 4 * 32 = 128 cores
• Each SM can launch 128 threads in parallel

• In CUDA programming language, each thread block is dispatched on a SM as a unit 
of work. Then, SM warp schedulers schedule and run partitions of 32 threads on 
CUDA cores.

1. “Nvidia geforce gtx 980: Featuring maxwell, the most advanced gpu ever made,” White paper, NVIDIA Corporation, 2014 8



GPGPU-Sim microarchitecture

• A set of shader cores connected to a set 
of memory controllers via an 
interconnection network

• Each shader core represents a CUDA 
core (SM)

• Threads are distributed to shader cores 
at the granularity of thread blocks

• Registers, shared memory space, and 
thread slots are shared per thread block

• Multiple thread blocks can be assigned 
to a single CUDA core, sharing a 
common pipeline 

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 9



GPGPU-Sim microarchitecture (continue)

• A shader core has a SIMD width of 8 and uses a 
24-stage in-order pipeline without forwarding

• Thus, at least 192 (8 * 24) active threads are 
needed to avoid stalling 

• A shader core has 6 logical pipeline stages:
• Fetch, decode, execute, memory1, memory2, 

writeback

• A set of 32 threads constitutes a warp

• All 32 threads in a given warp execute the same 
instruction with different data values over 4 
consecutive clock cycles in all pipelines 

• Immediate post-dominator reconvergence
mechanism is used to handle branch divergence

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 10



Revisiting NVIDIA GeForce GTX 980 (Maxwell) Streaming 
Multiprocessor (SM)
• 4 Graphics Processing Cluster (GPC)1

• 16 Maxwell SM per GPC

• 4 32-CUDA cores processing blocks per 
SM
• 128 CUDA cores per SM 
• 2048 CUDA cores in total

• 4 warp schedulers per SM each capable 
of launching two instructions per cycle.

• The warp size is 32 equal to #cores per 
processing block

• In Maxwell microachitecture SMs both 
have 4 warp schedulers. On each cycle 
each warp scheduler picks an eligible 
warp (aka a warp that is not stalled) 
and issue 1 or 2 independent 
instructions from the warp.2

1. “Nvidia geforce gtx 980: Featuring maxwell, the most advanced gpu ever made,” White paper, NVIDIA Corporation, 2014
2 https://devtalk.nvidia.com/default/topic/743377/cuda-programming-and-performance/understanding-cuda-scheduling/post/4221610/ 11

4 GPC of GTX 980

A single SM



GPGPU-Sim memory unit

• Constant cache: A read-only cache for constant memory
• A warp can access one constant cache location in a single memory unit cycle

• Texture cache: A read-only cache with FIFO retirement 

• Shared memory: A 16 KB low latency highly-banked per-core
• Threads within a block can cooperate via shared memory
• As fast as register files in absence of bank conflicts
• Each bank serves one address per cycle. Multiple accesses to a bank in a single cycle 

causes a bank conflict 

• Global memory: Off-chip DRAM memory. Accesses must go through 
interconnect 
• Global texture memory with a per-core texture cache
• Global constant memory with a per-core constant cache

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009.
GPGPU-Sim Tutorial (MICRO 2012) 12



GPGPU-Sim interconnection network

• The on-chip interconnection network can be designed in 
various ways based on cost and performance.
• Cost is determined by complexity and number of routers as 

well as density and length of wires

• Performance depends on latency, bandwidth, and path 
diversity of the network.

• In order to access the global memory, memory requests 
must be sent via an interconnection network to a 
corresponding memory controller which are physically 
distributed over the chip. 

• The memory controllers are laid out in a 6x6 mesh 
configuration

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 13



GPGPU-Sim thread scheduling

• Thread scheduling is done inside the shader core.

• Every 4 cycles, warps ready for execution are selected by the warp scheduler 
and scheduled in a round robin fashion.

• If a thread inside a warp faces a long latency operation, all threads in the 
warp are taken out of the scheduling pool until the long latency operation is 
over. 

• The ready warps are sent to the pipeline for execution in a round robin order. 

• Many threads running on each shader core thus allow a shader core to 
tolerate long latency operations without reducing throughput.

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 14



GPGPU-Sim thread block distribution

• Interleaving the execution of warps allows GPUs to tolerate memory access 
latencies.

• Running multiple smaller thread blocks on a shader core is better than using a 
single larger thread block:

1. Threads from one thread block can make progress while threads from another thread block 
are waiting at a barrier synchronization point.

2. Larger thread blocks require more register and increase shared memory usage.
3. Running more threads blocks on a shader core provides additional memory latency 

tolerance.

• However, If a memory-intensive kernel completely fills up all thread block slots, it 
may increase contention in the interconnection network.

• Breadth-first strategy is used to distribute thread blocks among shader cores,  
selecting a core with the minimum number of running thread blocks.

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 15



GPGPU-Sim memory access coalescing (intra-warp)

• Objective: Combining memory accesses made by threads in a warp into fewer 
transactions 

• Example: If threads in a warp are accessing consecutive 4-byte sized locations 
in memory
• Send one 128–byte request to DRAM (coalescing)

• Instead of 32 4-byte requests 

• This reduces the number of transactions between CUDA cores and DRAM
• Less work for interconnect, memory partition, and DRAM.

