CS 2310 - Multimedia Software Engineering

Deep Reinforcement Learning

Mohammad H. Mofrad University of Pittsburgh Thursday, October 27, 2016

hasanzadeh@cs.pitt.edu

Preface

- Machine Learning
- Reinforcement Learning
- Artificial Neural Network
- Deep Learning
- Deep Reinforcement Learning

Machine Learning

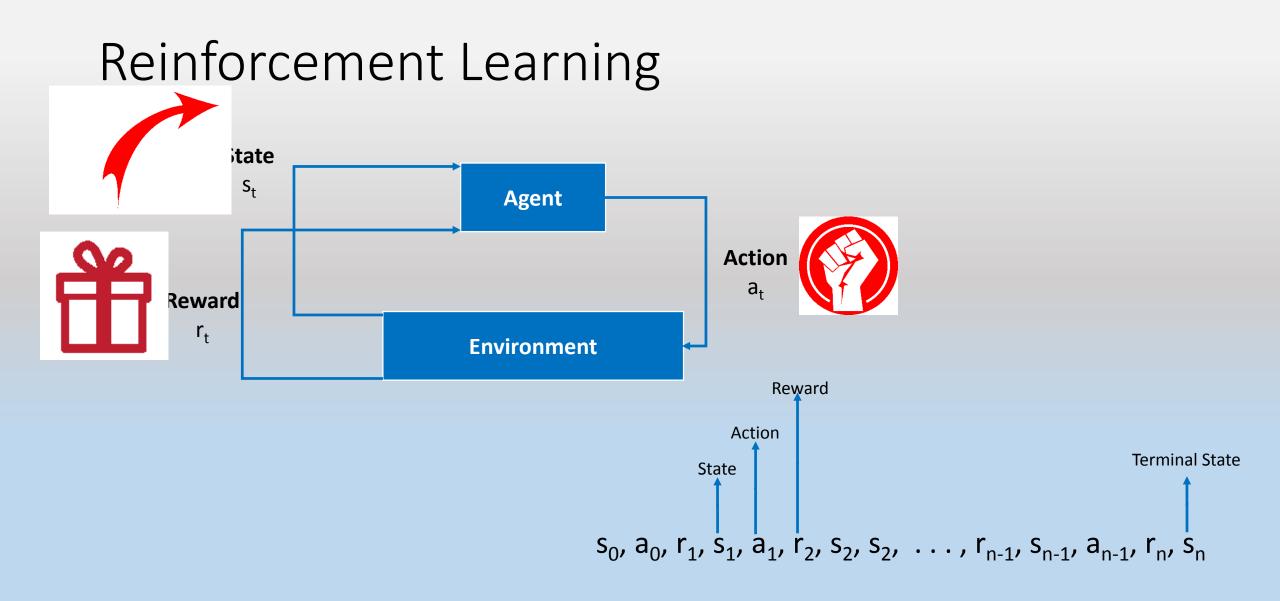
• ML in a Nutshell

- Supervised Learning
 - Discrete space:
 - Continuous space
- Reinforcement Learning
- Unsupervised Learning
 - Discrete space:
 - Continuous space:

X (classification) Y X (regression) Y

y = f(x)

X (clustering)Y X (dimensionality reduction) Y



Q – Learning

- Select an action
- Observe the reward
- Update the Q table

Old state

$$Q(s_t, \alpha_t) = Q(s_t, \alpha_t) + \alpha \left(r_{t+1} \gamma \left(\max_{\alpha} Q(s_{t+1}, \alpha) \right) - Q(s_t, \alpha_t) \right)$$

Discount

factor

Learned value

Estimate of optimal

new state

Reward

Learning

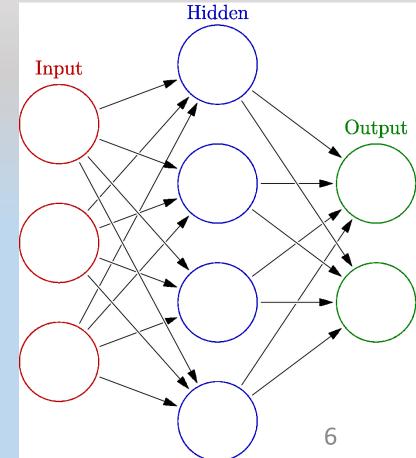
rate

New state

Old state

Artificial Neural Network (ANN)

