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Gist of the Paper 

• Motivation: When dealing Silent Data Corruptions (SDCs) if Checkpoint/Restart 
(C/C) overheads exceed 50% of a job, redundancy is actually cheaper than 
traditional C/R.

• Contributions:
• Design of new SDC detection and correction protocol at the communication layer.
• A study about challenges and cost of SDC protection using redundancy.

• Detection
• Correction

• Limit the overhead of SDC detection by reducing the relevant footprint
• Assessing fault injection scenarios through hardware and software fault injection.
• A live SDC tracking framework using MPI communication

• Assumptions:
• Most critical data is communicated during/after computation which is the scope of importnant

calculations.
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High End Computing (HEC) Challenges

• Nowadays, faults have became a norm in massive clusters of cores with 
numerous reasons such as:
• Hardware: I/O, memory, processor, power supply, switch failure

• Software: Operating system, runtime, unscheduled maintenance

• A failure in each category is enough to interrupt the application.

• And as frequent as:
• Servers tend to crash twice a year (2 – 4%)

• 1 – 5% of disk drives die every year

• DRAM errors occurs in 2% of all DIMM1 per year

• And the solutions are:
• Checkpoint/Restart (C/R) methods for long-running applications
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Checkpoint/Restart (C/R) Efficiency 
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• There is a rapid decay for the amount of useful work when
• The cluster is larger

• The job is longer
• A 168 hours job
• With a node MTBF of 5 years
• On a 100K nodes cluster
• 35% useful work
• The reminder is spent on C/R

Job work MTBF Work Checkpt Recomp. Restart

168 hours 5 years 35% 20% 10% 35%

700 hours 5 years 38% 18% 9% 43%

5,000 hours 1 year 5% 5% 5% 85%

100K nodes job with varied MTBF

#Nodes Work Checkpt Recomp. Restart

100 96% 1% 3% 0%

1,000 92% 7% 15 0%

10,000 75% 15% 6% 4%

100,000 35% 20% 10% 35%

168 hours job with 5 year MTBF1



So, what’s the Outcome of previous tables?  

• Redundancy in computing can significantly revert the useful work decay. By 
doubling up the compute nodes so that every node N has a replica N’.

• Redundancy scale: As more nodes are added to the system, the probability 
for simultaneous failure of a primary N and its replica rapidly decreases.

• Thus, when restart and rework overheads exceed 50% of a job, redundancy is 
actually cheaper than traditional C/R.
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Failure taxonomy

• Fail-stop faults: Faults detectable by monitoring of hardware or software.

• Silent Data Corruption (SDC): When data corruption goes undetected, it 
becomes a Silent Data Corruption (SDC) and poses a high risk to the 
application since it is not recoverable and is corrupted the correct state of 
data. Data corruption is an unintentional change in a bit (bit flips) or an 
unrecoverable read error.

• SDC examples
• Single bit flip which can be detected by ECC in caches but no in register files or ALU

• Double bit flips which ECC cannot correct them and force an instant reboot after them

• Good news: With SDCs occurring at significant rates, not every bit flips result 
in faults e.g. flips in stale data or cod
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Modeling Redundancy

• Jaguar supercomputer1

• Processor: 224,256 x86-based AMD Opteron
• Operating system: Cray Linux Environment
• MTBF: 52 hours == 50 years per node
• Active: Since 2005
• TOP500: 2009, and 2010

• 128 hours job
• 1x, 2x, and 3x redundancy
• Different number of cores

• Conclusions:
• Dual or triple redundancy is more efficient compare to running a job two or three times 
• Dual redundancy would have the lowest cost, yet there is an additional cost of SDC correction 

at the triple redundancy.
• Double redundancy enables SDC detection
• Triple redundancy recovering from SDC detection

1. https://en.wikipedia.org/wiki/Jaguar_(supercomputer)
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RedMPI design

• The authors proposed RedMPI, an MPI library capable detecting and correcting SDC 
faults. RedMPI creates replicas of primary task and performs comparison of 
messages to detect corrupt messages.

• Double Redundant RedMPI can detect divergent messages between replicas. The 
corrupted results will be invalidated and replaced with the good results of the 
correct replica.

• Triple Redundant RedMPI can correct the corrupted messages and presents an 
additional level of redundancy when having two consecutive faults. It has a voting 
mechanism to identify corrupted messages.

• RedMPI does not monitor memory spaces of replicas because it is much more costly 
compare to comparing MPI messages.

• RedMPI limited to the critical messages communicated during/after computation
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RedMPI Design

A. Point-to-Point Message Verification

B. Assumptions

C. Implementation Notes
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Point-to-Point Message Verification

• For any given rank, a P2P message sent by MPI_Isend should be the same for 
primary MPI process and its replicas.

• How to verify correctness?
• Byte by byte message comparison or comparing hashes of messages (to reduce 

network bandwidth) between primary process and replicas.