GPGPU-Sim Tutorial (MICRO 2012) 16

Warp

One 128-Byte 
Transaction

= 4-bytes in memory



GPGPU-Sim read memory access coalescing (inter-warp)

• Cache accesses are tracked using the Miss Status Holding Registers (MSHR)

• MSHRs keep track of outstanding memory requests, merges simultaneous 
requests for the same cache block 

• In GPGPU-Sim each cache has its own set of MSHR entries
• Each MSHR entry contains one or more request to the same memory address

• The number of MSHR entries are configurable

• Memory unit stalls if cache runs out of MSHR entries

• The inter-warp memory coalescing consolidates read memory requests from 
later warps that require access to data for which a memory request is already 
in progress due to another warp running on the same shader core.

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 17



GPGPU-Sim caching

• While coalescing memory requests captures spatial locality among threads, 
memory bandwidth requirements may be further reduced with caching if an 
application contains temporal locality or spatial locality within the access 
pattern of individual threads. 

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 18



Software dependencies 

• Linux machine (Preferably Ubuntu 11.04 64 bit )

• CUDA toolkit 4.2, and NVIDIA GPU Computing SDK 4.2

• gcc 4.{4,5}.x, g++ 4.{4,5}.x, and gfortran 4.{4,5}.x

• Development tools (especially build-essential package), OpenMPI, Boost 
library, and etc.

• Can be cloned from:
• git clone git://dev.ece.ubc.ca/gpgpu-sim

• Git clone https://github.com/gpgpu-sim/gpgpu-sim_distribution

GPGPU-Sim Tutorial (MICRO 2012)
http://cs922.blogspot.com/2014/01/gpgpu-sim-is-tool-developed-for.html 19



Simulation setup for baseline GPU configuration

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 20

Number of shader cores 28

Warp Size 32

SIMD pipeline width 8

# of Threads/CTAs/Registers per  Core 1024 / 8 /16384

Shared Memory / Core 16KB (16 banks) 

Constant Cache / Core 8KB (2-way set assoc. 64B lines LRU)

Texture Cache / Core 64KB (2-way set assoc. 64B lines LRU)

Memory Channels 8

BW / Memory Module 8 Byte/Cycle

DRAM request queue size 32

Memory Controller Out of order (FR-FCFS)

Branch Divergence handling method Immediate Post Dominator

Warp Scheduling Policy Round Robin among ready Warps



Benchmarks

• GPGPU-Sim is a academic cycle-level simulator for modeling a modern GPU 
running non-graphics workloads

• 14 benchmarks written in CUDA. Needed software tuning or changes in 
hardware design

• Less than 50x reported speedups

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 21

Advanced 
Encryption 
Standard 
(AES) 

Breadth 
First Search 
(BFS)

Coulombic
Potential
(CP)

gpuDG (DG) 3D Laplace 
Solver (LPS)

LIBOR 
Monte Carlo 
(LIB)

MUMmerG
PU (MUM)

Neural 
Network 
Digit
Recognition
(NN)

N-Queens 
Solver 
(NQU)

Ray Tracing 
(RAY)

StoreGPU
(STO)

Weather 
Prediction 
(WP)

Black-
Scholes 
option 
pricing (BLK)

Fast Walsh 
Transform 
(FWT)



Benchmarks (continue)

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 22

Benchmark Abbr. Claimed Speedup

AES Cryptography AES 12x

Breadth First Search BFS 2x-3x

Coulombic Potential CP 647x

gpuDG DG 50x

3D Laplace Solver LPS 50x

LIBOR Monte Carlo LIB 50x

MUMmerGPU MUM 3.5x-10x

Neural Network NN 10x

N-Queens Solver NQU 2.5x

Ray Tracing RAY 16x

StoreGPU STO 9x

Weather Prediction WP 20x 



Comparison between GPGPU-Sim and NVIDIA GeForce 
8600 GTS
• Maximum GPGU-Sim IPC = 224 (28 cores * 8-wide pipeline)

• NVIDIA GeForce 8600 GTS IPC =
• # PTX instructions / (Runtime * Core frequency)

• 0.899 Correlation coefficient 

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 23



Interconnection network latency sensitivity

• Results for various mesh network latencies, adding extra pipeline latency of 4, 
8, or 16 cycles 

• Slight increase in interconnection latency has no severe effect of overall 
performance
• No need to overdesign interconnection to decrease latency

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 24



Interconnection network bandwidth sensitivity

• Results for modifying mesh interconnect bandwidth by varying the channel 
bandwidth from 8 bytes to 64 bytes.

• Low Bandwidth decreases performance a lot (8B)

• Overall, performance is more sensitive to interconnect bandwidth than to latency

• In other words, restricting the channel bandwidth causes the interconnect to 
become a bottleneck

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 25



Effects of varying number of thread blocks

• Results for exploring the effects of varying the resources that limit the number of threads 
including: the amount of registers, shared memory and threads.

• These limitations limit the number of thread blocks can run concurrently on a core. 

• Most benchmarks do not benefit substantially 

• Some benchmarks even perform better with fewer concurrent threads (e.g. AES)
• Less contention in DRAM

• Given the widely-varying workload-dependent behavior, always scheduling the maximal 
number of thread blocks supported by a core is not always the best scheduling policy. 

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 26



Summary

• GPGPU-Sim is a GPU simulator capable of simulating CUDA workloads.

• Various aspects of the GPGPU-Sim are studied including:
• Branch divergence

• Interconnect topology 

• Interconnect latency and bandwidth

• DRAM utilization and efficiency

• Cache effect

• Thread block size

• Memory request coalescing 

• Running fewer number of thread blocks can improve performance (less DRAM 
contention)

A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU simulator.“ IEEE ISPASS 2009. 27



Key references

• A. Bakhoda, et al. “Analyzing CUDA workloads using a detailed GPU 
simulator.“ IEEE ISPASS 2009.

• http://www.gpgpu-sim.org/micro2012-tutorial/

28