- A system of loosely coupled neural units modeling the brain neurons connected by axons.
- Mathematical model: f: X -> Y
- Network structure:
 - f is the Neuron's network function: $f(x) = K(\sum_{i} w_{i}g_{i}(x))$
 - $x = (x_1, x_2, ..., x_n)$ is the input vector
 - $w = (w_1, w_2, ..., w_n)$ is the weight vector
 - $g = (g_1, g_2, ..., g_n)$ is the composition of other functions
 - K is the activation function
- Learning: ANNs learn using a cost function
 - C = E[(f(x) y)²] like mean squared error
 - $C' = 1/N \sum_{i} (f(x_i) y_i)^2$ where N is the number of samples



Deep Learning

- A class ANN which is a combination of many layers of nonlinear processing units
- + Feature extraction
- + Classification
- + pattern recognition
- Combination of heterogeneous algorithms, mainly unsupervised
- Learn different levels of representation
- The output can be used as a feature vector for other classification schemes

Deep Reinforcement Learning

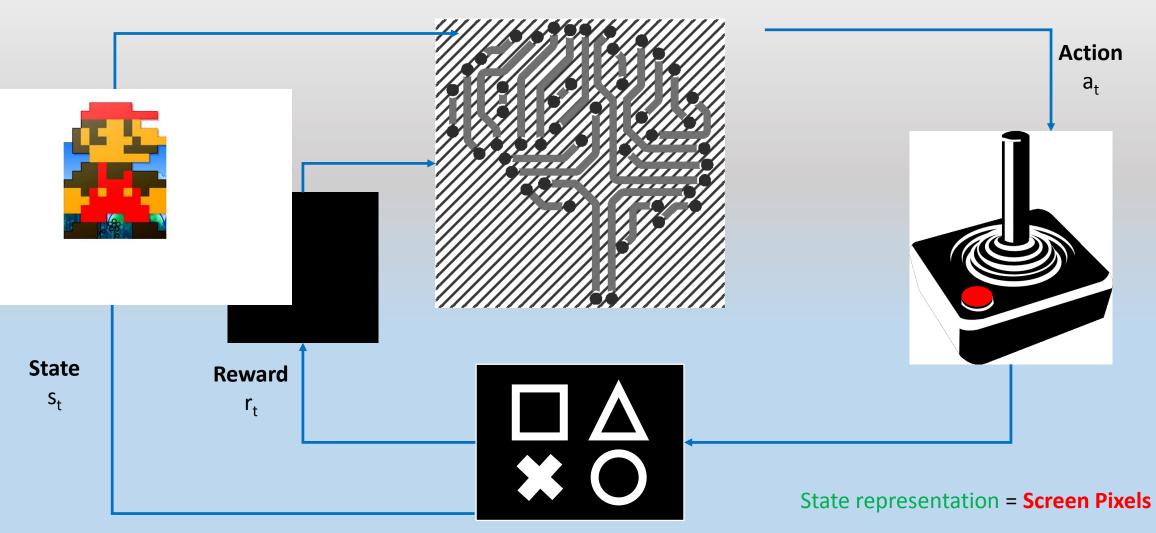
DeepMind

- British-based AI Company founded in 2010
- Acquired by Google in 2014
- A Neural Network that learns how to play video games
- Neural Turing Machine
- Healthcare
 - Searching for early signs of diseases leading to blindness.
 - Differentiate between healthy and cancerous tissues in head and neck area.
- AlphaGo

Selected Article

- Title: Human-level control through deep reinforcement learning
- Authors: Volodymyr Mnih et al.
- Affiliation: Google DeepMind
- Journal: Nature International Weekly Journal of Science
- Volume: 518
- Issue: 7540
- Date: 2015
- Pages: 529 533
- Journal Impact Factor: 38.138
- Citation: 542

Reinforcement Learning in Atari



Deep Q – Learning (DQL)