• Where to verify correctness?
• Sender-side: The sender process will verify the correctness of data. All replicas send 

messages to verify their content, then the verified data will be sent to the receiving 
replica. This incurs overhead especially in the case of matching messages. 

• Receiver-side: The receiver process will verify the correctness of data. This way is faster 
because it reduces message latency prior to sending the message.
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Assumptions

• Support for Collectives/wildecards/non-deterministic MPI

• MPI-1 support

• RedMPI does not support MPI I/O functionality 
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Implementation Notes

• A transparent profiling layer is implemented which wraps MPI calls and add 
additional logic to support replications for MPI calls i.e. Comm_rank, 
Comm_size, Send, Recv,and etc.

• When launching a job with RedMPI, a multiple of the original number of 
desired processes will be launched. 
• E.g. An MPI job with 128 processes will require 256 or 384 processes for dual and triple 

redundancy. 
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Implementation Notes – All-to-all Protocol 

• The RedMPI receiver side protocol (All-to-all)
• All sender replicas send message to all receiver replicas. Thus, each sender sends three 

messages, on for each replica of receiver.

• Originally, in MPI, MPI_Test or MPI_wait completes a message transmission. But, 
RedMPI uses MPI_Request to verify correct message reception of MPI_Irecv

• In RedMPI with dual redundancy, messages received from the replica should 
be matched. If not, application will be terminated.

• In RedMPI with triple redundancy or better, voting is used to determine the 
replica sent the corrupted data and copy of the correct message will be sent 
to that replica.
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Implementation Notes – MsgPlusHash

• The redMPI primary mode of operation with message verification at receiver 
side (MsgPlusHash)
• A copy of the message will be sent to the receiver replica and other replicas will receive 

the hash of message. 

• The message will be transmitted only once while the additional hash is later use to 
verify each receiver’s message.

• MsgPlusHash is more efficient, because for double redundancy it is not necessary to 
send two full messages just for verifying the data correctness. Once a message is 
received, its hash is computed and checked against the received hash to assure 
correctness.

• The messages are sent to the receiver with same replica rank as the sender. 

• The hashes are sent to the receiver with rank equal to sender’s replica rank plus one
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Implementation Notes: All-to-all versus MsgPlusHash

• All-to-all needs to send n^r message where n is the number of messages and 
r is the number of replicas.

• MsgPlusHash needs to send n*r + (n)  messages where n is the number of 
hashes which is very small compare to the original message.
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Fault Injection Design

• A fault injector is implemented within RedMPI that is able to inject SDCs that 
ECC is unable to detect or correct them.

• It can inject fault with the probability of 1/x by picking a message and 
corrupting it by flipping one of its bits. It actually modifies both memory 
allocated for a message and the message itself. 
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Experimental Framework

• RedMPI is deployed on a medium-sized cluster with
• 96 machines

• AMD Opteron dual socket

• 8 cores per docket (16 cores per machine)

• 32GB RAM per machine

• 40 Gb/s InfiniBand fat tree interconnect MPI transport 

• Replicas are not in the same machine

• Processor counts and communication patterns are studied for calculating the time

• RedMPI is assessed using a suite of strong and weak scaling applications:
• Weak scaling benchmarks: LAMMPS, ASCI Sweep3D, and HPCCG

• Strong scaling benchmarks: NAS Parallel benchmarks (NPB)
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Results (Reduced version of Table III - XI)

• Runtime of weak and strong scaling suites

• C, D, E are NBP input class where E is the largest

• Size is the number of processes

• 1x is the baseline

• 2x is double redundancy

• 3x is triple redundancy

• 2x OV is the overhead of 2x/1x

• 3x OV is the overhead of 3x/1x
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Results – SDC Fault Propagation (Fig. 4 – 10)

• Two sets of RedMPI with dual redundancy
• A control set which does not receive any faults

• A test set which receive faults

• RedMPI detect faults in victim set but allows application to continue.

• X-axis is the application progress

• Left Y-axis is the number of corrupted messages

• Right Y-axis is the number of corrupted nodes

• They conclude that protecting applications at the MPI message level is an 
appropriate method to detect, isolate, and prevent further corruption.
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Results – SDC Fault Propagation (Fig. 4 – 10)
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Results – SDC Fault Protection

• Run CG benchmark 

• 64 processes and a replication degree of 3 (192 physical processors)

• Generating faults with the frequency of 1/5,000,000

• Except for three simultaneous injections, RedMPI is able to detect 100,000 
corrupted messages

• Within 20 iterations of CG, it has been observed that the runtime for 
MsgPlusHash is 0.31 seconds less than the original runtime without RedMPI.

• The actual of overhead of RedMPI occurs when it corrects a SDC. So, the 
overhead is a function of number of detected invalid messages.
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