- Deep Learning + Reinforcement Learning?
- Bellman Equation with Value Function Q(s, a)

$$Q(s_t, \alpha_t) = r + \gamma \left(\max_a Q(s_{t+1}, \alpha) \right)$$

- Where Value Iteration Algorithm can recursively find the optimal value
- Represent the Deep Q Network's Value Function by the with weights W

$$Q(s_t, \alpha, w) \approx Q(s_t, \alpha)$$

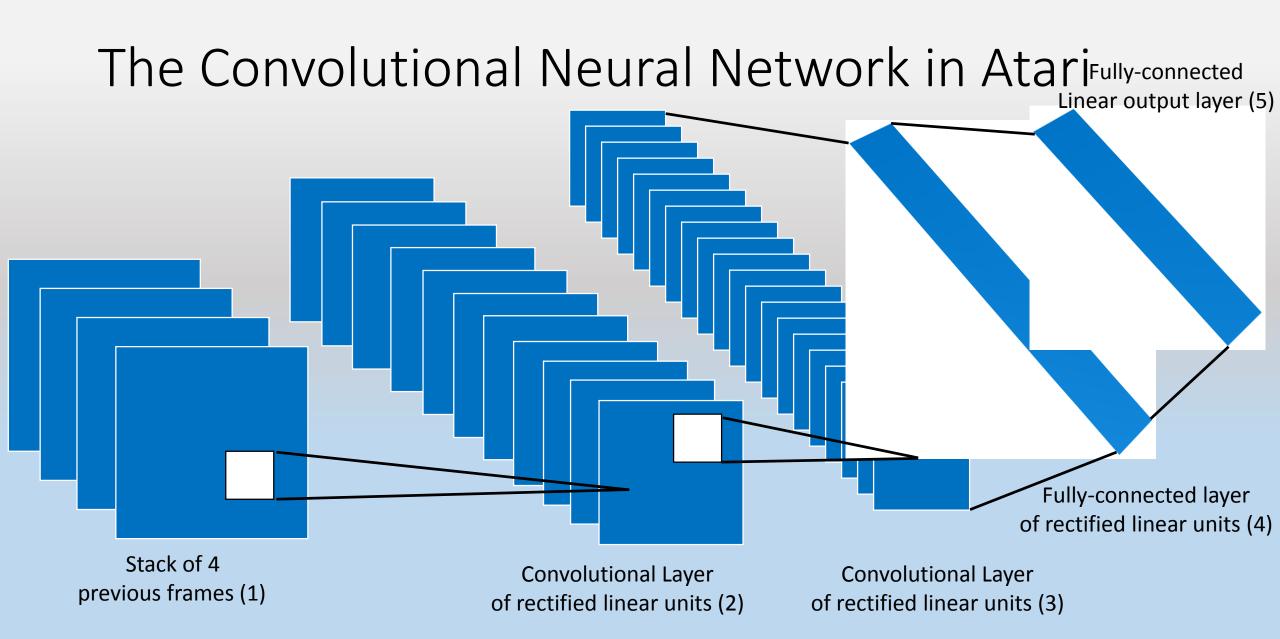
Deep Q – Learning (DQL)

 Define a new Objective Function by Mean-Squared Error (MSE) in Qvalues

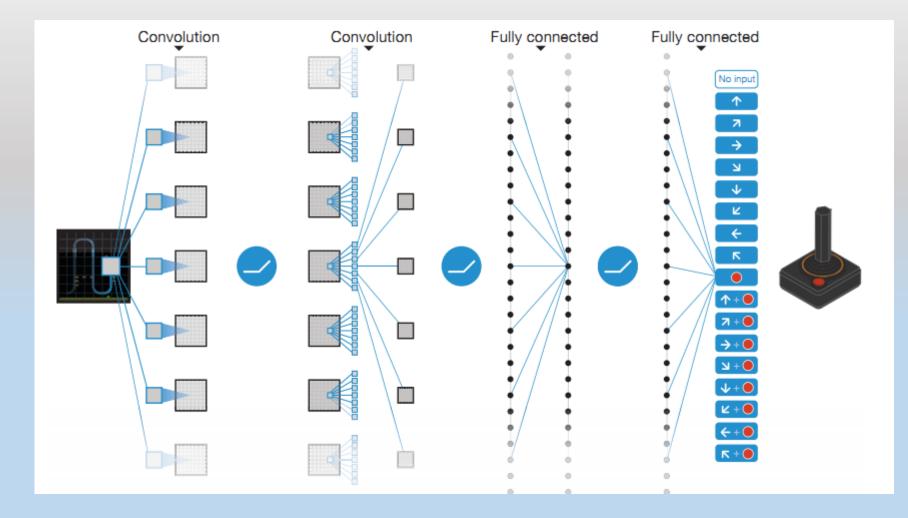
 $L = E[(r + \gamma(\max_{\alpha} Q(s_{t+1}, \alpha, w)) - Q(s_{t}, a_{t}))^2]$

• Leading to the following Q – learning Gradient $\frac{\partial L(w)}{\partial L} = E\left[\left(r + \gamma(\max_{\alpha} Q(s_{t+1}, \alpha, w)) - Q(s_{t}, a_{t}, w) \right) \frac{\partial Q(s_{t}, a_{t}, w)}{\partial w} \right]$

• Optimize objective function by Stochastic Gradient Descent (SGD) using $\frac{\partial L(w)}{\partial L(w)}$



Schematic illustration of Deep Q – Network



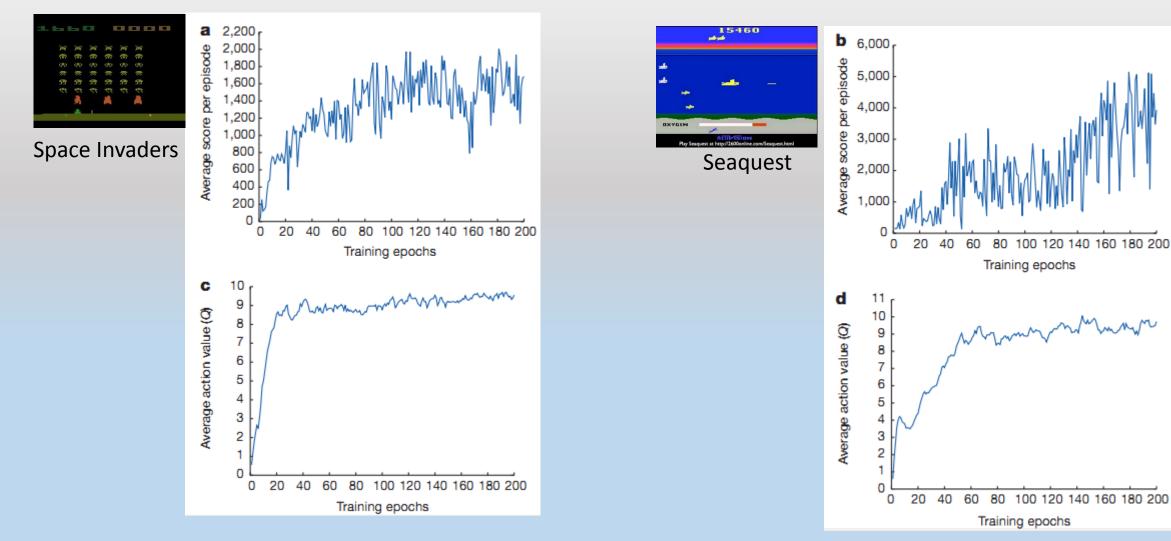
Deep Q – Network characteristics

Layer	Input	Filter size	Stride	# Filters	Activation Function	Output
Convolution 1	84 x 84 x 4	8 x 8	4	32	ReLU	20 x 20 x 32
Convolution 2	20 x 20 x 32	4 x 4	2	64	ReLU	9 x 9 x 64
Convolution 3	9 x 9 x 64	3 x 3	1	64	ReLU	7 x 7 x 64
Fully connected 4	7 x 7 x 64			512	ReLU	512
Fully connected 5	512			18	Linear	18

*Rectified Linear Unit (ReLU)

Results

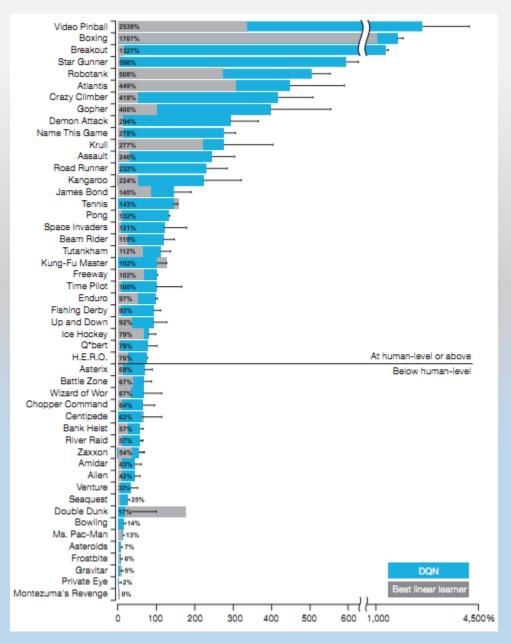
Training Curve



Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning."

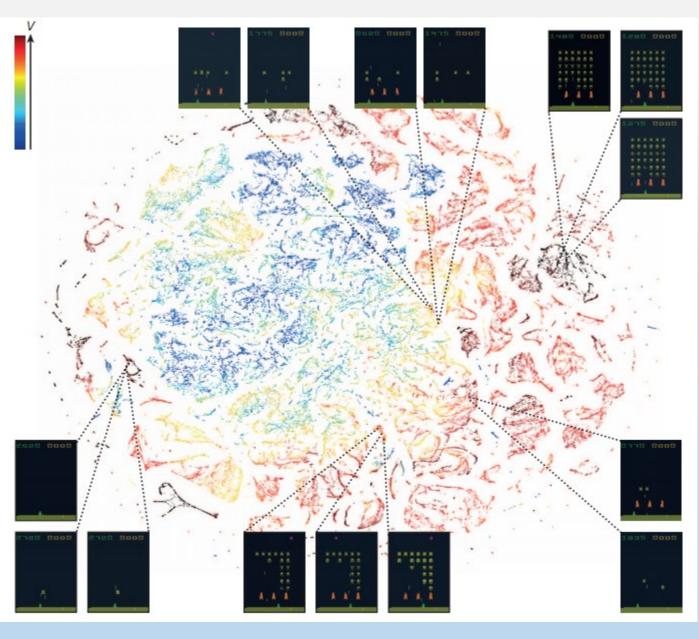
Comparing DQN performance

- Audio was disables
- 30 iterations
- Normalized results

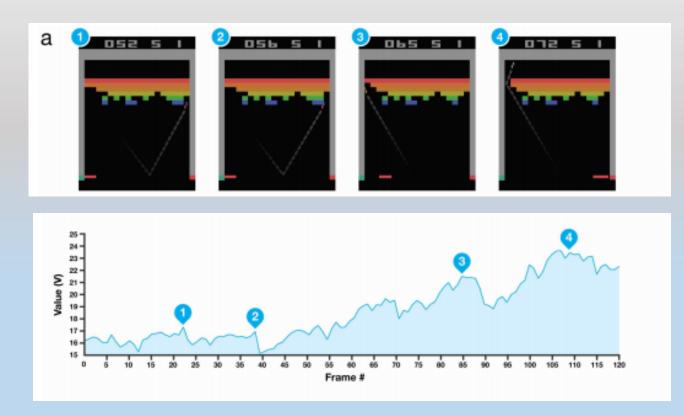


Last hidden layer representation

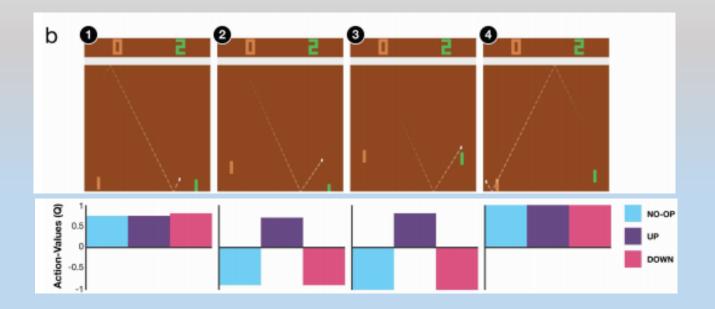
 tSNE representation of game states



Visualization of the learned value Function **Breakout** game



Visualization of the learned value Function **Pong** game



Conclusion

• Deep nets are most suitable while dealing with unlimited high dimensional training data

• DQN

- Reinforcement Learning acts as the function approximator
- Extract high level features from high dimensional raw sensory data
- Final Quote:

"Reinforcement learning + deep learning = AI"

References

[1] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." *Nature* 518.7540 (2015): 529-533.

[2] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." *arXiv preprint arXiv:1602.01783* (2016).

[3] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." *arXiv preprint arXiv:1312.5602* (2013).